NC STATE UNIVERSITY

Linux — Performance Analysis

3/27/2025

NC STATE UNIVERSITY

Overview

* How much time does the code
take?

= Basic measurement provides coarse-
grain information

= Which part of the code uses the
most time!

= That’s the best place to start
optimization for speed, as it has the
largest impact

NC STATE UNIVERSITY

Measuring Total Execution Time

NC STATE UNIVERSITY

Timing Measurement with clock gettime

* Does not include time taken by other = Function: clock gettime(clockid_t clk _id,
processes struct timespec *tp)
= Time reported in nanoseconds = clk_id selects which time to measure
= CLOCK_ REALTIME: System-wide realtime
clock.

= Hinclude <time.h>

. = CLOCK_MONOTONIC: Represents
Data Type: struct timespec

monotonic time since some unspecified

= time_t tv_sec: number of whole seconds of starting point.
elapsed time. = CLOCK_PROCESS CPUTIME_ID: High-

= long int tv_nsec: Rest of the elapsed time in resolution per-process timer from the CPU.
hanoseconds. = CLOCK_THREAD_CPUTIME_ID: Thread-

specific CPU-time clock.
= Returns O for success, -1 for failure

Example: Speed/Scalar/SG | /main.c

struct timespec start, end;
unsigned long diff, total=0; // times in ns

clock_gettime(CLOCK THREAD_ CPUTIME_ID, &start);

Find_Nearest VWaypoint(cur_pos_lat, cur_pos_lon, &dist, &bearing, &name);
clock_gettime(CLOCK THREAD CPUTIME_ID, &end);

diff = 1e9 * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

NC STATE UNIVERSITY

Spherical Geometry (SG) Performance Across Processors

. . CMO+ @ 48 MHz CMA4F @ 120 MHz CA8 @ 1 GHz CA72 @ 1.5 GHz
- UI’]SUI’PI’lSlngI)’, Pipe Stages 2 3 18+ 16+
CorteX_A Processors Version|Time/Pt Clocks/Pt |Time/Pt Clocks/Pt Time/Pt Clocks/Pt |Total Time Time/Pt Clocks/Pt
1| 1.60E-03 ~ 76800 | 3.18E-04 38160 | 1.01E-05 10100 | 9.60E-05 5.89E-07 883.4
much faster than 13| 3.07E-05 1473.6 | 2.50E-06 300 | 4.46E-07 446 | 7.80E-06 4.78E-08 71.7
Cortex-M bad worse
than CMA4F!
= Factor out clock speed to get clock cycles Average Clock Cycles per Point
per point 1600
1400

= Can see efficiency of architecture and

. . 1200
microarchitecture 1000

= Big improvement: 1474 to 72 cycles 800
600

= Why does Cortex-A8 perform worse than

400
0 |

Cortex-M0+ Cortex-M4F Cortex-A8 Cortex-A7?2

NC STATE UNIVERSITY

Profiling the Distribution of
Execution Time in Code

NC STATE UNIVERSITY

Profiling: How Does

THE FAMILY

The Program Spend Its Time!?

o - Al wge
“m‘p - - - - :
WOCE, au.v;m e Tees’ | -‘:’-/_“.'J
S TS, s
A J."

........
.......

% N "f “' ! £ (——
L~ '
82t «?f‘:..‘.} N Lrew srewh ,

* What is the program really doing? Anything

= The 80/20 rule, Pareto Principle, Juran’s Principle
unexpected or extral

= Tools: gprof and perf
= How is the program doing it? Is it reasonably

s efficient?

NC STATE UNIVERSITY

PROFILING WITH GPROF

Profiling with GProf

Searc
= GNU tool for profiling a program to determine |
which functions dominate the execution time ..?J - Q;CE.
= https://sourceware.org/binutils/docs/gprof/ - a (
= Basic process W
= Build your program with gprof profiling support a Lgujf’
= Modifies program (adding instrumentation code) to :
generate execution profile raw data file (gmon.out) when :
it runs \§/
= Run your program 3W\0V\ out S
= This also generates gmon.out
= Use gprof to process the profile raw data (gmon.out) \\/é_é"
and generate the profile O?\

https://sourceware.org/binutils/docs/gprof/

Build Settings Needed for GProf

See Speed/Scalar/SG_gprof
Compile and link program with
gcc/g++ profiling options

= -pg to include profiling code
(instrumentation)

= -g to support line-by-line
profiling
Makefile must have these
options twice

= when compiling the source files
(.c->.0)

= when linking them
(.o->test_program)

CC = gcc
CFLAGS =

PROF =

%.0: %.C

sg: main.o geometry.o CMAN_coords.o

geometry_list.s: geometry.c
$(CC) -Wa,-adhln -g geometry.c -c = geometry_list.s

clean:

-c -Wall

-Pg -9

$(CC) $(CFLAGS) $(PROF) -c -o $@ $<

NC STATE UNIVERSITY

-ggdb -0® -mfloat-abi=hard -mcpu=cortex-a72 -mfpu=crypto-neon-fp-armv8

$(cc) -ggdb $(PROF) main.o geometry.o CMAN_coords.o -1lrt -1m -static -o $@

rm -f *

.0

sg

*

.5

NC STATE UNIVERSITY
Using GProf

pi@raspberry p1

Usage: gpro [EL]e 5 xyz]] [-[ACEEfFJ“HDG
d[num]] [| T [-m min-count] [t

-[no-]anno Cﬂ[— 4m~]] [[

-[no-]flat Le = - 0

--[no-]time

[-.
[_
[_
[
[__
[__
[--
I:__
[__.
[__-.
L-
[-.

Report bugs to <h =

pi pherrypl

i ence: 149574 Total time: 1580138759 ns fo
Mi i

pli@raspberrypi:

Flat profile:

= Run instrumented executable from the shell = Run gprof to analyze gmon.out against

$ /sg executable sg
= Generates gmon.out file in directory where the = $ gprof sg
program runs = Generates profile in flat and call graph formats

= -b option for brief (not verbose) output

Gprof and Libraries

NC STATE UNIVERSITY

self total
calls Ts/call Ts/call name

1 Flat profile:
2
2 Each sample counts as 0.01 seconds.
4 % cumulative self
5 time seconds seconds
100.58 0.59 0.59

=]

= Not very useful! What’s happening?

= This does not handle dynamically linked libraries
(default for linker)

= .so = shared object = dynamically linked library)
= .a = static library

Init SineTable

= Solution: Ensure linker uses static libraries
= Makefile: -static

= Verify they are on your system

= $ sudo find / -name “libm.a”

NC STATE UNIVERSITY
Flat Profile

pi@raspberrypi

1640600600

1
1
1
1
1
1
1
1
1
1
1

160606006

1

Call Graph

index % time self children called
[1] 48.4 0.60 0.00

[2] 20.2 0.25 0.00

[8] 0.8 .01 00

0 0.
0.00 0.00 1000/1000
0 0.00 1000/1000

0.00 0.00 1000/1000
[11] 0.0 0.00 0.00 1000

0.00 0.00 1000/1000
[12] 0.0 0.00 0.00 1000

0.00 0.00 1/1
[13] 0.0 0.00 0.00 1

NC STATE UNIVERSITY

name
<spontaneous>
sincos [1]

<spontaneous>
__jeee754_atan2 [2]

——— Who called current function

'(spontaneous == don’t know)

<spontaneous>

Find_Nearest_Wwaypoint [8] . Current function
Calc_bistance [12]
Calc_Bearing [11] =, Children called by

current function

Find_Nearest_waypoint [8]
calc_Bearing [11]

Find_Nearest_waypoint [8]
calc_Distance [12]

__Tibc_start_main [672]
main [13]

NC STATE UNIVERSITY

Call Graph (in Text)

.B4 0.00 1540000/1640000 Find_Nearest_waypolnt [5]
(9] 2.8 0.04 0.00 1640000 calc_bistance [9]

<spontaneous=

37.0 8.53 0.00 [1]
--- =spontanepus=
=spontaneous= [10] i | 8.03 8.00 clock_gettime [18]

"""""""""""""""""""""""""" 6.61 0.00 1650000/1650000 Find_Nearest_Waypoint [5]

<spontaneous=

[3] 19.7 B.28 o.00 ieee754 atanz [3]

B - e =T e T Bl =T TaT sl - =g EE
[11] & b, ol L By Lo CRCRERCE Calc_Bearing [11]

""""""""""""""""""""""""" =5pontaneous=
=spontanecus= [12 8.7 ©.81 0.00 atanzl [12
acos_Finite [4] B - - oo e e
""""""""""""""""""""""""" =5pontaneous=
- - = el P =Tt Pt ara! . = el _ _
.ol 0. 0o LEHOCHC S L ECh main [6] 13] 0.7 0.61 0. 00 stremp [13]
- - - = el B = =TTt = - [= T . .
5] 3.9 B.61 B.05 10600 Find MWearest Waypolnt [5] @ B----- - oo
0.04 0.00 1540000/1640000 Calc Distance [9] =spontaneous=
g.01 .00 150000/ 1650000 calc_Bearing [11] [14] .7 A .67 & . ee doasin 14

6.00 B.06 1/1 libc_start_main [7]
6] 3.9 0.00 B.06 1 main [&]
0.01 .05 10000/10000 Find_Nearest_Waypolnt [S]1index by function name

=spontaneous= [11] calc_Bearing [3 ieee754_atanz [6] main
Libc_start_main [7] [9] Calc_Distance [8] acosf32x [2] sinl
main [6] [5] Find MNearest Waypoint [12] atanzl [13] strcmp
"""""""""""""""""""""""""" [4] __acos_finite [16] clock_getiime
=spontaneous= [14] doasin [1] cos

[8] 3.5 0.05 0.00 acosf3zx [8] pi@raspberrypi:

|
e
Lad
w0
[]
]
i)
s]
s]

Call Graph Visualization

= |nstall visualization tools

= $ sudo pip install gprof2dot
= $ sudo apt-get install graphviz

= Run tools

= §$ gprof ./sg | gprof2dot > sg.dot
= $ dot sg.dot —Tpng —o sg.png

sg.png (997x433) 100%

/ 280% \ 0.70%

% 41650000

NC STATE UNIVERSITY

NC STATE UNIVERSITY

PROFILING WITH PERF

Perf

= Measurement modes

= Sampling mode (default 1000
Hz)
= record, report,

annotate

= Event-counting mode using
software counters in kernel
and hardware counters in
PMU

= stat
= |nstallation
= sudo apt-get install linux-perf

= or use Raspberry Pi
Preferences->Add/Remove
Software

Basic use in sampling mode

= sudo perf record ./sg
= Generates perf.data file for
analysis
= sudo perf report

= Generates profile from
perf.data file

= Can annotate functions
= sudo perf annotate

= Annotates object code with
sample counts from perf.data

NC STATE UNIVERSITY

$ sudo perf record ./sg

KR

perf.data

$ sudo

perf report

$ sudo perf annotate

Function Profile: perf report

File Edit Tabs Help

Samples: 3K of event 'cpu-clock', Event count (approx.): 917008000
Overhead Command Shared Object Symbol

] _coe’

20

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Instruction Profile: perf annotate

samples: 1K of event 'cpu-clock', 8 Hz, Event count (approx.): 498000080 Samples: 1K of event 'cpu-clock’', @ Hz, Event count (approx.): 498000000
__cosf /lib/arm-linux-gnueabihf/libm-2.28.s0 __cosf fllbfﬂrm'11”“*'9”993b1hf311bm'2-28-30

Percent Percent vmla.f64 d2, 371 dl

ARB2cled <cosf

COs

fEEGLIBC_2.4+0x428>
f@EGLIBC_2.4+0x438>

fEEGLIBC 2.4+0x448>

f@BGLIBC_2.4+0x3f8>
fBBGLIBC_2.4+0x400>

References on How to Use Perf

* Drongowski: "

* Tutorial:

* Part 1 demonstrates how to use PERF to identify
and analyze the hottest execution spots in a
program. It covers the basic PERF commands,
options and software performance events.

* Part 2 introduces hardware performance events
and demonstrates how to measure hardware
events across an entire application. It defines and
discusses several useful rates and ratios for
performance assessment and analysis.

* Part 3 uses hardware performance event sampling *
to identify and analyze program hot-spots.

= Performance events on Raspberry Pi 4:Tips -

22

NC STATE UNIVERSITY

Performance Analysis in Linux:
https://www.linux.com/training-
tutorials/performance-analysis-linux/

Good summary with one-liners (example
command invocations):
http://www.brendangregg.com/perf.html

Intro: http://www.baptiste-
wicht.com/201 1/07/profile-applications-linux-perf-
tools/

https://dvinfo.ifh.de/perf

Exhaustive:
https://perf.wiki.kernel.org/index.php/Tutorial

Use the Source!

= [usr/src/kernel/tools/perf

http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
http://sandsoftwaresound.net/perf/perf-tut-count-hw-events/
http://sandsoftwaresound.net/perf/perf-tut-profile-hw-events/
http://sandsoftwaresound.net/performance-events-on-raspberry-pi-4-tips/
https://www.linux.com/training-tutorials/performance-analysis-linux/
https://www.linux.com/training-tutorials/performance-analysis-linux/
http://www.brendangregg.com/perf.html
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
https://dvinfo.ifh.de/perf
https://perf.wiki.kernel.org/index.php/Tutorial

NC STATE UNIVERSITY

Annotated Mixed Asm & Source Code

e I D T o o

Percent | Source code & Disassembly of mand

= Makefile: include -ggdb option when

compiling and linking to get source : Disassembly of section .text:
. .- , D00083d0 -<main>:
code listing ; {
Hloar ot S8 o
= Record a run, then annotate source : float rsquared, isquared;
i unsigned image[SIFE] [EIEE],_
code with that perf data .00 - Momdor VTt Toal sassse ; oxasdo
. deF?ra;g‘#'ll'DP mivg r'._, #2312 ; Ox908
= S sudo perf record ./sg ; fdefine BOTTOM 1.0
#Fgdefine CVWVT_SIFE 7
| S SUdO perf annotate ;nt main{int argc, char *argv[])
= Note: may need to change terminal 0 int x, v, county
remote character set to 1ISO-8859:1 tncsgned imagelSIoR] [STZET;

char cvt[CVT_S5IFE+1] = " . —+#@";

1998 - _ 83dc: movt r3, #0

23

NC STATE UNIVERSITY
Perf Annotate User Interface

—Help
UP /DOWN f PGUP

PGDN / SPACE Navigate
q/ESC/CTEL+C Exit

ENTER Go to target

ESC Exit

Cycle thru hottest instroctions

Toggle showing Jump to target arrows
Toggle showing number of Jjump sources on targets
search next string

Toggle disassembler ountpnt/simplified view
Toggle source code view

Toggle total period view

search string

Toggle line numbers

Eon available scripts

search string backwards

H
!
J
I
o
=
t
/
k
r
?

Pre=ss any key...

NC STATE UNIVERSITY

Annotated Main Listing

int main{int argc, char *argv

83e0: sub =p, sp, #3997696 ; Ox3d0000

83ed: mov r4d, ro
83e8: =zub =p, sp, ¥2304 : Ox900
int x, vy, count;
float zr, z1, cr, ci;
float rsquared, 1squared;
un=i1gned 1mage[5IFE] [S5IZE];
char covt[CVT_SIFE+1] = "* . —+#@";
83ec: 1dm r3, {r0o, ri}
Fdefine TOP 1.0
Fdefine BOTTOM -1.0
#Fdefine CVWT_SIZE 7

int main{int argc, char *argv([])

83f0: sub =p, sp, #¥12

int x, vy, count;

float zr, z1, cr, cij;

float rsquared, 1squared;

uns=igned 1mage[S5IFE] [SIZE];

char cvt[CVT_SIFE+1] = "* .—+#A";
83f4: mowvt rz, #1 ; 0x3d
83f8: add rz, sp, rz2
83fc: stmdb rz, {r0o, ri}

25

NC STATE UNIVERSITY

More Annotated Listing

for (v = 0; yv <« S5IZE; wy++)
B842c: vevit. F32.s532 =14, =11
8430: vimla. 32 =9, s14, s15

for (x 0; x <« SIZE; x++)
i
rdg 0.0;
Z1 0.0;
cr = LEFT + x = (RIGHT - LEFT) / SIZE:
vmov. 32 =6, #1228 = Ox80
VMOV s15%, r2

ci =TOP + y * (BOTTOM — TOP) / SIZE;

rsquared Zr * zr;
1squared Z1 = Z1;
v idr =13, [pc, #268] ; Ox10c

(x 0; x <« SIFE; x++)

rdg 0.0;

Z1 0.0;

cr = LEFT + x = (RIGHT - LEFT) / SIZE;
vmov. 32 =10, =6

26

NC STATE UNIVERSITY

Aha! (on Cortex-A8)

vimal.f =14, =13, =13
1sgqunared = z1 * z1;

for (count = 0; rsqgunared + i1sguared <= 4.0
vadd.f =11, =14, =12

vompe. =211, =8

1f (rsgunared + 1sgunared <= 4.0)
image[x] [¥v] = 0;
else
image[x] [¥] = count;
fp, [rD]

ro, #240
bls takes most of the time

Pipeline stalls after vmrs instruction

perf top (Cortex-A8)

1005 irqgs/sec kernel:99.3% exact: 0.0% [1000Hz cycles], (all, 1 CPU)

[kernel]

P

am33Ixx_enter_i1dle

perf
1ibc-2.12.2.50
[kernel]
[kernel]
[kerne]]
libc-2.12.2.50
drnphearmu1t1
[kerne]]
libc-2.12.2.50
1ibc-2.12.2.50
11hc—L.1L.L.su
1ibc-2.12.2.50
[kerne]]
libc-2.12.2.50
1ibc-2.12.2.50
[kerne]]
[kernel]
[kernel]
[unknown]

sudo perf top

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

la-ﬂ-a-lla-lllla-lla-ﬂ-a'll
L [R B | R | S R R | RS | B [B | R [R | B R |

0x39980

memchr

kal lsym=_expand_symbol
vsnprintf
format_decode
Ox6achD
O0x193c0
number.clone. 7
getdelim
strstr
libc_calloc
strcmp
string.clone.1
strchr

mEmCpy

__copy_to_user_std

strnlen
update_iter
OxffHffofcc

29

NC STATE UNIVERSITY

Hardware Event Counters

Performance Monitor Unit (PMU)

Details in Tech. Ref. Manuals (TRMs)
= Cortex-A53 MPCore TRM: Chapter 12
= Cortex-A72 MPCore TRM: Chapter | |

Cycle counter

= Can count processor cycles
= Or processor cycles / 64

Many types of events can be monitored
= Table 12-28 or 11-24 is 3! pages long
Six performance event counters
= 32-bits wide

= Each can be configured to count a given
type of event

30

System control,
processor, and
APB interface

NC STATE UNIVERSITY

vy

h 4

— CLK —»]
Cycle counter
—
Count Enable
Set/Clear and
SElvetm "l Performance
e t_ac lon . counter
registers >
' Performance
o counter
Performance
o counter
"] Performance
It > counter
"| Performance
Events from . R counter
other units
| Performance
counter

vy

Interrupt and
overflow
registers

— NPMUIRQ —»

Event Types

* Instructions = Memory
= Speculatively executed = Access, read, write, unaligned, unaligned write,
= Load, store, integer data processing, ASIMD,VFP, unaligned read
crypto, PC change, branch immediate, branch = Bus

return, branch indirect, barrier .
= Access, cycle, read, write, shared access, not

shared access

LI TLBs
= Refill

= Exceptions

= Retired
= Exceptions taken, returned

= Exceptions

= Types of exceptions

= Branches

= Predicted, mispredicted

L1 (I/D), L2 (U) Caches = Sources
= CA53TRM, Section 12.9

= CA72TRM, Section | 1.8

= Access, refill, write-back, read, write, read refill,
write refill, write-back victim, write-back

cleaning and coherence, invalidate
31

Listing Perf Events (perf list)

Pre-defined events (to be used in -e or -M):

branch-misses [Hardware event]
bus-cycles [Hardware event]
cache-misses [Hardware event]
cache-references [Hardware event]
cpu-cycles OR cycles [Hardware event]
instructions [Hardware event]
alignment-faults [Software event]
bpf-output [Software event]
cgroup-switches [Software event]
context-switches OR cs [Software event]
cpu-clock [Software event]
cpu-migrations OR migrations [Software event]
dummy [Software event]
emulation-faults [Software event]
major-faults [Software event]
minor-faults [Software event]
page-faults OR faults [Software event]
task-clock [Software event]
duration_time [Tool event]

user_time
system_time

[Tool event]
[Tool event]

armv8_cortex_a72:
L1-dcache-loads OR armv8_cortex_a72/L1-dcache-loads/
L1-dcache-load-misses OR armv8_cortex_a72/Ll-dcache-load-misses/
L1-dcache-stores OR armv8_cortex_a72/Ll-dcache-stores/
L1-dcache-store-misses OR armv8_cortex_a72/L1-dcache-store-misses/
Ll-icache-loads OR armv8_cortex_a72/L1-icache-loads/
L1l-icache-load-misses OR armv8_cortex_a72/Ll-icache-load-misses/
dTLB-load-misses OR armv8_cortex_a72/dTLB-load-misses/
dTLB-store-misses OR armv8_cortex_a72/dTLB-store-misses/
iTLB-load-misses OR armv8_cortex_a72/iTLB-load-misses/
branch-loads OR armv8_cortex_a72/branch-loads/
branch-load-misses OR armv8_cortex_a72/branch-load-misses/
node-loads OR armv8_cortex_a72/node-1loads/
node-stores OR armv8_cortex_a72/node-stores/

branch:

br_immed_spec

[Branch speculatively executed, immediate branch]
br_indirect_spec

[Branch speculatively executed, indirect branch]
br_mis_pred

[Mispredicted or not predicted branch speculatively executed.]
br_pred

[Predictable branch speculatively executed]
br_return_spec

[Branch speculatively executed, procedure return]

bus:
bus_access
[Attributable Bus access]
bus_access_normal
[Bus access, Normal]
bus_access_not_shared
[Bus access, not Normal, Cacheable, Shareable]
bus_access_periph
[Bus access, peripheral]

32

bus_access_rd
[Bus access read]
bus_access_shared
[Bus access, Normal, Cacheable, Shareable]
bus_access_wr
[Bus access write]
bus_cycles
[Bus cycle]
cpu_cycles
[Cycle]

cache:

11d_cache

[Level 1 data cache access]
11d_cache_inval

[L1D cache invalidate]
11d_cache_rd

[L1D cache access, read]
11d_cache_refill

[Level 1 data cache refill]
11d_cache_refill_rd

[L1D cache refill, read]
11d_cache_refill_wr

[L1D cache refill, write]
11d_cache_wb

[Attributable Level 1 data cache write-back]
11d_cache_wb_clean

[L1D cache Write-Back, cleaning and coherency]
11d_cache_wb_victim

[L1D cache Write-Back, victim]
11d_cache_wr

[L1D cache access, write]
11d_tlb_refill

[Attributable Level 1 data TLB refill]
11d_tlb_refill_rd

[L1D tlb refill, read]
11d_tlb_refill_wr

[L1D tlb refill, write]
11i_cache

[Attributable Level 1 instruction cache access]
11i_cache_refill

[Level 1 instruction cache refill]
11i_tlb_refill

[Attributable Level 1 instruction TLB refill]
12d_cache

[Level 2 data cache access]
12d_cache_inval

[L2D cache invalidate]
12d_cache_rd

[L2D cache access, read]
12d_cache_refill

[Level 2 data refill]
12d_cache_refill_rd

[L2D cache refill, read]
12d_cache_refill_wr

[L2D cache refill, write]
12d_cache_wb

[Attributable Level 2 data cache write-back]
12d_cache_wb_clean

[L2D cache Write-Back, cleaning and coherency]

12d_cache_wb_victim

[L2D cache Write-Back, victim]
12d_cache_wr

[L2D cache access, write]

exception:

exc_dabort

[Exception taken, Data Abort and SError]
exc_fiq

[Exception taken, FIQ]
exc_hvc

[Exception taken, Hypervisor Call]
exc_irq

[Exception taken, IRQ]
exc_pabort

[Exception taken, Instruction Abort]
exc_smc

[Exception taken, Secure Monitor Call]
exc_svc

[Exception taken, Supervisor Call]
exc_taken

[Exception taken]
exc_trap_dabort

[Exception taken, Data Abort or SError not taken locally]
exc_trap_fiq

[Exception taken, FIQ not taken locally]
exc_trap_irq

[Exception taken, IRQ not taken locally]
exc_trap_other

[Exception taken, Other traps not taken locally]
exc_trap_pabort

[Exception taken, Instruction Abort not taken locally]
exc_undef

[Exception taken, Other synchronous]
memory_error

[Local memory error]

instruction:
ase_spec
[Operation speculatively executed, Advanced SIMD instruction]
cid_write_retired
[Instruction architecturally executed, condition code check
pass, write to CONTEXTIDR]
crypto_spec
[Operation speculatively executed, Cryptographic instruction]

dmb_spec
[Barrier speculatively executed, DMB]
dp_spec
[Operation speculatively executed, integer data processing]
dsb_spec
[Barrier speculatively executed, DSB]
exc_return

[Instruction architecturally executed, condition check pass,
exception return]
inst_retired
[Instruction architecturally executed]

inst_spec
[Operation speculatively executed]
isb_spec

[Barrier speculatively executed, ISB]

NC STATE UNIVERSITY

1d_spec
[Operation speculatively executed, load]
ldrex_spec
[Exclusive operation speculatively executed, LDREX or LDX]
1ldst_spec
[Operation speculatively executed, load or store]
pc_write_spec
[Operation speculatively executed, software change of the PC]
rc_ld_spec
[Release consistency operation speculatively executed,
Load-Acquire]
rc_st_spec
[Release consistency operation speculatively executed,
Store-Release]
st_spec
[Operation speculatively executed, store]
strex_fail_spec
[Exclusive operation speculatively executed, STREX or STX fail]
strex_pass_spec

[Exclusive

operation speculatively executed, STREX or STX pass]

sw_incr
[Instruction architecturally executed, Condition code
check pass, software increment]
ttbr_write_retired
[Instruction architecturally executed, Condition code check
pass, write to TTBR]
vfp_spec
[Operation speculatively executed, floating-point instruction]

memory:

mem_access
[Data memory access]
mem_access_rd
[Data memory access, read]
mem_access_wr
[Data memory access, write]
unaligned_1d_spec
[Unaligned access, read]
unaligned_ldst_spec
[Unaligned access]
unaligned_st_spec
[Unaligned access, write]
rNNN [Raw hardware event descriptor]
cpu/tl=vl[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
[(see 'man perf-list' on how to encode it)]
mem:<addr>[/len][:access] [Hardware breakpoint]

Listing Perf Events

33

perf list
Hardware events

branch-instructions OR branches
branch-misses
bus-cycles
cache-misses
cache-references

cpu-cycles OR cycles
instructions

Software events

alignment-faults
bpf-output
context-switches OR cs
S e
cpu-migrations migrations
dunm

enul :t'l on-faults
major-faults
minor-faults

= Hardware cache events

L1-dcache-load-misses
L1-dcache-loads
L1-dcache-store-misses
L1-dcache-stores
Ll-icache-load-misses
Ll-icache-loads
LLC-load-misses

LLC-store-misses
LLC-stores

t1-v1[t2=v2,t3 %%
q(ru/ "man pe-r; iist' 1

= Hardware breakpoint
mem:<addr»[/len] [:access]}

NC STATE UNIVERSITY

= Kernel PMU events

armv/_cortex_als5/br_immed_retired
armvZ_cortex_al5/br_mis_pred/
armv/_cortex_al5/br_pred/
armv7_cortex_al5/br_return_retired
armv7_cortex_al5/bus_access/
armvZ_cortex_al5/bus_cycles/
armv7_cortex_al5/cid_write_retire
armv7_cortex_al5/cpu_cycles/
armv7_cortex_al5/exc_return/
armv7_cortex_al5/exc_taken/
armv7_cortex_al5/inst_retire

armv7_cortex_al5/1d_retired/)
armv7_cortex_al5/mem_access/
armv7_cortex_al5/memory_error
armv/_cortex_al5/pc_write_retirec
armv7_cortex_al5/st_retired/
armv7_cortex_al5/sw_incr/
arav/_cortex_al5/ttbr_write_retired
armv7_cortex_al5/unaligned_ldst_retire

NC STATE UNIVERSITY

Useful Perf Commands

= Get infformation on perf’s capabilities
= perf stat --help
= perf list sw
= Measure a program
= sudo perf record ./istooll(samples program)
= sudo perf stat —e instructions,cycles,branches,branch-misses ./istool| (uses PMU event counters)
= Measure system
= sudo perf top
= Evaluate data

= sudo perf report
= sudo perf annotate

34

Summary

= Review of “Optimization” Process: Analyze, then “Optimize”
= Analysis

= Measuring total code execution time

= Measuring time distribution within code (profiling)

= Measuring key performance event counts
= Analysis is key to optimization

= Examine compiler output, do easy optimizations

= Then do harder optimizations

= Apply SIMD if worthwhile

= Apply multithreading if worthwhile

35

NC STATE UNIVERSITY

	Default Section
	Slide 1: Linux – Performance Analysis
	Slide 2: Overview
	Slide 3: Measuring Total Execution Time
	Slide 4: Timing Measurement with clock_gettime
	Slide 5: Example: Speed/Scalar/SG1/main.c
	Slide 6: Spherical Geometry (SG) Performance Across Processors
	Slide 7: Profiling the Distribution of Execution Time in Code
	Slide 8: Profiling: How Does The Program Spend Its Time?
	Slide 9: Profiling with GPROF
	Slide 10: Profiling with GProf
	Slide 11: Build Settings Needed for GProf
	Slide 12: Using GProf
	Slide 13: Gprof and Libraries
	Slide 14: Flat Profile
	Slide 15: Call Graph
	Slide 16: Call Graph (in Text)
	Slide 17: Call Graph Visualization
	Slide 18: Profiling with Perf
	Slide 19: Perf
	Slide 20: Function Profile: perf report
	Slide 21: Instruction Profile: perf annotate
	Slide 22: References on How to Use Perf
	Slide 23: Annotated Mixed Asm & Source Code
	Slide 24: Perf Annotate User Interface
	Slide 25: Annotated Main Listing
	Slide 26: More Annotated Listing
	Slide 27: Aha! (on Cortex-A8)
	Slide 28: perf top (Cortex-A8)
	Slide 29: Hardware Event Counters
	Slide 30: Performance Monitor Unit (PMU)
	Slide 31: Event Types
	Slide 32: Listing Perf Events (perf list)
	Slide 33: Listing Perf Events
	Slide 34: Useful Perf Commands
	Slide 35: Summary

