NC STATE UNIVERSITY

Cortex-A72 Memory System

Cortex-A72 Overview

Trace

NC STATE UNIVERSITY

Message

= 4 cores, each with

= Memory Management Unit
= TRM Chapter 5
* Per-core LI caches
= 48 kB instruction cache
= 32 kB data cache
= TRM Chapter 6

= Shared L2 cache

= Unified |+D cache

= 512 kB — 4 MB. RPi 4s BCM271 1| has | MB.
= TRM Chapter 7

Debuag output TimerEvents Interrupts interrupts
[t 1
| | I Corex-AT2 processor
Ai'B ATIB AXI4-Stream
|
L] v L 2 1 2
Debug Generic GIC
andCTl | TMce Timer m CPU |nterface+m
b "|: O o
i i Miscellaneous
r

ETM

Rename

Virtual to
register
poal

Branch
- Instruction
radiction
fetch

) Register
Ind Pred System registers

Retum Instruction | Instruction
stack cache TLB

Processor arbitration {1 level)

_Integer execute
Dispatch Adv SIMD and FP
stages Writeback
Cryptography®
Load | Data | Data
store | TLB |cache

¥ ¥ v ¥
| L2 arbitration (2™ level) |
Fill / Evict L2 data RAM Snoop TAG | | Auto prefetch

Slave || Snoop | | Master |#=# ore [* (512KB to 4MB) RAM engine

T t Level 2 memory system

AXI ACE or CHI

1]

ACPt Memaory

t " : . .)]
interface Depending on the implementation, this feature might not be available

LI Memory System

" LI Instruction Cache
= 48 KB 3-way set-associative
= 64 byte line length
= |6 byte output path: 4 instructions wide
= Parity protection per halfword
= Physically indexed, physically tagged (PIPT)
* LRU replacement

= L| Data Cache

= 32 KB 2-way set associative
= 64 byte line length
ECC per word

PIPT, LRU
Hardware prefetcher

NC STATE UNIVERSITY

Cortex-A72 processor

APB

I

ATB

I

TimerEvents

T

Interrupts AXl4 Stream Protocol

Debug and

CTI

Trace

Generic
Timer

m GIC CPU interface
[

A

"

m Miscellaneous

A\

Core 0

Core 1

Core 2

Core 3

L1
ICache

L

1

DCache

TLBs

L1
ICache

L1

DCache

TLBs

L1
ICache

L1
DCache

TLBs

L1 L1

ICache | DCache TLBs

4

Y

h

¥

A

Y

F

h 4

A

k4

Slave

I

ACP

Master

ACE or CHI

I

Snhoop
Control
Unit

L2 Cache

Level 2 memory system

Device memory load requests: non-speculative, non-blocking

Normal memory load requests: out-of-order, speculative, non-blocking

NC STATE UNIVERSITY

Cortex-A72 processor

L2 Memory System

’\

>

u L2 Memor'y System AEB AEE! Timer?VEHts Intelrupts Amf Stream Protocol
= Unified Cache —
ebug an Generic .
- 5 I 2 KB _ 4 MB CTI Trace Timer m GIC CPU interface m
. ¥ ‘:J = :
= RPi 4s BCM2711 has | MB Miscellaneous
= | 6-way set-associative v v v v
- 64 b)’te Ilne Iength Core 0 Core 1 Core 2 Core 3
= Physically indexed, physically tagged T T I I T I | I I I | I I T
. . ICache | DCache s ICache | DCache S ICache | DCache s ICache | DCache s
= Banked pipeline structures 3 X 5 5
* Programmable pseudo-LRU or v : Y Y
pseudo-random replacement Snoop
Slave Master Control L2 Cach
= 20 — 28 Fill/Eviction Queues ont i
: : f2LE
ACP ACE or CHI — el 2 memory system
-

NC STATE UNIVERSITY

Cache Prefetcher

= Hardware prefetcher for LI data cache, L2 cache
= Load/Store unit handles prefetch generation
= On L2 instruction fetch, fetch consecutive cache lines (configurable for O, I,2 or 3 prefetches)
= On L2 table walk descriptor access, fetch next cache line
= On prefetch request, forward read data before line is allocated

= https://developer.arm.com/documentation/100095/0003/Level-1-Memory-System

https://developer.arm.com/documentation/100095/0003/Level-1-Memory-System

NC STATE UNIVERSITY

Branch Prediction (Program Flow Prediction)

* Predicted A64 instructions = Dynamic predictor
= Conditional branches = Branch Target Buffer
= Unconditional branches = 2-level global history-based direction predictor
* Indirect branches * Indirect branch predictor
= Static predictor = Stores branch address, state to predict target
= Unconditional branch predicted taken = Return stack
= Unconditional BL immediate (call) predicted = Pushes address from X30 on BL '7:": ’ ﬁ{,\ﬁ
taken, return address pushed or BLR, pops address on RET —
= Unconditional return branches predicted taken, = Exception returns not predicted

target popped from return address stack

NC STATE UNIVERSITY

Memory System Performance

NC STATE UNIVERSITY

Memory Access Performance

initialize(number_of_elements) ;
a72MeasureDataAccessEvents() ;

start_clock() ;
peStartCounting() ;
for (; iterations > 0 ; iterations--) {
for (CacheLine *p = TistHead ; p != NULL ;
p = p->nhextLine)
}
peStopCounting() ;

print_clock_time(stdout, get_clock_time()) ;
a72PrintDataAccessEvents(stdout) ;

* From http://sandsoftwaresound.net/arm-cortex- = Measure execution time, PMU events
a/2-tuning-memory-access/ = Each list element is 64 bytes long (takes exactly one
= Use pointer-chasing loop code cache line)

= Array size and iteration counts modified so program
always accesses same number of memory locations
= # elements * # iterations = constant = 268,435,456

= Use linked list, step through with pointer p
= Test p. If not NULL, load p with p->nextLine.

= Pseudorandom nextLine locations should eliminate
spatial & temporal locality to make cache ineffective

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/
http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

NC STATE UNIVERSITY

CPU Cycles for Program Execution

CPU Cycles

60,000,000,000
50,000,000,000
40,000,000,000
30,000,000,000
20,000,000,000

10,000,000,000

Array Size

= From http://sandsoftwaresound.net/arm-cortex-a/2-tuning-memory-access/

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

Average Instruction per Cycle (IPC)

1.200

1.000

0.800

0.600

0.400

0.200

0.000

2KB

4KB

NC STATE UNIVERSITY

IPC

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

= From http://sandsoftwaresound.net/arm-cortex-a/2-tuning-memory-access/

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

L1 D-Cache Miss Ratio

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

= 32 kB LI Data Cache
= From http://sandsoftwaresound.net/arm-cortex-a/72-tuning-memory-access/

NC STATE UNIVERSITY

L1D Miss Ratio

e

2KB

4KB

8KB

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

L2 Cache Miss Ratio

= | MB L2 cache

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

~-

2KB

NC STATE UNIVERSITY

L2 Miss Ratio

4KB

® ® o
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

Array Size

= From http://sandsoftwaresound.net/arm-cortex-a/72-tuning-memory-access/

12

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

NC STATE UNIVERSITY

Extra Cycles per Element Access

Extra Cycles per Element Access

250
200
150 //
100
50
0 L e S s e

2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

= (Total cycles for array size X — total cycles for array size 2 kB)/number of array accesses

= From http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/ and http://sandsoftwaresound.net/arm-
cortex-a/2-execution-and-load-store/

13

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/

Test Parameters

#Elements

ITterations
8388608
4194304
2097152
1048576

524288
262144
131072
65536
32768
16384
8192
4096

Array Size

Mem

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Memory Management Unit in AArché4 State

Virtual Memory

Kernel
space

User
space

Virtual memory

Reserved

Physical memory

OXFFFFFFFF_FFFFFFFF

Reserved

Peripherals

ROM

Reserved

Peripherals

Reserved

Reserved

ROM

v

RAM

Reserved

0x00000000_00000000

Reserved

= Enables system to run programs as
independent processes with private
virtual memory space

= Simplifies development: don’t need to know
memory map, its use by other programs

= [solates system and programs for protection
= Allows programs to run even with fragmented
physical memory
* Program sees virtual address space,

translated by MMU to physical address

= MMU also controls each region’s
= Memory access permissions
= Memory ordering
= Cache policies

NC STATE UNIVERSITY

Translation

|.1fVA[63:42] = | then TTBRI is used for
the base address for the first page table.
When VA[63:42] = 0, TTBRO is used for the
base address for the first page table.

2.The page table contains 8192 64-bit page
table entries, and is indexed via VA[41:29].

The MMU reads the pertinent level 2 page
table entry from the table.

3.The MMU checks the level 2 page table
entry for validity and whether or not the
requested memory access is allowed.
Assuming it is valid, the memory access is
allowed.

4.The level 2 page table entry refers to the
address of the level 3 page table (it is a table
descriptor).

5. Bits [47:16] are taken from the level 2
page table entry and form the base address
of the level 3 page table.

63

VA | TTBRselect | |

TTBRx

\

Index in table
Page table

base address

PA

NC STATE UNIVERSITY

Virtual address from core

l

41 29 28 1615 0

|

0
s 6 0
Low bits of virtual
address form low bit
] | physical address
L2 page table }

Page table L3 page table
base address

Page table entry
contains PA [47:29]

Y.

PALAT:16] | PAIS0] |

NC STATE UNIVERSITY

Virtual address from core

6. Bits [28:16] of the VA are used to index l
the level 3 page table entry. The MMU reads

the pertinent level 3 page table entry from 63 4 29 28 10 0
the table. VA |TTBRselect | | Level2index | Level3index | PA[15:0] |

= 7.The MMU checks the level 3 page table
entry for validity and whether or not the [—
requested memory access is allowed.
Assuming it is valid, the memory access is

Translation

v Low bits of virtual
address form low bit

X ? I T T physical address

= 8.The level 3 page table entry refers to a ndex i tabre
64KB page (it is a page descriptor). Page table
L2 page table

= 9.Bits [47:16] are taken from the level 3 base addrass
page table entry and used to form PA[47:16 U4m @ A W Page table L3 page table
base address

= 10. Because we have a 64KB page,VA[15:0] |
taken to form PA[15:0]. e Page table entry

= 11.The full PA[47:0] is returned, along with contains PAIA7:25]
additional information from the page table
entries.

Y.

A | PAurie] [PANSO]]

NC STATE UNIVERSITY

MMU &L

fo
MM\Z/ /\\V/ | ?///_\Nemory
- bf/ ——| Caches [— @ N

ALBS— | | \Wwalk Unit s

—

ARM Core |——»

= Coder, compiler, linker see virtual addresses

= MMU uses top of virtual address to index to find entry in translation table, indicating
corresponding physical block

= TLB holds recently-used page translations

oo ATy MM
ortex- :
@:[; Q\%\OX \[p\ ()\m)w\

¢
e
= Two layers of TLBs M
= LI Instruction TLB: 48 entry fully associative \j

= LI DataTLB: 32 entry fully-associative for data load and store pipelines e

= L2 TLB: 4-way set associative 1024 entry L2 TLB per processor - >
= Intermediate table walk caches [(\

= TLB Entries S /&/__/n)
= ASID,VMID

= Translation Granule size 4 or 64 KB 2 4%7 52

m l\ /thl

20

NC STATE UNIVERSITY

Instruction and Data Memory Ordering and Barriers

NC STATE UNIVERSITY

Ordering

= Changing instruction, memory access execution order can often
speed up a program
* Parallel instruction issue
= Out-of-order completion
= Speculatively prefetch instructions after a branch
= Starting long latency operations early

= Merge small memory operations into one (more efficient because less
overhead)

= Multicore systems may migrate cache lines to maintain coherency
" Both software (software) and hardware may change instruction order

22

Memory Types

" Is it safe to...
= Reorder the accesses!
= Repeat an access!?
= Merge accesses!

= Two exclusive types defined for
ARMv8-A

= Normal: all code and most data

" Yes, yes, yes, assuming the addresses are
independent. |s weakly ordered.

23

NC STATE UNIVERSITY

" Device: peripherals and other
memories with possible side effects
= Probably not, probably not, probably not.

Device Memory Types

= Consider three properties
= Gathering (G, nG)

= Can multiple accesses be merged into one!

= Reordering (R, nR)

= Can access to same device be reordered?

= Early Write Acknowledgement (E, nE)

= Can intermediate buffer indicate write is done
early?

24

NC STATE UNIVERSITY

" Range of device memory types
= Device-nGnRnE: Most restrictive
= Device-nGnRE

= Device-nGRE
= Device-GRE: Least restrictive

Memory Attributes o

0X25FFFFFF

0x24000000

0x1FFFFFFF

0x10000000

Ox0003FFFF

0x00000000

Flash

(4

=

- Privileged

Peripherals

<

- Read Only
- Normal, Shared

- Privileged
- Device, Not Shared

- Execute never

N
N\

SRAM

]

- Read/Write

- Normal, Shared

NC STATE UNIVERSITY

= Attributes for memory regions

= Access permissions for different privilege levels,
memory type, cache policies, shareability

* Normal memory regions
= May be cacheable
= May be shareable with other cores

" Device memory regions
= Always non-cacheable, outer-shareable

NC STATE UNIVERSITY

Outer shareable

Domains

= Architecture splits system
into domains to reduce cache

|

| |

1]) |
coherency traffic and power : : | : [core } [core] 1

| |

| |

|

Non-shareable |

p— e E— —

consumption

Processor Processor |

|
|
|
|
|
- I |
|
|
J
* Domain shareability options —— "~~~ "~~~ """~ T~ 7~

* Non-shareable: no other agents access the domain

* Inner Shareable: shared by some other agents, but Inner Shareable regions do not
affect each other

= Outer Shareable: operation affecting Outer Shareable Domain affects all of its Inner
Shareable Domains

= Full system: Operation on full system affects all observers

26

NC STATE UNIVERSITY

Barriers

=" Barrier instruction forces access ordering and completion when it executes
= Instruction Synchronization Barrier
= Data Memory Barrier
= Data Synchronization Barrier

27

NC STATE UNIVERSITY

Barriers

" Instruction Synchronization Barrier

= Flushes pipeline, forces context-changing instructions to complete
= Forces following instructions to be re-fetched from memory (not cache)

= Example: Enable FPU and SIMD, then make sure they are enabled before letting any
FPU or SIMD instructions execute

MRS X1, CPACR_EL1 // Copy contents of CPACR to X1
ORR X1, X1, #(@x3 << 20) // Write to bit 20 of X1. (Enable FPU and SIMD)
MSR CPACR_EL1, X1 // Write contents of X1 to CPACR

ISB //

28

NC STATE UNIVERSITY

Barriers

" Data Memory Barrier

= Prevents reordering of data access instructions across this instruction.
LDR X@, [X1 // Must be seen by the memory system before the
// STR below.

DMB ISHLD

ADD X2, #1 // May be executed before or after the memory
~/ //system sees LDR.

STR X3, [X4] // Must be seen by the memory system after the

// LDR above.

= Forces cache maintenance operations to complete

DC CSW, X5 // Data clean by Set/way

LDR x@, [X1] // Effect of data cache clean might not be seen by
// this instruction

DMB ISH

LDR X2, [X3] // Effect of data cache clean are seen by this

// instruction

29

NC STATE UNIVERSITY

Barriers

= Data Synchronization Barrier
= Like DMB, but also prevents all following instructions from executing until DSB

completes
DC ISW, X5 // operation must have completed before DSB can
// complete STR
STR X0, [X1] // Access must have completed before DSB can complete
DSB ISH

ADD X2, X2, #3 // Cannot be executed until DSB completes

30

NC STATE UNIVERSITY

DMB, DSB Parameter

DptiC) slule Ord d A D Do
Delo
OSHLD Operation that waits only for loads to Load — Load, Load — Outer Shareable
complete, and only to the outer Store

shareable domain

OSHST Operation that waits only for stores Store — Store

to complete, and only to the outer
shareable domain.

OSH Operation only to the outer shareable Any — Any
domain.
NSHLD Operation that waits only for loads to Load — Load, Load — Non-shareable

complete and only out to the point of Store

unification. Load - Load/Store | This means that the barrier requires all loads to complete before the

barrier but does not require stores to complete. Both loads and stores

NSHST Operation that waits only for stores Store —Store that appear after the barrier in program order must wait for the barrier to

to complete and only out to the point

of unification. comP|Ete-

NSH Operation only out to the point of Any — Any Store - Store This means that the barrier only affects store accesses and that loads can
unification. still be freely reordered around the barrier.

ISHLD Operation that waits only for loads to Load —Load, Load - Inner Shareable Any - Any This means that both loads and stores must complete before the barrier.

complete, and only to the Inner Store

) Both loads and stores that appear after the barrier in program order must
Shareable domain

wait for the barrier to complete.

ISHST Operation that waits only for stores Store — Store
to complete, and only to the Inner
Shareable domain.

ISH Operation only to the Inner Shareable Any — Any
domain.

LD Operation that waits only for loads to Load —Load, Load - Full system
complete. Store

ST Operation that waits only for stores Store — Store

to complete.

SY Full system operation. This is the Any — Any
default and can be omitted.

NC STATE UNIVERSITY

One-Way Barriers

" Load-Acquire LDAR LDR
= Guarantees loads and stores after TR
the LDAR become visible after the
LDAR completes S— A
= Store-Release STLR [R ng'dcj |
= Guarantees loads and stores [STR section
before the STLR become visible Y ___STLR Y
before the STLR LDR

STR

32

	Default Section
	Slide 1: Cortex-A72 Memory System
	Slide 2: Cortex-A72 Overview
	Slide 3: L1 Memory System
	Slide 4: L2 Memory System
	Slide 5: Cache Prefetcher
	Slide 6: Branch Prediction (Program Flow Prediction)
	Slide 7: Memory System Performance
	Slide 8: Memory Access Performance
	Slide 9: CPU Cycles for Program Execution
	Slide 10: Average Instruction per Cycle (IPC)
	Slide 11: L1 D-Cache Miss Ratio
	Slide 12: L2 Cache Miss Ratio
	Slide 13: Extra Cycles per Element Access
	Slide 14: Test Parameters

	Virtual Memory
	Slide 15: Memory Management Unit in AArch64 State
	Slide 16: Virtual Memory
	Slide 17: Translation
	Slide 18: Translation
	Slide 19: MMU
	Slide 20: Cortex-A72 MMU

	Ordering and Barriers
	Slide 21: Instruction and Data Memory Ordering and Barriers
	Slide 22: Ordering
	Slide 23: Memory Types
	Slide 24: Device Memory Types
	Slide 25: Memory Attributes
	Slide 26: Domains
	Slide 27: Barriers
	Slide 28: Barriers
	Slide 29: Barriers
	Slide 30: Barriers
	Slide 31: DMB, DSB Parameter
	Slide 32: One-Way Barriers

