
1
ARM University Program

Copyright © ARM Ltd 2013

Device Interfacing with Linux: I2C

version 1.0

2

PROTOCOL COMPARISON

3

Factors to Consider

▪ How fast can the data get through?

▪ Depends on raw bit rate, protocol overhead in packet

▪ How many hardware signals do we need?

▪ May need clock line, chip select lines, etc.

▪ How do we connect multiple devices (topology)?

▪ Dedicated link and hardware per device - point-to-point

▪ One bus for master transmit/Servant receive, one bus for Servant transmit/master receive

▪ All transmitters and receivers connected to same bus – multi-point

▪ How do we address a target device?

▪ Discrete hardware signal (chip select line)

▪ Address embedded in packet, decoded internally by receiver

▪ How do these factors change as we add more devices?

4

Protocol Comparison
Protocol Speed Device Addressing Signals Req. for

Bidirectional

Communication with N

devices

UART (Point to Point) Fast –Tens of Mbit/s None 2*N (TxD, RxD)

UART (Multi-drop) Fast –Tens of Mbit/s Added by user in software 2 (TxD, RxD)

SPI Fast –Tens of Mbit/s Hardware chip select signal per

device

3+N for SCLK, MOSI, MISO, and

one SS per device

I2C Moderate – 100 kbit/s,

400 kbit/s, 1 Mbit/s, 3.4

Mbit/s. Packet overhead.

In packet 2: SCL, SDA

5

Tools for Serial Communications Development

▪ Tedious and slow to debug serial
protocols with just an oscilloscope

▪ Instead use a logic analyzer to
decode bus traffic

▪ Worth its weight in gold!

▪ Hardware
▪ Digilent Analog Discover 2, Digital Discovery

▪ Saleae Logic

▪ Other logic analyzers

▪ Software (FOSS)
▪ Sigrok/Pulseview

6

I2C COMMUNICATIONS

7

I2C Bus Overview

▪ “Inter-Integrated Circuit” bus

▪ Multiple devices connected by a shared serial
bus

▪ Bus is typically controlled by master, servant
devices respond when addressed

▪ I2C bus has two signal lines
▪ SCL: Serial clock
▪ SDA: Serial data

▪ Full details available in “The I2C-bus
Specification”

8

I2C Bus Connections

▪ Resistors pull up lines to VDD

▪ Open-drain transistors pull
lines down to ground

▪ Master generates SCL clock
signal
▪ Can range up to 400 kHz, 1

MHz, or more

I2C Servant Device I2C Servant Device

9

I2C Message Format

▪ Message is made of
▪ Signals: Start, Stop, Repeated Start

▪ Bytes

▪ Acknowledgement bits

▪ Message-oriented data transfer with four
parts

1. Start condition

2. Servant Address transmission
▪ Address
▪ Command (read or write)
▪ Acknowledgement by receiver

3. Data fields
▪ Data byte
▪ Acknowledgement by receiver

4. Stop condition

1. Start 3. Data Fields2. Servant Device Address etc. 4. Stop

10

I2C Addressing: Devices and Registers

▪ Device addressing
▪ Each device has a seven-bit address

▪ Can support up to 27=128 different devices on same bus

▪ Different types of device have different default addresses

▪ Some devices support alternate address via config. pin

▪ Register addressing
▪ Some devices have multiple addressable registers within

device (e.g. control, status, data)

▪ First byte of data is interpreted as register address

▪ Example: First seven registers of MMA8451 I2C
accelerometer

0x1e

HMC5883L Magnetometer

Device Adx Data … … Data

Device Adx Reg Adx Data … Data

0x1c

MMA8451 Accelerometer

I2C Master

11

I2C Master Writing One Byte to Servant Device Register

Master Tx Start Device Address W Register Address Data Stop

Serv. Dev. Tx ACK ACK ACK

Start ACK ACK StopACKDev. Address Reg. Address Data

12

I2C Master Reading One Byte from Servant Device Register

Master Tx

St
ar

t Device

Address W
(0

) Register

Address St
ar

t Device

Address R
(1

)

N
A

C
K

(1
)

St
o
p

Servant Tx

A
C

K
(0

)

A
C

K
(0

)

A
C

K
(0

)

Data

Start ACK ACK ACK

NACK
(send no

more
data) Stop

Repeated
Start

Dev.
Address

Reg.
Address Data

Dev.
Address

13

I2C Master Reading Multiple Bytes from Servant Register(s)

Master Tx

St
ar

t

D
ev

ic
e

A
d

x

W

R
eg

is
te

r
A

d
x

St
ar

t

D
ev

ic
e

A
d

x

R
(0

)

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

N
A

C
K

(1
)

St
o

p

Servant Tx A
C

K

A
C

K

A
C

K

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

Start ACK

NACK

Stop

Device
Address

Register
Address

Repeated
Start

Device
Address

ACK

14

PROGRAMMED ACCESS TO I2C DEVICES

15

Background: Some Useful Device Driver Concepts

▪ Device driver interface follows “everything’s a file” model
▪ Contains file_operations structure with pointers to functions

implementing operations

▪ File-like operations
▪ Open, close device

▪ Read up to N bytes, write up to N bytes

▪ Positioning: llseek

▪ Poll device to find out on whether operations would block

▪ Flush: block until all pending device operations finish

▪ mmap: map device memory to process’s address space

▪ Many others possible as well. Asynch. read/write, etc.

▪ Other
▪ ioctl: generic device-specific commands which don’t fit into file-

like operations

in
te

rf
ac

e

open close ioctl read write

Code

Peripheral

Program A

16

i2
c-

d
ev open close ioctl read write

I2C Interfacing in C

▪ i2c-dev device driver module
▪ Provides user-space I2C access

▪ Table of contents: https://www.kernel.org/

doc/html/latest/i2c/index.html

▪ Nice overview: https://www.kernel.org/doc/

html/latest/i2c/dev-interface.html

▪ /usr/include/linux/i2c-dev.h

▪ Load module i2c-dev to use device interface from
userspace (link with libi2c via -li2c)

▪ i2c-dev has complex interface
▪ User-space code may be simplified by using a

wrapper with higher-level interface

▪ Examples: libi2c, twiddler, Exploring RPi Chapter 8
I2CDevice Start ACK ACK StopACKDev. Address Reg. Address Data

(w
ra

p
p

er
) function1 function2 …

Program A Program B

https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

17

Overview of Using Kernel’s I2C Device Driver

▪ Include headers <linux/i2c-
dev.h>

▪ Open I2C adaptor (bus controller)

▪ Communicate with I2C device using
ioctl I2C_RDWR calls

▪ ioctl: I/O control interface for features
which don’t fit into [open|read|write|
lseek|close] template

▪ Example ioctl call:

▪ i2c_file indicates I2C adapter to use

▪ I2C_RDWR indicates operation

▪ packets contains operation parameters

▪ ret indicates success (>=0) or failure (<0)

▪ Close I2C adaptor

#include <linux/i2c-dev.h>

// open i2c adaptor as file
i2c_file = open(“/dev/i2c-1”, O_RDWR);
if (i2c_file < 0) {
 // handle error
}

// configure packets for I2C transaction
packets. … = …;

// have driver perform the transaction
ret = ioctl(i2c_file, I2C_RDWR, &packets);
if (ret < 0) {
 // handle error
}

// If read, access received data in packets
… = packets. …

// Close i2c adaptor
close(i2c_file);

18

I2C ioctl Commands

▪ General
▪ I2C_SLAVE

▪ Specify address for servant device. Is persistent
until next ioctl with this command.

▪ I2C_RDWR

▪ Perform combined read/write transfer
(repeated start)

▪ Takes * to i2c_rdwr_ioctl_data, which includes
Servant device address, register address, data

▪ I2C_TENBIT

▪ Selects seven or ten bit I2C addresses (if
supported)

▪ I2C_FUNCS

▪ Returns list of I2C adapter features
(“functionalities”)

▪ https://www.kernel.org/doc/html/next/i2c/func
tionality.html

▪ SMBus only
▪ I2C_PEC

▪ Enables or disables SMBus Packet Error
Checking

▪ I2C_SMBUS

▪ If available, use i2c_smbus_* functions

https://www.kernel.org/doc/html/next/i2c/functionality.html
https://www.kernel.org/doc/html/next/i2c/functionality.html

19

Discussion: Why not use lseek, read and write?

▪ lseek: set file pointer at specified location

▪ Reference
▪ Write activities by master

▪ Send device address + write command

▪ Send register number

▪ Send data byte(s)

▪ Read activities by master

▪ Send device address + write command

▪ Send register number

▪ Send repeated start

▪ Send device address + read command

▪ Receive data byte(s)

20

Writing I2C Device Registers

▪ Writing to device register(s) is easy
▪ Master sends START, sends device address, write command, (starting) register address, all data, then

sends STOP

▪ Servant just acknowledges each byte received

Master Tx Start Servant Dev Adx W Servant Reg Adx Data Data Stop

Servant Tx ACK ACK ACK ACK

21

Reading I2C Device Registers: Transaction Segments

▪ Reading from a device register requires
two I2C transaction segments

▪ Segment 1:
▪ Master sends START, Servant device address, write

command and Servant register address. Servant
acknowledges each byte received.

▪ Segment 2:
▪ Master sends START (without an intervening STOP,

which makes it a repeated start), sends Servant
device address, read command. Servant
acknowledges each byte received.

▪ Servant sends first data byte

▪ Master uses acknowledgement to control if Servant
sends another data byte

▪ If Master sends ACK, Servant sends another byte

▪ If Master sends NACK, it doesn’t want more data from

Servant. Master sends STOP and ends transaction

Master Tx

ST
A

R
T

Se
rv

an
t

D
ev

 A
d

x

W

Se
rv

an
t

R
eg

 A
d

x

R
ep

ea
te

d
 S

TA
R

T

Se
rv

an
t

D
ev

 A
d

x

R
(0

)

A
C

K

A
C

K

A
C

K

A
C

K

A
C

K

N
A

C
K

(1
)

ST
O

P

Servant Tx A
C

K

A
C

K

A
C

K

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

D
at

a

Data structures used for I2C are a little

more complex. This enables actions common

to both segments to share data and code

22

Data Structure for Transaction Segments: i2c_msg

▪ Common actions for transaction segments
▪ Send START condition

▪ Send address

▪ Send command (read or write)

▪ Transfer N bytes of data to/from buffer

▪ “I2C transaction segment” description
▪ Described by i2c_msg, defined in linux/i2c.h

▪ Address of Servant device is 7 or 10 bits

▪ Flags for message – indicate functionality.

▪ I2C_M_RD: read. Absence implies write.

▪ Length of data in buffer

▪ Pointer to data buffer

addr flags len buf

4

addr flags len buf

5

[0] [1] [2] [3] [0] [1] [2] [3] [4]addr flags len buf

4

[0] [1] [2] [3]

Write: One segment + STOP Read: Two segments + STOP

23

Data Structure for Transaction: i2c_rdwr_ioctl_data

▪ Data structure defined in
linux/i2c-dev.h
▪ Pointer to array of i2c_msgs

▪ Number of i2c_msgs

addr flags len buf

4

msgs nmsgs

2
addr flags len buf

4

5

[0] [1] [2] [3]

[0] [1] [2] [3] [4]

[0] [1] [2] [3]

msgs nmsgs

1

Write: One segment + STOP

Read: Two segments + STOP

24

i2
c-

d
ev open close ioctl read write

Interface Encapsulation

▪ Encapsulate common
code to assemble and
manipulate data
structures

▪ Useful to encapsulate
into cleaner interface

▪ Compass example
▪ Uses functions derived

from chumby twiddler.c
because they were
documented better

▪ twiddler.c was derived
from …? Start ACK ACK StopACKDev. Address Reg. Address Data

lib
i2

c

i2c_smbus_

[read|write]_

byte

no reg. adx.

i2c_smbus_

[read|write]_

[byte|word|block]_

data

uses reg. adx.

…

compass compass0

ch
u
m

b
y

tw
id

d
le

r.
c

se
t_

i2
c_

re
gi

st
e
r

ge
t_

i2
c_

re
gi

st
e
r

se
t_

i2
c_

re
gi

st
e
rs

ge
t_

i2
c_

re
gi

st
e
rs

25

Write: set_i2c_register(file, addr, reg, value)

▪ 1. Prepare messages[0] entry to
describe segment (write)

▪ Device address, flags, data buffer,
data length

▪ 2. Load up outbuf with data to
send

▪ First byte is register number

▪ Second byte is data value

▪ 3. Prepare packets with list of
segments (“messages”) to send

▪ 4. Call ioctl, passing arguments…

▪ File: which i2c bus

▪ Operation: I2C_RDWR

▪ Pointer to packets

packets

msgs nmsgs

messages 1

messages

addr flags len buf

addr 0 2 outbuf

outbuf

[0] [1]

reg value

Write: One segment + STOP

26

Read: get_i2c_register(file, addr, reg, *value)

▪ 1. Prepare outbuf with
reg

▪ 2. Prepare messages[0]
entry to describe
segment (write)

▪ 3. Prepare messages[1]
entry to describe
segment (read)

▪ 4. Prepare packets with
list of segments to send

▪ 5. Call ioctl, passing
arguments

▪ 6. If successful, copy
result from inbuf to *val

Read: Two segments + STOP

packets

msgs nmsgs

messages 2

messages

addr flags len buf

addr 0 1 outbuf

addr I2C_M_RD 1 inbuf

outbuf

[0]

reg

inbuf

[0]

27

Interfacing with a Three-Axis Magnetometer

▪ Use to determine heading of vehicle, wind direction, robot arm direction, etc.

▪ Digilent PModCMPS
▪ http://store.digilentinc.com/pmodcmps-3-axis-digital-compass/

▪ (discontinued, replaced by PModCMPS2)

▪ Uses Honeywell HMC5883L

▪ Details
▪ Connect to RPi

▪ GND to pin 9

▪ VCC to pin 1

▪ SCL to pin 5

▪ SDA to pin 3

▪ I2C device address is 0x1e

▪ Can access control registers
with i2cget and i2cset

http://store.digilentinc.com/pmodcmps-3-axis-digital-compass/

28

Pinouts
▪ RPi 3 ▪ RPi 4

29

Setting Up I2C on RPi

▪ Enable I2C
▪ May be disabled by default

▪ To enable

▪ Using raspi-config (“Interfaces”), or

▪ Edit /boot/config.txt to include dtparam=i2c_arm=on

▪ Module i2c_dev provides access via /dev/…

▪ Get i2c-tools package for useful tools
▪ Install with sudo apt install i2c-tools

▪ Command line programs: i2cdetect, i2cdump, i2cget, i2cset

▪ Detailed coverage in ERP, pp.318-325

▪ Setting communication speed: See Exploring RPi

30

Registers for HMC5883L

Register Name Access
00 Configuration Register A Read/Write
01 Configuration Register B Read/Write
02 Mode Register Read/Write
03 Data Output X MSB Register Read
04 Data Output X LSB Register Read
05 Data Output Z MSB Register Read
06 Data Output Z LSB Register Read
07 Data Output Y MSB Register Read
08 Data Output Y LSB Register Read
09 Status Register Read
10 Identification Register A Read
11 Identification Register B Read
12 Identification Register C Read

31

Example Program: BES/I2C/Compass

▪ Uses open, close, ioctl and [get|set]_i2c_register[s]

▪ Basic operations
▪ Initialization of I2C, compass

▪ Reading data

▪ Heading calculation

▪ Statistics

32

Compass Program

▪ Try to open i2c file and check for
errors

▪ Configure compass

if ((i2c_file = open("/dev/i2c-1", O_RDWR)) < 0) {
perror("Unable to open i2c controller/file");
exit(1);

}

address = COMPASS_DEV_ADDR;
if (configure_compass(i2c_file, address)) {
printf("Unable to configure compass\n");
return 1;

}

33

uint8_t compass_ID[3];

if (get_i2c_register(file, address, ID_REG_A, &(compass_ID[0])))
return 1;

if (get_i2c_register(file, address, ID_REG_B, &(compass_ID[1])))
return 1;

if (get_i2c_register(file, address, ID_REG_C, &(compass_ID[2])))
return 1;

if (strncmp((char *) compass_ID, "H43", 3)) {
printf("Compass not found. Expected H43, got %s.\n", compass_ID);
return 1;

} else {
printf("Compass found.\n");

}

// 4 averages, 30 Hz, normal measurement. 0101 0100
if (set_i2c_register(file, address, CONFIG_A_REG, 0x54))
return 1;

// Gain
if (set_i2c_register(file, address, CONFIG_B_REG, 0x00))
return 1;

// Operation mode
if (set_i2c_register(file, address, MODE_REG, IDLE_MODE))
return 1;

configure_compass(file, address)

▪ Read ID registers (“H43”)

▪ Test for ID string

▪ Write to configuration and
mode registers

34

Loop: Read Data

▪ Start measurements

▪ Poll status for completion
▪ HMC-specific register and

feature

▪ Read mag. vector data
with six or one reads

// Start measurement

set_i2c_register(i2c_file, address, MODE_REG, SINGLE_MEASUREMENT_MODE);

// Await data ready

do {

get_i2c_register(i2c_file, address, STATUS_REG, &status);

} while (!(status & 1));

#if READ_BYTES_INDIVIDUALLY // Read each field strength byte individually

for (i=0; i<6; i++) {

get_i2c_register(i2c_file, address, XH_REG+i, &(data[i]));

#if PRINT_RAW_BYTES

printf("%02x ", data[i]);

#endif

}

#else // read all field strength bytes in one transaction

get_i2c_registers(i2c_file, address, XH_REG, 6, data);

#if PRINT_RAW_BYTES

for (i=0; i<6; i++) {

printf("%02x ", data[i]);

}

#endif // PRINT_RAW_BYTES

#endif // Not READ_BYTES_INDIVIDUALLY

35

Benefits of Single Transaction Reading Multiple Registers

Start
Measurement

Wr Reg 2

Read Status
Rd Reg 9

Read XH
Rd Reg 3

Read XL
Rd Reg 4

Read ZH
Rd Reg 5

Read ZL
Rd Reg 6

Read YH
Rd Reg 7

Start
Measurement

Wr Reg 2

Read Status
Rd Reg 9

Read XH/XL/ZH/ZL/YH/YL
Rd Reg 3-8

Read YL
Rd Reg 8

2.8 ms

0.9 ms

36

Loop: Use Data

▪ Convert bytes to field
strength components

▪ Calculate statistics, field
strength

▪ Calculate heading, print
data

x_val = (((int16_t) data[0]) << 8) + data[1];

z_val = (((int16_t) data[2]) << 8) + data[3];

y_val = (((int16_t) data[4]) << 8) + data[5];

update_limits(x_val, y_val, z_val);

strength = sqrt(x_val*x_val + y_val*y_val + z_val*z_val);

printf("M:(%4d, %4d, %4d) ", x_val, y_val, z_val);

#if PRINT_RANGE

printf("M Range:(%4d~%3d Y: %4d~%3d Z: %4d~%3d) ",

x_lim.min, x_lim.max, y_lim.min, y_lim.max, z_lim.min, z_lim.max);

#endif

printf(" Hdg: %6.2f Str: %6.2f\r", calc_heading(x_val, y_val), strength);

37

Alternative Implementations

38

Comparing Alternative Implementations

▪ ??? (Sean Cross, Chumby)
▪ Uses more of kernel interface

▪ File I/O to open/close device
▪ ioctl I2C_RDWR for read/write

▪ Provides functions
▪ get_i2c_register, set_i2c_register, get_i2c_registers

▪ Exploring Raspberry Pi (chp08)
▪ Uses part of kernel interface

▪ File I/O to open/read/write/close device
▪ ioctl to set Servant address

▪ Provides base C++ class I2CDevice
▪ open, close, readRegister, readRegisters,

writeRegister, debugDumpRegisters

▪ Derive device-specific classes (e.g. ADXL345)
from I2CDevice

▪ Pan/Tilt Base code from Arducam
▪ Bypasses I2C hardware, uses software-implemented

I2C in sccb_bus.c/h
▪ Provides functions:

▪ wrSensorReg8_8, rdSensorReg8_8
▪ Bus operations: sccb_bus_[init, start, write_byte,

read_byte, send_ack, send_noack, stop]

▪ Uses memory-mapped access to peripherals (gpio,
spi, pwm, sys_timer, uart, cm_pwm) in
bcm283x_board_driver.c/h
▪ Doesn’t work with libi2c, need to port application code

i2
c-

d
ev open close ioctl read write

Start ACK ACK StopACKDev. Address Reg. Address Data

lib
i2

c

i2c_smbus_

[read|write]_

byte

no reg. adx.

i2c_smbus_

[read|write]_

[byte|word|block]_

data

uses reg. adx.

…

compass compass0

ch
u
m

b
y

tw
id

d
le

r.
c

se
t_

i2
c_

re
gi

st
e
r

ge
t_

i2
c_

re
gi

st
e
r

se
t_

i2
c_

re
gi

st
e
rs

ge
t_

i2
c_

re
gi

st
e
rs

39

??? (chumby) (built on ioctl I2C_RDWR)

▪ From Sean Cross / Chumby Industries

▪ Used in Compass demo

▪ See BES/I2C/compass/twiddler.c

int set_i2c_register(int file,
 unsigned char addr,
 unsigned char reg,
 unsigned char value);

int get_i2c_register(int file,
 unsigned char addr,

 unsigned char reg,
 unsigned char *val);

int get_i2c_registers(int file,
 unsigned char addr,

 unsigned char first_reg,
 unsigned char num_regs,
 unsigned char *val);

40

Example Program: BES/I2C/Compass0

▪ Basic operations
▪ Initialization of I2C, compass

▪ Reading data

▪ Heading calculation

▪ Offset error
▪ Measurement

▪ Compensation

41

read and write?

42

I2C Interfacing in C

▪ Try to open the device, and check for errors

 int file;

 int adapter_nr = 2; /* probably dynamically determined */

 char filename[20];

 snprintf(filename, 19, "/dev/i2c-%d", adapter_nr);

 file = open(filename, O_RDWR);

 if (file < 0) {

 /* ERROR HANDLING; you can check errno */

 exit(1);

 }

43

Limitations of using I2C Read and Write Operations
int addr = 0x40; /* The I2C device address */

__u8 register = 0x10; __s32 res; char buf[10];

if (ioctl(file, I2C_SLAVE, addr) < 0)

 exit(1);

/*Using I2C Write, equivalent of

 * i2c_smbus_write_word_data(file, reg, 0x6543)

 */

buf[0] = register; // write 0x6543 to register

buf[1] = 0x43; buf[2] = 0x65;

if (write(file, buf, 3) != 3) {

 /* ERROR HANDLING: i2c transaction failed */

}

/* Using I2C Read, equivalent of i2c_smbus_read_byte(file) */

if (read(file, buf, 1) != 1) {

 /* ERROR HANDLING: i2c transaction failed */

} else {

 /* buf[0] contains the read byte */

}

Messy and tedious having to

handle messages and bytes

at this level. And how to do

repeated start conditions?

44

Compass0: smbus functions

45

SMBus Protocol

▪ System Management Bus protocol
▪ Developed for smart battery systems, system

and power management components, etc.

▪ Subset of I2C protocol

▪ Documentation
▪ https://www.kernel.org/doc/html/next/i2c/smbus-protocol.html

▪ Recommended to use smbus rather than I2C
functions to increase compatibility
▪ If you write a driver for some I2C device, please try to use the

SMBus commands if at all possible (if the device uses only that

subset of the I2C protocol). This makes it possible to use the

device driver on both SMBus adapters and I2C adapters (the

SMBus command set is automatically translated to I2C on I2C

adapters, but plain I2C commands can not be handled at all on

most pure SMBus adapters).

▪ Refers to register address as “command”
(clashes with I2C read/write command bit)

▪ Functions defined in smbus.h
▪ Data sizes: byte, word (two bytes), block (up to

32 bytes)

▪ i2c_smbus_*_byte vs. i2c_smbus_*_data

▪ *_byte functions don’t use register address

▪ *_data functions do use register address

▪ Other functions

▪ Process call, handle host notify, alert,

▪ Other i2c functions

▪ _i2c_smbus_[read|write]_i2c_block_data

lib
i2

c i2c_smbus_

[read|write]_

byte

i2c_smbus_

[read|write]_

[byte|word|block]_

data

…

Register
Address

No Register
Address

https://www.kernel.org/doc/html/next/i2c/smbus-protocol.html

46

Compass0 Program

▪ Uses open/close and calls to
libi2c (i2c_smbus_....)

▪ Open i2c file

▪ Set device address for upcoming
I2C communications

if ((i2c_file = open("/dev/i2c-1", O_RDWR)) < 0) {
perror("Unable to open i2c control file");
exit(EXIT_FAILURE);

}

address = COMPASS_DEV_ADDR;
if ((ioctl(i2c_file, I2C_SLAVE, address) < 0)) {
perror("ioctl error\n");
exit(EXIT_FAILURE);

}

47

Configure Compass Sensor

▪ Read ID registers (“H43”)

▪ Write to configuration and
mode registers

result = i2c_smbus_read_i2c_block_data(file, ID_REG_A,
3, compass_ID);

if (result < 0) {
perror("read byte data error");
exit(EXIT_FAILURE);

}
…

result = i2c_smbus_write_byte_data(file, CONFIG_A_REG, 0x54);
if (result)
return 1;

result = i2c_smbus_write_byte_data(file, CONFIG_B_REG, 0x00);
…
result = i2c_smbus_write_byte_data(file, MODE_REG, IDLE_MODE);
…

48

Read and Use Data

▪ Start measurements

▪ Poll status for completion

▪ Read mag. vector data

▪ Close i2c file

while(run) {
i2c_smbus_write_byte_data(i2c_file, MODE_REG,

SINGLE_MEASUREMENT_MODE);

// Await data ready
do {
result = i2c_smbus_read_byte_data(i2c_file, STATUS_REG);
if (result < 0) {
perror("Error reading status\n");

} else
status = result;

} while (!(status & 1));

// read all field strength bytes in one transaction
result = i2c_smbus_read_i2c_block_data(i2c_file, XH_REG,

6, data);
...
}
close(i2c_file);

49

Old Slides

50

Interfacing with a Real-Time Clock

▪ If device loses track of time when powered off, add
an external real-time clock (RTC)

▪ Details
▪ Maxim DS3231 IC on Macetech Chronodot v2.1,

http://docs.macetech.com/doku.php/chronodot_v2.0

▪ I2C device address
is 0x68

▪ Access control
registers with i2cget and i2cset

▪ Note that time and calendar registers
are in BCD (binary-coded decimal) format

http://docs.macetech.com/doku.php/chronodot_v2.0

51

DS3231 Register Map

52

More I2C Devices

▪ Microchip 24LC32A EEPROM
▪ 4 kilobyte memory

▪ http://ww1.microchip.com/downloads/en/DeviceDoc/21713M.pdf

▪ Honeywell HMC6352 Digital Compass Solution
▪ I2C interface

▪ 2.7 to 5.2V supply range

▪ 1 to 20Hz selectable update rate

▪ 0.5 degree heading resolution

▪ 1 degree repeatability

▪ Supply current : 1mA @ 3V

▪ http://www.sparkfun.com/datasheets/Components/HMC6352.pdf

▪ http://www.sparkfun.com/commerce/product_info.php?products_id=7915

http://ww1.microchip.com/downloads/en/DeviceDoc/21713M.pdf
http://www.sparkfun.com/datasheets/Components/HMC6352.pdf
http://www.sparkfun.com/commerce/product_info.php?products_id=7915

53

Changing I2C Baud Rate

▪ ERP Chapter 8, p.315 doesn’t seem to work

▪ Do this
▪ sudo nano /boot/config.txt

▪ Change line dtparam=i2c_arm=on to dtparam=i2c_arm=on,i2c_arm_baudrate=400000

▪ Save file and exit

▪ sudo reboot

▪ Maximum I2C baud rate for CPU (and many peripherals) is 400 kHz
▪ https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-

Peripherals.pdf

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

54

Monitoring Communications with Logic Analyzer

▪ What is the baud rate?

▪ Is there any significant delay when preparing to send a message?

55

I2C Interfacing in C

▪ Kernel device driver module i2c-dev provides
I2C access
▪ Table of contents:

https://www.kernel.org/doc/html/latest/i2c/index
.html

▪ Nice overview:
https://www.kernel.org/doc/html/latest/i2c/dev-
interface.html

▪ Load module i2c-dev to use dev interface
from userspace

▪ Code often uses higher-level interface which
builds on this interface

https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

56

i2
c-

d
ev open close ioctl read write

I2C Interfacing in C

▪ Kernel device driver module
i2c-dev provides I2C access
▪ Table of contents: https://www.kernel.org/

doc/html/latest/i2c/index.html

▪ Nice overview:
https://www.kernel.org/doc/
html/latest/i2c/dev-interface.html

▪ /usr/include/linux/i2c-dev.h

▪ Load module i2c-dev to use dev
interface from userspace (link with
libi2c via -li2c)

▪ Code often uses higher-level
interface which builds on these
interfaces

Start ACK ACK StopACKDev. Address Reg. Address Data

lib
i2

c

i2c_smbus_

[read|write]_

byte

no reg. adx.

i2c_smbus_

[read|write]_

[byte|word|block]_

data

uses reg. adx.

…

Program A Program B

https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

57

I2C Interfacing in C

▪ Kernel device driver module
i2c-dev provides I2C access
▪ Table of contents:

https://www.kernel.org/doc/
html/latest/i2c/index.html

▪ Nice overview:
https://www.kernel.org/doc/
html/latest/i2c/dev-interface.html

▪ /usr/include/linux/i2c-dev.h

▪ Load module i2c-dev to use
dev interface from userspace
(link with libi2c)

▪ Code often uses higher-level
interface which builds on
these interfaces

Start ACK ACK StopACKDev. Address Reg. Address Data

i2
c-

d
ev open close ioctl read write

kernel space

user space

lib
i2

c i2c_smbus_

[read|write]_

byte

i2c_smbus_

[read|write]_

[byte|word|block]_

data

…

Program A Program B

https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

	Introduction
	Slide 1: Device Interfacing with Linux: I2C
	Slide 2: Protocol Comparison
	Slide 3: Factors to Consider
	Slide 4: Protocol Comparison
	Slide 5: Tools for Serial Communications Development

	I2C
	Slide 6: I2C Communications
	Slide 7: I2C Bus Overview
	Slide 8: I2C Bus Connections
	Slide 9: I2C Message Format
	Slide 10: I2C Addressing: Devices and Registers
	Slide 11: I2C Master Writing One Byte to Servant Device Register
	Slide 12: I2C Master Reading One Byte from Servant Device Register
	Slide 13: I2C Master Reading Multiple Bytes from Servant Register(s)

	Programmed Access
	Slide 14: Programmed Access to I2C Devices
	Slide 15: Background: Some Useful Device Driver Concepts
	Slide 16: I2C Interfacing in C
	Slide 17: Overview of Using Kernel’s I2C Device Driver
	Slide 18: I2C ioctl Commands
	Slide 19: Discussion: Why not use lseek, read and write?
	Slide 20: Writing I2C Device Registers
	Slide 21: Reading I2C Device Registers: Transaction Segments
	Slide 22: Data Structure for Transaction Segments: i2c_msg
	Slide 23: Data Structure for Transaction: i2c_rdwr_ioctl_data
	Slide 24: Interface Encapsulation
	Slide 25: Write: set_i2c_register(file, addr, reg, value)
	Slide 26: Read: get_i2c_register(file, addr, reg, *value)
	Slide 27: Interfacing with a Three-Axis Magnetometer
	Slide 28: Pinouts
	Slide 29: Setting Up I2C on RPi
	Slide 30: Registers for HMC5883L
	Slide 31: Example Program: BES/I2C/Compass
	Slide 32: Compass Program
	Slide 33: configure_compass(file, address)
	Slide 34: Loop: Read Data
	Slide 35: Benefits of Single Transaction Reading Multiple Registers
	Slide 36: Loop: Use Data
	Slide 37: Alternative Implementations
	Slide 38: Comparing Alternative Implementations
	Slide 39: ??? (chumby) (built on ioctl I2C_RDWR)
	Slide 40: Example Program: BES/I2C/Compass0
	Slide 41: read and write?
	Slide 42: I2C Interfacing in C
	Slide 43: Limitations of using I2C Read and Write Operations
	Slide 44: Compass0: smbus functions
	Slide 45: SMBus Protocol
	Slide 46: Compass0 Program
	Slide 47: Configure Compass Sensor
	Slide 48: Read and Use Data

	Untitled Section
	Slide 49: Old Slides
	Slide 50: Interfacing with a Real-Time Clock
	Slide 51: DS3231 Register Map
	Slide 52: More I2C Devices
	Slide 53: Changing I2C Baud Rate
	Slide 54: Monitoring Communications with Logic Analyzer

	Old
	Slide 55: I2C Interfacing in C
	Slide 56: I2C Interfacing in C
	Slide 57: I2C Interfacing in C

