
1

Linux – Performance Analysis

3/27/2025

2

Overview

▪ How much time does the code

take?

▪ Basic measurement provides coarse-

grain information

▪ Which part of the code uses the

most time?

▪ That’s the best place to start

optimization for speed, as it has the

largest impact

3

Measuring Total Execution Time

4

Timing Measurement with clock_gettime

▪ Does not include time taken by other

processes

▪ Time reported in nanoseconds

▪ #include <time.h>

▪ Data Type: struct timespec

▪ time_t tv_sec: number of whole seconds of

elapsed time.

▪ long int tv_nsec: Rest of the elapsed time in

nanoseconds.

▪ Function: clock_gettime(clockid_t clk_id,

struct timespec *tp)

▪ clk_id selects which time to measure

▪ CLOCK_REALTIME: System-wide realtime

clock.

▪ CLOCK_MONOTONIC: Represents

monotonic time since some unspecified

starting point.

▪ CLOCK_PROCESS_CPUTIME_ID: High-

resolution per-process timer from the CPU.

▪ CLOCK_THREAD_CPUTIME_ID: Thread-

specific CPU-time clock.

▪ Returns 0 for success, -1 for failure

5

Example: Speed/Scalar/SG1/main.c

struct timespec start, end;

unsigned long diff, total=0; // times in ns

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &start);

Find_Nearest_Waypoint(cur_pos_lat, cur_pos_lon, &dist, &bearing, &name);

clock_gettime(CLOCK_THREAD_CPUTIME_ID, &end);

diff = 1e9 * (end.tv_sec - start.tv_sec) + end.tv_nsec - start.tv_nsec;

6

▪ Unsurprisingly,

Cortex-A processors

much faster than

Cortex-M

▪ Factor out clock speed to get clock cycles

per point

▪ Can see efficiency of architecture and

microarchitecture

▪ Big improvement: 1474 to 72 cycles

▪ Why does Cortex-A8 perform worse than

Cortex-M4F?

Spherical Geometry (SG) Performance Across Processors

Pipe Stages 2 3 18+ 16+

Version Time/Pt Clocks/Pt Time/Pt Clocks/Pt Time/Pt Clocks/Pt Total Time Time/Pt Clocks/Pt

1 1.60E-03 76800 3.18E-04 38160 1.01E-05 10100 9.60E-05 5.89E-07 883.4

13 3.07E-05 1473.6 2.50E-06 300 4.46E-07 446 7.80E-06 4.78E-08 71.7
Why so

bad? Worse

than CM4F!

CM0+ @ 48 MHz CM4F @ 120 MHz CA8 @ 1 GHz CA72 @ 1.5 GHz

0

200

400

600

800

1000

1200

1400

1600

Cortex-M0+ Cortex-M4F Cortex-A8 Cortex-A72

Average Clock Cycles per Point

7

Profiling the Distribution of

Execution Time in Code

8

▪ What is the program really doing? Anything

unexpected or extra?

▪ How is the program doing it? Is it reasonably

efficient?

▪ The 80/20 rule, Pareto Principle, Juran’s Principle

▪ Tools: gprof and perf

Profiling: How Does The Program Spend Its Time?

J & B. Keane, King Features Syndicate

9

PROFILING WITH GPROF

10

Profiling with GProf

▪ GNU tool for profiling a program to determine

which functions dominate the execution time

▪ https://sourceware.org/binutils/docs/gprof/

▪ Basic process

▪ Build your program with gprof profiling support

▪ Modifies program (adding instrumentation code) to

generate execution profile raw data file (gmon.out) when

it runs

▪ Run your program

▪ This also generates gmon.out

▪ Use gprof to process the profile raw data (gmon.out)

and generate the profile

https://sourceware.org/binutils/docs/gprof/

11

Build Settings Needed for GProf

▪ See Speed/Scalar/SG_gprof

▪ Compile and link program with

gcc/g++ profiling options

▪ -pg to include profiling code

(instrumentation)

▪ -g to support line-by-line

profiling

▪ Makefile must have these

options twice

▪ when compiling the source files

(.c->.o)

▪ when linking them

(.o->test_program)

12

Using GProf

▪ Run instrumented executable from the shell

▪ $./sg

▪ Generates gmon.out file in directory where the

program runs

▪ Run gprof to analyze gmon.out against

executable sg

▪ $ gprof sg

▪ Generates profile in flat and call graph formats

▪ -b option for brief (not verbose) output

13

Gprof and Libraries

▪ Not very useful! What’s happening?

▪ This does not handle dynamically linked libraries

(default for linker)

▪ .so = shared object = dynamically linked library)

▪ .a = static library

▪ Solution: Ensure linker uses static libraries

▪ Makefile: -static

▪ Verify they are on your system

▪ $ sudo find / -name “libm.a”

14

Flat Profile

15

Call Graph
index % time self children called name
 <spontaneous>
[1] 48.4 0.60 0.00 sincos [1]

 <spontaneous>
[2] 20.2 0.25 0.00 __ieee754_atan2 [2]

 <spontaneous>
[8] 0.8 0.01 0.00 Find_Nearest_Waypoint [8]
 0.00 0.00 1000/1000 Calc_Distance [12]
 0.00 0.00 1000/1000 Calc_Bearing [11]

 0.00 0.00 1000/1000 Find_Nearest_Waypoint [8]
[11] 0.0 0.00 0.00 1000 Calc_Bearing [11]

 0.00 0.00 1000/1000 Find_Nearest_Waypoint [8]
[12] 0.0 0.00 0.00 1000 Calc_Distance [12]

 0.00 0.00 1/1 __libc_start_main [672]
[13] 0.0 0.00 0.00 1 main [13]

Current function

Children called by

current function

Who called current function

(spontaneous == don’t know)

16

Call Graph (in Text)

17

Call Graph Visualization

▪ Install visualization tools

▪ $ sudo pip install gprof2dot

▪ $ sudo apt-get install graphviz

▪ Run tools

▪ $ gprof ./sg | gprof2dot > sg.dot

▪ $ dot sg.dot –Tpng –o sg.png

18

PROFILING WITH PERF

19

Perf

▪ Measurement modes

▪ Sampling mode (default 1000

Hz)

▪ record, report,
annotate

▪ Event-counting mode using

software counters in kernel

and hardware counters in

PMU

▪ stat

▪ Installation

▪ sudo apt-get install linux-perf

▪ or use Raspberry Pi

Preferences->Add/Remove

Software

▪ Basic use in sampling mode

▪ sudo perf record ./sg

▪ Generates perf.data file for

analysis

▪ sudo perf report

▪ Generates profile from

perf.data file

▪ Can annotate functions

▪ sudo perf annotate

▪ Annotates object code with

sample counts from perf.data

perf.data

sg

$ sudo perf record ./sg

$ sudo perf report $ sudo perf annotate

20

Function Profile: perf report

21

Instruction Profile: perf annotate

22

References on How to Use Perf

▪ Drongowski:

• Tutorial:

• Part 1 demonstrates how to use PERF to identify
and analyze the hottest execution spots in a
program. It covers the basic PERF commands,
options and software performance events.

• Part 2 introduces hardware performance events
and demonstrates how to measure hardware
events across an entire application. It defines and
discusses several useful rates and ratios for
performance assessment and analysis.

• Part 3 uses hardware performance event sampling
to identify and analyze program hot-spots.

▪ Performance events on Raspberry Pi 4: Tips

▪ Performance Analysis in Linux:

https://www.linux.com/training-

tutorials/performance-analysis-linux/

▪ Good summary with one-liners (example

command invocations):

http://www.brendangregg.com/perf.html

▪ Intro: http://www.baptiste-

wicht.com/2011/07/profile-applications-linux-perf-

tools/

▪ https://dvinfo.ifh.de/perf

▪ Exhaustive:

https://perf.wiki.kernel.org/index.php/Tutorial

▪ Use the Source!

▪ /usr/src/kernel/tools/perf

http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
http://sandsoftwaresound.net/perf/perf-tut-count-hw-events/
http://sandsoftwaresound.net/perf/perf-tut-profile-hw-events/
http://sandsoftwaresound.net/performance-events-on-raspberry-pi-4-tips/
https://www.linux.com/training-tutorials/performance-analysis-linux/
https://www.linux.com/training-tutorials/performance-analysis-linux/
http://www.brendangregg.com/perf.html
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
http://www.baptiste-wicht.com/2011/07/profile-applications-linux-perf-tools/
https://dvinfo.ifh.de/perf
https://perf.wiki.kernel.org/index.php/Tutorial

23

Annotated Mixed Asm & Source Code

▪ Makefile: include -ggdb option when
compiling and linking to get source
code listing

▪ Record a run, then annotate source
code with that perf data

▪ $ sudo perf record ./sg

▪ $ sudo perf annotate

▪ Note: may need to change terminal
remote character set to ISO-8859:1
1998

24

Perf Annotate User Interface

25

Annotated Main Listing

26

More Annotated Listing

27

Aha! (on Cortex-A8)

▪ bls takes most of the time

▪ Pipeline stalls after vmrs instruction

28

perf top (Cortex-A8)

▪ sudo perf top

29

Hardware Event Counters

30

Performance Monitor Unit (PMU)

▪ Details in Tech. Ref. Manuals (TRMs)

▪ Cortex-A53 MPCore TRM: Chapter 12

▪ Cortex-A72 MPCore TRM: Chapter 11

▪ Cycle counter

▪ Can count processor cycles

▪ Or processor cycles / 64

▪ Many types of events can be monitored

▪ Table 12-28 or 11-24 is 3½ pages long

▪ Six performance event counters

▪ 32-bits wide

▪ Each can be configured to count a given

type of event

31

Event Types

▪ Instructions

▪ Speculatively executed

▪ Load, store, integer data processing, ASIMD, VFP,

crypto, PC change, branch immediate, branch

return, branch indirect, barrier

▪ Retired

▪ Exceptions taken, returned

▪ Exceptions

▪ Types of exceptions

▪ Branches

▪ Predicted, mispredicted

▪ L1 (I/D), L2 (U) Caches

▪ Access, refill, write-back, read, write, read refill,

write refill, write-back victim, write-back

cleaning and coherence, invalidate

▪ Memory

▪ Access, read, write, unaligned, unaligned write,

unaligned read

▪ Bus

▪ Access, cycle, read, write, shared access, not

shared access

▪ L1 TLBs

▪ Refill

▪ Exceptions

▪ Sources

▪ CA53 TRM, Section 12.9

▪ CA72 TRM, Section 11.8

32

Listing Perf Events (perf list)
Pre-defined events (to be used in –e or –M):
 branch-misses [Hardware event]
 bus-cycles [Hardware event]
 cache-misses [Hardware event]
 cache-references [Hardware event]
 cpu-cycles OR cycles [Hardware event]
 instructions [Hardware event]
 alignment-faults [Software event]
 bpf-output [Software event]
 cgroup-switches [Software event]
 context-switches OR cs [Software event]
 cpu-clock [Software event]
 cpu-migrations OR migrations [Software event]
 dummy [Software event]
 emulation-faults [Software event]
 major-faults [Software event]
 minor-faults [Software event]
 page-faults OR faults [Software event]
 task-clock [Software event]
 duration_time [Tool event]
 user_time [Tool event]
 system_time [Tool event]

armv8_cortex_a72:
 L1-dcache-loads OR armv8_cortex_a72/L1-dcache-loads/
 L1-dcache-load-misses OR armv8_cortex_a72/L1-dcache-load-misses/
 L1-dcache-stores OR armv8_cortex_a72/L1-dcache-stores/
 L1-dcache-store-misses OR armv8_cortex_a72/L1-dcache-store-misses/
 L1-icache-loads OR armv8_cortex_a72/L1-icache-loads/
 L1-icache-load-misses OR armv8_cortex_a72/L1-icache-load-misses/
 dTLB-load-misses OR armv8_cortex_a72/dTLB-load-misses/
 dTLB-store-misses OR armv8_cortex_a72/dTLB-store-misses/
 iTLB-load-misses OR armv8_cortex_a72/iTLB-load-misses/
 branch-loads OR armv8_cortex_a72/branch-loads/
 branch-load-misses OR armv8_cortex_a72/branch-load-misses/
 node-loads OR armv8_cortex_a72/node-loads/
 node-stores OR armv8_cortex_a72/node-stores/

branch:
 br_immed_spec
 [Branch speculatively executed, immediate branch]
 br_indirect_spec
 [Branch speculatively executed, indirect branch]
 br_mis_pred
 [Mispredicted or not predicted branch speculatively executed.]
 br_pred
 [Predictable branch speculatively executed]
 br_return_spec
 [Branch speculatively executed, procedure return]

bus:
 bus_access
 [Attributable Bus access]
 bus_access_normal
 [Bus access, Normal]
 bus_access_not_shared
 [Bus access, not Normal, Cacheable, Shareable]
 bus_access_periph
 [Bus access, peripheral]

 bus_access_rd
 [Bus access read]
 bus_access_shared
 [Bus access, Normal, Cacheable, Shareable]
 bus_access_wr
 [Bus access write]
 bus_cycles
 [Bus cycle]
 cpu_cycles
 [Cycle]

cache:
 l1d_cache
 [Level 1 data cache access]
 l1d_cache_inval
 [L1D cache invalidate]
 l1d_cache_rd
 [L1D cache access, read]
 l1d_cache_refill
 [Level 1 data cache refill]
 l1d_cache_refill_rd
 [L1D cache refill, read]
 l1d_cache_refill_wr
 [L1D cache refill, write]
 l1d_cache_wb
 [Attributable Level 1 data cache write-back]
 l1d_cache_wb_clean
 [L1D cache Write-Back, cleaning and coherency]
 l1d_cache_wb_victim
 [L1D cache Write-Back, victim]
 l1d_cache_wr
 [L1D cache access, write]
 l1d_tlb_refill
 [Attributable Level 1 data TLB refill]
 l1d_tlb_refill_rd
 [L1D tlb refill, read]
 l1d_tlb_refill_wr
 [L1D tlb refill, write]
 l1i_cache
 [Attributable Level 1 instruction cache access]
 l1i_cache_refill
 [Level 1 instruction cache refill]
 l1i_tlb_refill
 [Attributable Level 1 instruction TLB refill]
 l2d_cache
 [Level 2 data cache access]
 l2d_cache_inval
 [L2D cache invalidate]
 l2d_cache_rd
 [L2D cache access, read]
 l2d_cache_refill
 [Level 2 data refill]
 l2d_cache_refill_rd
 [L2D cache refill, read]
 l2d_cache_refill_wr
 [L2D cache refill, write]
 l2d_cache_wb
 [Attributable Level 2 data cache write-back]
 l2d_cache_wb_clean
 [L2D cache Write-Back, cleaning and coherency]

 l2d_cache_wb_victim
 [L2D cache Write-Back, victim]
 l2d_cache_wr
 [L2D cache access, write]

exception:
 exc_dabort
 [Exception taken, Data Abort and SError]
 exc_fiq
 [Exception taken, FIQ]
 exc_hvc
 [Exception taken, Hypervisor Call]
 exc_irq
 [Exception taken, IRQ]
 exc_pabort
 [Exception taken, Instruction Abort]
 exc_smc
 [Exception taken, Secure Monitor Call]
 exc_svc
 [Exception taken, Supervisor Call]
 exc_taken
 [Exception taken]
 exc_trap_dabort
 [Exception taken, Data Abort or SError not taken locally]
 exc_trap_fiq
 [Exception taken, FIQ not taken locally]
 exc_trap_irq
 [Exception taken, IRQ not taken locally]
 exc_trap_other
 [Exception taken, Other traps not taken locally]
 exc_trap_pabort
 [Exception taken, Instruction Abort not taken locally]
 exc_undef
 [Exception taken, Other synchronous]
 memory_error
 [Local memory error]

instruction:
 ase_spec
 [Operation speculatively executed, Advanced SIMD instruction]
 cid_write_retired
 [Instruction architecturally executed, condition code check
 pass, write to CONTEXTIDR]
 crypto_spec
 [Operation speculatively executed, Cryptographic instruction]
 dmb_spec
 [Barrier speculatively executed, DMB]
 dp_spec
 [Operation speculatively executed, integer data processing]
 dsb_spec
 [Barrier speculatively executed, DSB]
 exc_return
 [Instruction architecturally executed, condition check pass,
 exception return]
 inst_retired
 [Instruction architecturally executed]
 inst_spec
 [Operation speculatively executed]
 isb_spec
 [Barrier speculatively executed, ISB]

 ld_spec
 [Operation speculatively executed, load]
 ldrex_spec
 [Exclusive operation speculatively executed, LDREX or LDX]
 ldst_spec
 [Operation speculatively executed, load or store]
 pc_write_spec
 [Operation speculatively executed, software change of the PC]
 rc_ld_spec
 [Release consistency operation speculatively executed,
 Load-Acquire]
 rc_st_spec
 [Release consistency operation speculatively executed,
 Store-Release]
 st_spec
 [Operation speculatively executed, store]
 strex_fail_spec
 [Exclusive operation speculatively executed, STREX or STX fail]
 strex_pass_spec
 [Exclusive operation speculatively executed, STREX or STX pass]
 sw_incr
 [Instruction architecturally executed, Condition code
 check pass, software increment]
 ttbr_write_retired
 [Instruction architecturally executed, Condition code check
 pass, write to TTBR]
 vfp_spec
 [Operation speculatively executed, floating-point instruction]

memory:
 mem_access
 [Data memory access]
 mem_access_rd
 [Data memory access, read]
 mem_access_wr
 [Data memory access, write]
 unaligned_ld_spec
 [Unaligned access, read]
 unaligned_ldst_spec
 [Unaligned access]
 unaligned_st_spec
 [Unaligned access, write]
 rNNN [Raw hardware event descriptor]
cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]

 [(see 'man perf-list' on how to encode it)]
 mem:<addr>[/len][:access] [Hardware breakpoint]

33

Listing Perf Events

▪ perf list

▪ Hardware events

▪ Software events

▪ Hardware cache events

▪ Raw HW event descriptors

▪ Hardware breakpoint

▪ Kernel PMU events

34

Useful Perf Commands

▪ Get information on perf’s capabilities

▪ perf stat --help

▪ perf list sw

▪ Measure a program

▪ sudo perf record ./istool1(samples program)

▪ sudo perf stat –e instructions,cycles,branches,branch-misses ./istool1 (uses PMU event counters)

▪ Measure system

▪ sudo perf top

▪ Evaluate data

▪ sudo perf report

▪ sudo perf annotate

35

Summary

▪ Review of “Optimization” Process: Analyze, then “Optimize”

▪ Analysis

▪ Measuring total code execution time

▪ Measuring time distribution within code (profiling)

▪ Measuring key performance event counts

▪ Analysis is key to optimization

▪ Examine compiler output, do easy optimizations

▪ Then do harder optimizations

▪ Apply SIMD if worthwhile

▪ Apply multithreading if worthwhile

	Default Section
	Slide 1: Linux – Performance Analysis
	Slide 2: Overview
	Slide 3: Measuring Total Execution Time
	Slide 4: Timing Measurement with clock_gettime
	Slide 5: Example: Speed/Scalar/SG1/main.c
	Slide 6: Spherical Geometry (SG) Performance Across Processors
	Slide 7: Profiling the Distribution of Execution Time in Code
	Slide 8: Profiling: How Does The Program Spend Its Time?
	Slide 9: Profiling with GPROF
	Slide 10: Profiling with GProf
	Slide 11: Build Settings Needed for GProf
	Slide 12: Using GProf
	Slide 13: Gprof and Libraries
	Slide 14: Flat Profile
	Slide 15: Call Graph
	Slide 16: Call Graph (in Text)
	Slide 17: Call Graph Visualization
	Slide 18: Profiling with Perf
	Slide 19: Perf
	Slide 20: Function Profile: perf report
	Slide 21: Instruction Profile: perf annotate
	Slide 22: References on How to Use Perf
	Slide 23: Annotated Mixed Asm & Source Code
	Slide 24: Perf Annotate User Interface
	Slide 25: Annotated Main Listing
	Slide 26: More Annotated Listing
	Slide 27: Aha! (on Cortex-A8)
	Slide 28: perf top (Cortex-A8)
	Slide 29: Hardware Event Counters
	Slide 30: Performance Monitor Unit (PMU)
	Slide 31: Event Types
	Slide 32: Listing Perf Events (perf list)
	Slide 33: Listing Perf Events
	Slide 34: Useful Perf Commands
	Slide 35: Summary

