NC STATE UNIVERSITY

Device Interfacing with Linux: I2C

version 1.0



NC STATE UNIVERSITY

PROTOCOL COMPARISON



NC STATE UNIVERSITY

Factors to Consider

How fast can the data get through?
= Depends on raw bit rate, protocol overhead in packet
= How many hardware signals do we need?
= May need clock line, chip select lines, etc.
= How do we connect multiple devices (topology)?
= Dedicated link and hardware per device - point-to-point
= One bus for master transmit/Servant receive, one bus for Servant transmit/master receive
= All transmitters and receivers connected to same bus — multi-point
= How do we address a target device?

= Discrete hardware signal (chip select line)

= Address embedded in packet, decoded internally by receiver

How do these factors change as we add more devices?



NC STATE UNIVERSITY

Protocol Comparison

Protocol Speed Device Addressing Signals Req. for
Bidirectional

Communication with N
devices

Fast — Tens of Mbit/s None 2*N (TxD, RxD)

Fast — Tens of Mbit/s Added by user in software 2 (TxD, RxD)

Fast —Tens of Mbit/s Hardware chip select signal per  3+N for SCLK, MOSI, MISO, and
device one SS per device

Moderate — 100 kbit/s, In packet 2: SCL, SDA

400 kbit/s, | Mbit/s, 3.4
Mbit/s. Packet overhead.



NC STATE UNIVERSITY

Tools for Serial Communications Development

Q Saleae Logic 1.1.15 - [Connected] - [8 MHz, 1 M Samples]

[1MSamples =] [aMHz ~| Start

= Tedious and slow to debug serial = Hardware

protocols with just an oscilloscope = Digilent Analog Discover 2, Digital Discovery
= |Instead use a logic analyzer to = Saleae Logic

decode bus traffic = Other logic analyzers
= Worth its weight in gold! = Software (FOSS)

= Sigrok/Pulseview



NC STATE UNIVERSITY

12C COMMUNICATIONS



NC STATE UNIVERSITY

12C Bus Overview

= “Inter-Integrated Circuit” bus GENERATOR IlJ H
PCD3311
= Multiple devices connected by a shared serial [ —
bus *H INTERFACE

PCA10TO

= Bus is typically controlled by master, servant
devices respond when addressed

ADPCM I

PCD5032

. : CONTROLLER
= |2C bus has two signal lines 47
= SCL: Serial clock PCD5042
= SDA: Serial data RO Ihl
CONTROLLER

PROCLXXX

= Full details available in “The 12C-bus
Specification”




NC STATE UNIVERSITY

12C Bus Connections

N N

R

= Resistors pull up lines to Vg,

= Open-drain transistors pull
lines down to ground

=K
=«

DD & 3 N QP & S

signal
= Canrange up to 400 kHz, 1
MHz, or more

% % = Master generates SCL clock
o L e

AR+ T (A £ T
NI £ 7 S A £



12C Message Format

Mss
501 ILi 2| (3l |4

NC STATE UNIVERSITY

W

SDA \

|
/'5.[]]" XADE XADﬁ XADdXADBXADEXAW ):EW

o | [ Yoe [or ot o Yoz [or ]

T\

Al k<

Start Signal

Calling Address

|. Start

= Message is made of

= Signals: Start, Stop, Repeated Start

= Bytes
= Acknowledgement bits

2. Servant Device Address etc.

= Message-oriented data transfer with four

parts
1. Start condition

Data Byte No | | Stop
Ack| [Signal
Bit
3. Data Fields 4. Stop

2.  Servant Address transmission

= Address
= Command (read or write)

= Acknowledgement by receiver

3. Data fields
= Data byte

= Acknowledgement by receiver

4. Stop condition



NC STATE UNIVERSITY

12C Addressing: Devices and Registers

Ox1e
HMC5883L Magnetometer
u DEVl ce a d d re55| N Address Location | Name
g I2C MaSter 00 Configuration Register A
H H 01 Configuration Register B
= Each device has a seven-bit address = Vode Resicmr >
. . 03 Data Output X MSB Register
= Can support up to 27=128 different devices on same bus 04 Data Output X LSB Register
05 Data Output Z MSB Register
= Different types of device have different default addresses e pota ulpul 2 138 Reeter
. . . . 08 Data O Y LSB Regi
= Some devices support alternate address via config. pin s Shhis Fageisr
10 Identification Register A
1 11 Identification Register B
Device Adx Data e e Data 12 Identification Register c
= Register addressing OxTc
, . , o MMAB8451 Accelerometer
= Some devices have multiple addressable registers within et
. Name Type ress Comment
device (e.g. control, status, data) . -
= First byte of data is interpreted as register address — —
. # OUT_X_MSB R 0x01 of 14-bit sample. | XYZ FIFO data.
Device Adx Reg Adx Data cee Data oUTX 1580 | R | ooy |FAare6LSBsol lbiresime
= Example: First seven registers of MMA8451 |12C ot mss® | R | oea |POISCOUS TR CEbeetne
a Cce I e ro m ete r OUT Y _LSBI@ R 0x04 [7:2] are 6 LSS‘::;E——bllreal—tlme
oUT Z_MsB(M@) R 0x05 [7-0]are & MSS;r::led—bit real-time
OUT 7 LsBM2 R 0x06 [7:2] are 6 LSBs of 14-bit real-time
10 - sample




NC STATE UNIVERSITY

12C Master Writing One Byte to Servant Device Register

Master Tx Start Device Address W Register Address Data Stop
Serv. Dev.Tx ACK ACK ACK

Start  Dev. Address ACK Reg. Address ACK Data ACK Stop

Name o T Ready 2000 samples at 125 MHz | 2016-11-25 11:16:51.328
\4 . \4 . v v . \4 . v v

-12c | T — hiowr ACKh2A ACKho1 ACKStop =

o WL T T N EpEN)
sl 01 J_I_I_I_I_I_I_I_I_U_I_I_I_I_J_ I_I_I_IJ_I_I_I_I_I_I_I_I_I_I_J__I_U_I_I_I_I_I_I_I_I_I_I_I_I_J_

X |'-' -1.64 us‘ 14.76 us J31l.16 us 47.56 us 63.96 us




NC STATE UNIVERSITY

12C Master Reading One Byte from Servant Device Register

MasterT £ Device S Register c Device =) %’ s
aster X &  Address 3 Address A Address o < A
S S S
Servant Tx o . 2 Data
< < <
NACK
Dev. Reg. Repeated Dev. (send no
Start Address ACK  Address ACK  Start Address ACK Data r;;tf) Stop
.= [N.,T. <

Name 0 T Ready 2000 |samples gt 7.692 MHz | 2016-11-25|10:35:47.953
A4 A4 A4 A4 4 A4 A4 A4 vV

-12¢ B T ———{|hiD wr hoD hiD RD hiA Stop
soa L [ L] || e
= 01 [UUUUULUU L UUUut W@UL

X~ -9.85us ‘ 15.55us 40.95 us 66.35 us 21.75us




12C Master Reading Multiple Bytes from Servant Register(s)

3 S 3 =
| - o R ~ N N N2 N4 g‘:’ Q
AL 1P g8 g £ 82 2 2 2 2 2 Q &
> = >
Q 00 Q pd
=) 2 o)
= ~ < 3 3 S 3 3 2
() O (©)]
Servant Tx 9 S 2 =B = = = = =
Device Register Device D vx\,\ VX’L\ v"%\ v"v\ v"<°\
Address Address Address 0&0\ N N ~N N & NACK
Q 8 o 8 S 8
_'I.l - — - : * T ot £
Name o T Ready 2000 samples at| 3.703 MHz | 2016-11-25 11:4%9:47.302
- v \4 v \4 \4 v \4 \4 \4
- [2C T —hipwr ||ho1 —hiDRD | |hFF hED hFF haD h41 h30 —
A A A A — —
o LT DO LT 0T L T |

SCL 0l _Mﬂ_ﬂmm ||||||||||||||| j”””"””m |||||||||||||||MMJ”U“MJ““”U“M JWUWUU JUUWUUUL

99,5 us 153 us 206.5us

X|r -7.5us 1 46 us

Start  ACK Repeated ACK Stop

3 Start



NC STATE UNIVERSITY

PROGRAMMED ACCESS TO I2C DEVICES



NC STATE UNIVERSITY

Background: Some Useful Device Driver Concepts

[ ]

b
i . . . . -~
= Device driver interface follows “everything’s a file” model

= Contains file_operations structure with pointers to functions
implementing operations

= File-like operations
= Open, close device

open | close | ioctl read | write

interface

= Read up to N bytes, write up to N bytes
= Positioning: llseek

= Poll device to find out on whether operations would block Code
= Flush: block until all pending device operations finish

= mmap: map device memory to process’s address space

= Many others possible as well. Asynch. read/write, etc.
= Other
= joctl: generic device-specific commands which don’t fit into file- Peripheral

like operations



NC STATE UNIVERSITY

EnlED
=) =

functionl | function2 |...

12C Interfacing in C

= j2c-dev device driver module
= Provides user-space 12C access

Table of contents: https://www.kernel.org/
doc/html/latest/i2c/index.html

Nice overview: https://www.kernel.org/doc/
html/latest/i2c/dev-interface.html

Jusr/include/linux/i2c-dev.h
Load module i2c-dev to use device interface from
userspace (link with libi2c via -112c¢)

= j2c-dev has complex interface SR\

. . ) 2 | open |close | ioctl | read |write
= User-space code may be simplified by using a °
(8]
wrapper with higher-level interface o
= Examples: libi2c, twiddler, Exploring RPi Chapter 8 {}
IZCDeVICe Start Dev. Address ACK  Reg. Address ACK Data ACK Stop
f;a;v \OlevM IZUO‘yEamplea at 1!’5 MHz | 2016"1—25 11:16:51."8 ‘y \ A 4
e [ T we [achaa [ackfho1 Jacstop
EL
ol



https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

NC STATE UNIVERSITY

Overview of Using Kernel’s 12C Device Driver

#include <linux/i2c-dev.h>
* |nclude headers <1linux/i2c- // open i2c adaptor as file

dev.h> i2c_file = open(“/dev/i2c-1”, O RDWR);
if (i2c_file < 0) {

= Open I°C adaptor (bus controller) 7/ handle error

= Communicate with 1°C device using h
l1octl I2C_RDWR calls // configure packets for I2C transaction
= joctl: /O control interface for features packets. .. = .;

which don’t fit into [open |read | write| // have driver perform the transaction

Iseek|close] template ret = ioctl(i2c_file, I2C _RDWR, &packets);
= Example ioctl call: if (ret < 0) {
= i2c_file indicates 12C adapter to use // handle error
= |2C_RDWR indicates operation J
= packets contains operation parameters // If read, access received data in packets
= ret indicates success (>=0) or failure (<0) - = packets. ..
= Close I°C adaptor // Close i2c adaptor

. close(i2c_file);



NC STATE UNIVERSITY

12C ioctl Commands

= General = SMBus only
= |2C_SLAVE = |2C_PEC
= Specify address for servant device. Is persistent = Enables or disables SMBus Packet Error
until next ioctl with this command. Checking
= |2C_RDWR = |12C_SMBUS
= Perform combined read/write transfer = |f available, use i2c_smbus_* functions

(repeated start)

= Takes * toi2c_rdwr_ioctl_data, which includes
Servant device address, register address, data

= |2C_TENBIT
= Selects seven or ten bit I2C addresses (if
supported)
= |2C_FUNCS

= Returns list of 12C adapter features
(“functionalities”)

= https://www.kernel.org/doc/html/next/i2c/func
tionality.html



https://www.kernel.org/doc/html/next/i2c/functionality.html
https://www.kernel.org/doc/html/next/i2c/functionality.html

Discussion: Why not use Iseek, read and write?

= |seek: set file pointer at specified location

= Reference
= Write activities by master

Send device address + write command
Send register number
Send data byte(s)

= Read activities by master

Send device address + write command
Send register number

Send repeated start

Send device address + read command
Receive data byte(s)

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Writing 12C Device Registers

\V )
Master Tx |Start Servant DevAdx W Servant Reg Adx Data Data Stop
Servant Tx ACK ACK ACK ACK

A

= Writing to device register(s) is easy

= Master sends START, sends device address, write command, (starting) register address, all data, then
sends STOP

= Servant just acknowledges each byte received

20



NC STATE UNIVERSITY

Reading 12C Device Registers: Transaction Segments

T<

Servant Dev Adx
R(0)

Master Tx

ACK
ACK
ACK
ACK
ACK
STOP

START
Servant Dev Adx
W
Servant Reg Adx

NACK(1)

Servant Tx

ACK

ACK
Repeated STAR

ACK
Data
Data
Data
Data

©
+—
©
()]

Data

\_

= Reading from a device register requires = Segment 2:

two 12C transaction segments = Master sends START (without an intervening STOP,

which makes it a repeated start), sends Servant
= Segment 1: )
device address, read command. Servant
acknowledges each byte received.

= Servant sends first data byte

= Master sends START, Servant device address, write
command and Servant register address. Servant
acknowledges each byte received.

= Master uses acknowledgement to control if Servant
sends another data byte

= |f Master sends ACK, Servant sends another byte

= |f Master sends NACK, it doesn’t want more data from
Servant. Master sends STOP and ends transaction




NC STATE UNIVERSITY

Data Structure for Transaction Segments: i2c_msg

[mrmrm]:l [mgrmrmlm rmrmrm]]
4 4 5

= Common actions for transaction segments
= Send START condition
= Send address
= Send command (read or write)
= Transfer N bytes of data to/from buffer

= “I2C transaction segment” description struct i2c msg {
= Described by i2c_msg, defined in linux/i2c.h __ul6 addr;
= Address of Servant device is 7 or 10 bits —u16 flags;
T . ) __ule len; /* msg length
= Flags for message — indicate functionality. .
__u8 *buf; /* pointer to msg data

= [2C_M _RD: read. Absence implies write.
Length of data in buffer
Pointer to data buffer

s

22



NC STATE UNIVERSITY

Data Structure for Transaction: i2¢c_rdwr_ioctl data

--|:- |_addr | flags | len | buf | 0] | [17 0 [21 [ [3]_
4 -_/-'

B cdor [ flags [ den [ buf | Ol [1] | [2] | [3
4 f
5 e (0] | [1] [ [2] | [3] | [4 I
= Data structure defined in /* This is the strycture as used in the I2C_RDWR ioctl call */
linux/i2c-dev.h “struct i2c_rdwe_ioctl data {
= Pointer to array of i2¢ msgs STruct 12c_msg _ user *msgs; /* polnters to i12c_msgs */
B __u32 nmsgs; /* number of i2c _msgs */

= Number of i2c_msgs Y

23



NC STATE UNIVERSITY

Interface Encapsulation

[ ] [ compass0 ]
Encapsulate common
code to assemble and \

manipulate data ( i2c_smbus_ i2c_smbus_
O ) [read |write] [read|write]
structures >c | 1| del 1ol lp N
2 % & g & § SRR 2 byte [byte |word|block]_
= Useful to encapsulate 2T | e L el LR o data
SEZ 88 %L gy J 4
into cleaner interface \ iy no reg. aax. uses reg. aax.
= Compass example
= Uses functions derived V
from chumby twiddler.c Y
because they were o |open | close | ioctl | read | write
© l
documented better <
= twiddler.c was derived
from ,,.? Si‘(art Dev. Address ACK  Reg. Address ACK Data ACKStop
f\'m‘ IIO‘TTvﬂ 200y semples at 1ays MEz | 2016W1-29 11:16:51.4p8 v \ A 4
nc T ow EE fcxor fofser |-

- W1 1 i . rrr
ol
47.56 us 63.96us

24 X|v -Le4usgy 14.76 us 31.16us




NC STATE UNIVERSITY

Write: set_i2c_register(file, addr, reg, value)

unsigned char outbuf[2];
struct i2c¢_rdwr_ioctl _data packets;

= 1. Prepare messages[0] entryto  struct i2c_msg messages[1];
describe segment (write)

messages

_addr | flags | len | buf _

messages[@].addr = addr;
= Device address, flags, data buffer, messages[@].flags = ©; addr O 2  outbuf
data length messages[@].len = sizeof(outbuf);
. messages[©].buf = outbuf; buf
= 2. Load up outbuf with data to outbu
send - [0] | [I] |
= First byte is register number outbuf[@] = reg; reg value
= Second byte is data value outbuf[1] = value; packets _
. . NnMsSgs
= 3. Prepare packets with list of packets.msgs = messages; | <
" ” . = ' messages
segments (“messages”) to send packets.nmsgs = 1; 8
= 4. Callioctl, passing arguments...  if(ioctl(file, I2C_RDWR, &packets) < 8) {
= File: which i2¢c bus perror(“"Unable to send data");

return 1;
= QOperation: I2C_RDWR }

= Pointer to packets

25



Read: get_i2c_register(file, addr, reg, *value)

unsigned char inbuf, outbuf;
struct i2c_rdwr_ioctl data packets;
struct i2c_msg messages[2];

= 1. Prepare outbuf with - outbuf
re outbuf = reg;
g messages[8].addr = addr; MESSages .E.
" 2 Prepore messagesi0]  messagesiel flags = 03 6y G IEREEITIECTR | T
entrv to describe messages[@].len = sizeof(outbuf); .
Y . messages[@].buf = &outbuf; addr | outbu inbuf
segment (write) addr I2C_M_RD | inbuf [T
= 3. Prepare messages[l] messages[1].addr addr;

messages[1].flags I2C_M _RD/* | I2C_M_NQSTART*/;

entry to describe messages[1l].len = sizeof(inbuf);
segment (read) messages[1].buf = &inbuf; packets
= 4. Prepare packets with packets.msgs = messages; :
list of segments to send ~ Packets.nmsgs =2 messages 2
= 5. Call ioctl, passing if(ioctl(file, I2C_RDWR, &packets) < @) {
perror("Unable to send data");
arguments return 1;
= 6. If successful, copy )

) *yal = inbuf;
result from inbuf to *val ’

26



NC STATE UNIVERSITY

Interfacing with a Three-Axis Magnhetometer

Use to determine heading of vehicle, wind direction, robot arm direction, etc.
Digilent PModCMPS

= http://store.digilentinc.com/pmodcmps-3-axis-digital-compass/
= (discontinued, replaced by PModCMPS2)

= Uses Honeywell HMC5883L 33v

1
2C1SDA pull-up GPIO2 3 E
= Details 12C pull-up GPIO3 5 6 GND
0 pull-up GPIO4 7 8 GPI1014
: GND 9 10  GPIO15
| ]
Connect tO RPI pull-down GPI017 11 12 GPIO18
= GNDtopin9 pull-down  GPIO27 13 14 GND |
pull-down  GPI022 15 16  GPIO23
= VCCtopinl 33V 17 18 GPIO24
. pull-down  GPIO10 19 20 GND |
= SCLtopin5 pull-down  GPIO9 21 22 GPIO25
= SDAto pin 3 pull-down  GPIO11 23 24  GPIOS
GND 25 26  GPIO7
= 12C device address is Ox1le BUE CI0.SD 27 28__ID_SC
pull-up GPIO5S 29 30 GND |
= Can access control registers e Pltl"('j‘up Gf,'l’(';: :; :: f,-:.'.fn |
pull-down
with i2cget and i2cset pull-down  GPIO19 35 36 GPIO16
pull-down  GPIO26 37 38 GPIO20
GND 39 40 GPIO21

27


http://store.digilentinc.com/pmodcmps-3-axis-digital-compass/

NC STATE UNIVERSITY

Pinouts
= RPi 3 = RPi 4

Function Mode PinNumbers Mode JZ¥alei(en

y N 3.3V 1 e o 5V
2C1SDA | pull-up GPlo2 3 III' SPI3 MOSI/ GPI2 3 5V SP|
12C1 SCL pull-up GPIO3 5 ® 6 GND SPI3 SCLK/ GPI3 5 | 6 GND GND
~ GPCLKO pull-up GPI04 7 0 8 GPIO14 SPI4 CEO N/ GPIO4 7 | 8 GPIOW /SPI5 MOSI
i o GND 9 50 10  GPIO15 GND GND 9 | 120 GPIOIS ISPI5 SCLK

Q B pull-down GPIO17 11 OO 12 GPIO18 GPIO17 11 12 GPIO18 SPI6 CEON
pull-down  GPI027 13 O C 14 GND SPI6 CE1 N GPIO27 13 14 GND GND
pull-down  GPIO22 15 OO 16 GPIO23 GPI02 15 | 16 GPIO23
3.3V 17 0O 18 GPl024 33V 17 | 18 GPIO24 SPI3 CE1 N
pull-down GPIO10 19 ) O 20 GND GPIO1I0 19 [ 20 GND GND
pull-down GPIO9 21 OO 22  GPlO25 / GPIO9 21 [ 22 GPIO25 SPI4 CE1N
pull-down  GPIO11 23 O O 24  GPIO8 GPIO11 23 [ 24 GPIO8 /
i GND 25 J O Ik 26 GPIO7 GND GND 25 E GPIO7 /SPI4 SCLK
T pull-up ID_SD 27 OO 28 ID_SC SPI3 CEO N/ / ID_SD | 27| | 28] ID_SC SPI3 MISO/ /
pull-up GPIO5 29 () O 30 GND SP14 MISO/ / GPIOS 29 [ 30 GND GND
pull-up GPIO®6 31 e o 32 GP1012 SPI4 MOSI/ GPIO6 31 | 32 GPIO12 /SP15 CEO N/
pull-down GPIO13 33 o 0 34 GND SPI5 MISO/ / GPIO13 33 3 GND GND
pull-down GPIO19 35 O C 36 GPIO16 SPI16 MISO GPIO19 35 36 GPIO16 SPI1 CE2 N
pull-down GPI1026 37 o o 38 GP1020 SPI5 CE1 N GPIO26 37 38 GPIO20 SPI6 MOSI
7 GND o o 40 GPI1021 GND GND 39 40 GPI021 SPI6 SCLK




NC STATE UNIVERSITY

Setting Up 1°C on RPi

Enable I°C

= May be disabled by default

= To enable \0 @56
= Using raspi-config (“Interfaces”), or '7,7 K\e
= Edit /boot/config.txt to include dtparam=i2c_arm=on

= Module i2c_dev provides access via /dev/...

. Getackage for useful tools
= |nstall with sudo apt install i2c-tools

C d li i2cdetect, iZcdump, i2cget, i2
ommand line programs.tl cdetect, i2Zcdump, i2cget, i2cset
= Detailed coverage in ERP, pp.318-325

= Setting communication speed: See Exploring RPi

29



NC STATE UNIVERSITY

3-Axis Digital Compass IC Honeywell

Registers for HMC5833L

Register
00
01
02
03
04
05
06
07
08
09
10
11
12

30

Name

Configuration Register A
Configuration Register B
Mode Register

Data Output X MSB Register
Data Output X LSB Register
Data Output Z MSB Register
Data Output Z LSB Register
Data Output Y MSB Register
Data Output Y LSB Register
Status Register
Identification Register A
|dentification Register B
Identification Register C

Access
Read/Write
Read/Write
Read/Write
Read

Read

Read

Read

Read

Read

Read

Read

Read

Read

HMC5883L

Advanced Information

The Honeywell HMC5883L is a surface-mount, multi-chip module designed for

low-field magnetic sensing with a digital interface for applications such as low-
cost compassing and magnetometry. The HMC5883L includes our state-of-the-
art, high-resolution HMC118X series magneto-resistive sensors plus an ASIC
containing amplification, automatic degaussing strap drivers, offset cancellation,
and a 12-bit ADC that enables 1° to 2° compass heading accuracy. The I°C
serial bus allows for easy interface. The HMC5883L is a 3.0x3.0x0.9mm surface
mount 16-pin leadless chip carrier (LCC). Applications for the HMCS5883L

include Mobile Phones, Netbooks, Consumer Electronics, Auto Nawigation

Systems, and Personal Navigation Devices.

The HMC5883L utilizes Honeywell's Anisotropic Magnetoresistive (AMR) technology that provides advantages over other

magnetic sensor technologies. These anisotropic, directional sensors feature precision in-axis sensitivity and linearity.

These sensors’ solid-state construction with very low cross-axis sensitivity is designed to measure both the direction and

the magnitude of Earth’'s magnetic fields, from milli-gauss to 8 gauss. Honeywell's Magnetic Sensors are among the most

sensitive and reliable low-field sensors in the industry.

FEATURES

14

3-Axis Magnetoresistive Sensors and
ASIC in a 3.0x3.0x0.9mm LCC Surface
Mount Package

12-Bit ADC Coupled with Low Noise
AMR Sensors Achieves 2 milli-gauss
Field Resolution in 8 Gauss Fields

Built-In Self Test

Low Voltage Operations (2.16 to 3.6V)
and Low Power Consumption (100 pA)

Built-In Strap Drive Circuits

I°C Digital Interface
Lead Free Package Construction
Wide Magnetic Field Range (+/-8 Qe)

Software and Algorithm Support
Available

Fast 160 Hz Maximum Output Rate

BENEFITS

» Small Size for Highly Integrated Products. Just Add a Micro-
Controller Interface, Plus Two External SMT Capacitors
Designed for High Volume, Cost Sensitive OEM Designs
Easy to Assemble & Compatible with High Speed SMT Assembly

) Enables 1° to 2° Degree Compass Heading Accuracy

» Enables Low-Cost Functionality Test after Assembly in Production

» Compatible for Battery Powered Applications

» Set/Reset and Offset Strap Drivers for Degaussing, Self Test, and
Offset Compensation

» Popular Two-Wire Serial Data Interface for Consumer Electronics
» RoHS Compliance

» Sensors Can Be Used in Strong Magnetic Field Environments with a
17 to 2° Degree Compass Heading Accuracy

» Compassing Heading, Hard Iron, Soft Iron, and Auto Calibration
Libraries Available

» Enables Pedestnan Navigation and LBS Applications



Example Program: BES/12C/Compass

= Uses open, close, ioctl and [get|set] i2c_register[s]

= Basic operations
= |nitialization of 12C, compass
= Reading data
= Heading calculation
= Statistics

31

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Compass Program

if ((i2c_file = open("/dev/i2c-1", O RDWR)) < 0) {

= Try to open i2c file and check for perror("Unable to open i2c controller/file");
errors exit(1);
}
= Conﬁgure compass address = COMPASS DEV_ADDR;

if (configure_compass(i2c_file, address)) {
printf("Unable to configure compass\n");
return 1;

}

32



NC STATE UNIVERSITY

configure_compass(file, address)

uint8_t compass ID[3];

if (get i2c register(file, address, ID REG A, &(compass ID[@])))

= Read ID registers (“H43") return 1;
if (get i2c register(file, address, ID REG B, &(compass ID[1])))
return 1;
if (get _i2c register(file, address, ID REG C, &(compass ID[2])))
return 1;
= Test for ID string if (strncmp((char *) compass ID, "H43", 3)) {
printf("Compass not found. Expected H43, got %s.\n", compass ID);
return 1;
} else {
printf("Compass found.\n");
}

= Write to configuration and  // 4 averages, 30 Hz, normal measurement. 0101 0100
. if (set _i2c register(file, address, CONFIG A REG, 0x54))
mode registers

return 1;

// Gain

if (set _i2c register(file, address, CONFIG B REG, 0x00))
return 1;

// Operation mode

if (set _i2c register(file, address, MODE_REG, IDLE_MODE))

return 1;
33



Loop: Read Data

= Start measurements

= Poll status for completion

= HMC-specific register and
feature

= Read mag. vector data
with six or one reads

34

NC STATE UNIVERSITY

// Start measurement
set _i2c _register(i2c_file, address, MODE_REG, SINGLE MEASUREMENT_ MODE);
// Await data ready
do {
get i2c_register(i2c_file, address, STATUS_ REG, &status);
} while (!(status & 1));

#if READ BYTES INDIVIDUALLY // Read each field strength byte individually
for (i=0; i<6; i++) {
get i2c register(i2c_file, address, XH REG+i, &(data[i]));
#if PRINT_RAW BYTES
printf("%02x ", data[i]);
#endif
}
#else // read all field strength bytes in one transaction
get i2c registers(i2c_file, address, XH REG, 6, data);
#if PRINT_RAW BYTES
for (i=0; i<6; i++) {
printf("%02x ", data[i]);
}
#endif // PRINT_RAW BYTES
#endif // Not READ BYTES INDIVIDUALLY



NC STATE UNIVERSITY

Benefits of Single Transaction Reading Multiple Registers

~ o
2.0 MS

Start Read Status Read XH Read XL Read ZH Read ZL Read YH Read YL
Measurement
Wr Reg 2 Rd Reg 9 Rd Reg 3 Rd Reg 4 Rd Reg 5 Rd Reg 6 Rd Reg 7 Rd Reg 8
MName o T Done |2000 samples at] 537.6 kHz | 2016-10-24 15:1P:7.403 ] ‘t!.i
-1 Nl ke [por ll——  [pes [p:= ooz [ [hos [Hperolpee [l | [hos[—herdfas [ lhes [—herofjoo %II:II] [hos [—fhzerolfos I [ho7 F—fpeerofpoz [ Thos [—peerolfor [}
Data 1- A D O 1 ) Y A | A G g S 1
oo HRXT] || | L L | L |
le -0.02“" 0.35ms 0.72ms 1.1ms 1.47 ms 1.84ms 2.21ms 2.58 ms 2.96ms 3.33ms 3.7ms
¥ Start Read Status Read XH/XL/ZH/ZL/YH/YL
easurement
Wr Reg 2 Rd Reg 9 Rd Reg 3-8
Mame 10T Done |2000 samplef at 537.6 kHz | 2016-10-24 F3E03:35.481
-1 SN [hoz_Thot [T Tpos ||—|h1ERDIh01§||:H] [bos_TH{pserolbre [per [poo [pai [z [pes ]
Data B AL 1N O A o
M | 18 L T O AT
DRDY CEX | L |
X[~ -0.02 mgf 0.35ms 0.72ms Tims 147 ms
0.9 ms

35



NC STATE UNIVERSITY

Loop: Use Data

= Convert bytes to field x_val = (((intl6_t) data[0]) << 8) + data[1];
strength components z_val = (((int16_t) data[2]) << 8) + data[3];
y val = (((intl6_t) data[4]) << 8) + data[5];

= Calculate statistics, field update limits(x val, y val, z val);
strength strength = sqrt(x_val*x val + y val*y val + z val*z val);

printf("M: (%4d, %4d, %4d) ", x val, y val, z val);
#if PRINT_RANGE
printf("M Range: (%4d~%3d Y: %4d~%3d Z: %4d~%3d) ",
X_lim.min, x_lim.max, y _lim.min, y lim.max, z_lim.min, z_lim.max);
#endif
printf(" Hdg: %6.2f Str: %6.2f\r", calc_heading(x_val, y val), strength);

= Calculate heading, print
data

36



NC STATE UNIVERSITY

Alternative Implementations



NC STATE UNIVERSITY
Comparing Alternative Implementations

g @fpﬂ] = Exploring Raspberry Pi (chp08)

= Uses part of kernel interface

SN

/// i2c_smbus_ i2c_smbus_
o [Tl Wl A/ k| treadlwritel [read|write] = File 1/O to open/read/write/close device
-g 28 8l8 gy E Qo) )2 byte [byte |word | block]_ .
ERNIG -t el p A data = joctl to set Servant address
e "’L""ngs}f)"/g / . adx. u. . adx. . .
aval/ S s = Provides base C++ class 12CDevice
X A/ . .
\\// = open, close, readRegister, readRegisters,
N | [r< writeRegister, debugDumpRegisters
open| clos ot read e = Derive device-specific classes (e.g. ADXL345)

from 12CDevice
= Pan/Tilt Base code from Arducam

i2c-dev

ACK Stop

o S |
-%ﬁlw*mm;mﬁ = Bypasses I12C hardware, uses software-implemented
12C in sccb_bus.c/h
= 2?7 (Sean Cross, Chumby) = Provides functions:
= wrSensorReg8 8, rdSensorReg8 8
" Uses more of kernel interface = Bus operations: sccb_bus_{[init, start, write_byte,
* File1/0 to open/close device read_byte, send_ack, send_noack, stop]
" ioct! I2C_RDWR for read/write = Uses memory-mapped access to peripherals (gpio,
" Provides functions spi, pwm, sys_timer, uart, cm_pwm) in
= get i2c_register, set_i2c_register, get_i2c_registers bcm283x board driver.c/h

= Doesn’t work with libi2c, need to port application code

38



NC STATE UNIVERSITY

??? (chumby) (built on ioctl 12C_RDWR)

= From Sean Cross / Chumby Industries 1t set_i2c_register(int file,
unsigned char addr,

= Used in Compass demo unsigned char

reg,
= See BES/I2C/compass/twiddler.c unsigned char va?ue);

int get_i2c_register(int file,
unsigned char addr,
unsigned char reg,
unsigned char *val);

int get_i2c_registers(int file,
unsigned char addr,
unsigned char first_reg,
unsigned char num_regs,
unsigned char *val);

39



NC STATE UNIVERSITY

Example Program: BES/12C/Compass0O

= Basic operations
= |nitialization of 12C, compass
= Reading data

= Heading calculation

= Offset error
= Measurement
= Compensation

40



NC STATE UNIVERSITY

read and write?



12C Interfacing in C

= Try to open the device, and check for errors

int file;
int adapter_nr = 2; /* probably dynamically determined */
char filename[20];

snprintf(filename, 19, "/dev/i2c-%d", adapter_nr);
file = open(filename, O_RDWR);
if (file < 0) {
/* ERROR HANDLING; you can check errno */
ex1t(l);
}

42

NC STATE UNIVERSITY



NC STATE UNIVERSITY

Limitations of using 12C Read and Write Operations

int addr = 0x40; /* The I2C device address */

__u8 register = 0x10; __s32 res; char buf[10]; Messy and tedious having to
if (ioct1(file, I2C_SLAVE, addr) < 0) handle messages and bytes
exit(l); at this level. And how to do
/*Using I2C write, equivalent of repeated start conditions?
* 12c_smbus_write_word_data(file, reg, 0x6543)
* /

buf[0] = register; // write 0x6543 to register
buf[1] = 0x43; buf[2] = 0x65;
if (write(file, buf, 3) != 3) {
/* ERROR HANDLING: i2c transaction failed */

}
/* Using I2C Read, equivalent of i2c_smbus_read_byte(file) */
if (read(file, buf, 1) !'= 1) {

/* ERROR HANDLING: i2c transaction failed */
} else {

/* buf[0] contains the read byte */
¥



NC STATE UNIVERSITY

Compass0: smbus functions



SMBus Protocol

= System Management Bus protocol

= Developed for smart battery systems, system
and power management components, etc.

= Subset of I12C protocol

= Documentation
= https://www.kernel.org/doc/html/next/i2c/smbus-protocol.html

= Recommended to use smbus rather than 12C
functions to increase compatibility

= |If you write a driver for some 12C device, please try to use the
SMBus commands if at all possible (if the device uses only that
subset of the 12C protocol). This makes it possible to use the
device driver on both SMBus adapters and 12C adapters (the
SMBus command set is automatically translated to 12C on 12C

adapters, but plain 12C commands can not be handled at all on

most pure SMBus adapters).

= Refers to register address as “command”
(clashes with 12C read/write command bit)

45

NC STATE UNIVERSITY

No Register Register
Address Address
: i2c_smbus_
o i2c_smbus_ .
3 [read|write] Iread]write]_
= - [byte |word|block]_
byte
data

= Functions defined in smbus.h

= Data sizes: byte, word (two bytes), block (up to
32 bytes)

= j2c_smbus_* byte vs.i2c_smbus_* data
= * byte functions don’t use register address
= * data functions do use register address

= Other functions
= Process call, handle host notify, alert,

= Other i2c functions
= _j2c_smbus_[read|write] i2c_block data


https://www.kernel.org/doc/html/next/i2c/smbus-protocol.html

NC STATE UNIVERSITY

CompassO Program

" Uses open/close and calls to if ((i2c_file = open("/dev/i2c-1", O RDWR)) < 0) {
libi2c (i2c_smbus_....) perror("Unabl€ to open i2c control file");
exit (EXIT_FAILURE);

}
= Openi2cfile

address = COMPASS DEV_ADDR;

if ((ioctl(i2c_file, I2C SLAVE, address) < 0)) {
= Set device address for upcoming pegrrorﬁoctl error\n");

exit (EXIT_FAILURE);

|2C communications )

46



NC STATE UNIVERSITY

Configure Compass Sensor

= Read ID registers (“H43")

= Write to configuration and

47

mode registers

result = iZC_smbus_read_iZC_block_data(file,_;g=§£g=éi_
— - jiﬁ.compass_ID);

if (result < 0) { (
perror("read byte data error"); Y

}exit(EXIT_FAILURE); [k \J

result = i2c_smbus write byte data(file, CONFIG_A REG, 0x54);

if (result) \ —
return 1;
result = i2c_smbus write byte data(file, CONFIG_B REG, 0x00);
< - - - -

result = i2c_smbus write byte data(file, MODE_REG, IDLE_MODE);

—e———
—




NC STATE UNIVERSITY

Read and Use Data

while(run) {
= Start measurements i2c_smbus _write byte data(i2c_file, MODE_REG,
SINGLE _MEASUREMENT_MODE); —

—_—

// Await data ready

do {
result = i2c_smbus_read byte data(i2c_file, STATUS REG);
= Poll status for completion if (result < 0) { — —
perror("Error reading status\n");
} else

status = result;
} while (!(status & 1));
T —
o~
// read all field strength bytes in one transaction

result = i2c_smbus_read _i2c block data(i2c_file, XH REG,
= Read mag. vector data 6, data); e 2
3 b

F

e

2 ’\}-HL:Q

= Close i2cfile close(i2c _file);

48



NC STATE UNIVERSITY

Old Slides



NC STATE UNIVERSITY

Interfacing with a Real-Time Clock

= |f device loses track of time when powered off, add
an external real-time clock (RTC)

= Details

= Maxim DS3231 IC on Macetech Chronodot v2.1,
http://docs.macetech.com/doku.php/chronodot v2.0

= |2C device address Voo Veo
is 0x68 "Tﬂ - ? 0
= Access control T L
. L ] sCL »|scL INT/SQW -
registers with i2cget and i2cset e JU - : -
. . AST | RST Vear
= Note that time and calendar registers P”SHB”HPS?H Wk
are in BCD (binary-coded decimal) format E;}g 333 oS
N.C GND N.C.

==

50


http://docs.macetech.com/doku.php/chronodot_v2.0

DS3231 Register Map

51

NC STATE UNIVERSITY

BIT7 BITO
ADDRESS MSB BIT6 BIT5 BIT 4 BIT 3 BIT 2 BIT 1 LSB FUNCTION RANGE
00h 0 10 Seconds Seconds Seconds 00-59
01h 0 10 Minutes Minutes Minutes 00-59
__ | AM/PM _ M,
02h 0 12/24 / 10 Hour Hour Hours 1-12 + AM/PM
20 Hour 00-23
03h 0 0 0 0 0 Day Day 1-7
04h 0 0 10 Date Date Date 01-31
Month/ 01-12 +
05h Century 0 0 10 Month Month Century Century
0eh 10 Year Year Year 00-99
07h A1MA 10 Seconds Seconds Alarm 1 Seconds 00-59
08h A1M2 10 Minutes Minutes Alarm 1 Minutes 00-59
__ | AM/PM _ AM
0%h A1M3 12/24 / 10 Hour Hour Alarm 1 Hours 1-12 + AM/PM
20 Hour 00-23
__ Day Alarm 1 Day 1-7
0Ah A1M4 DY/DT 10 Date
Date Alarm 1 Date 1-31
0Bh A2M2 10 Minutes Minutes Alarm 2 Minutes 00-59
__ | AM/PM _ AM,
0Ch AZ2M3 12/24 / 10 Hour Hour Alarm 2 Hours 1-12 + AM/PM
20 Hour 00-23
__ Day Alarm 2 Day 1-7
0Dh A2M4 DY/DT 10 Date
Date Alarm 2 Date 1-31
0Eh EQSC | BBSQW | CONV RS2 RSH INTCN | AZIE A1IE Control —
OFh OSF 0 0 0 EN32kHz BSY AZF A1F Control/Status —
10h SIGN DATA DATA DATA DATA DATA | DATA | DATA Aging Offset —
11h SIGN DATA DATA DATA DATA DATA | DATA | DATA MSB of Temp —
12h DATA DATA 0 0 0 0 0 0 LSB of Temp —




More |2C Devices

= Microchip 24LC32A EEPROM

4 kilobyte memory
http://ww1l.microchip.com/downloads/en/DeviceDoc/21713M.pdf

= Honeywell HMC6352 Digital Compass Solution

52

12C interface

2.7 to 5.2V supply range

1 to 20Hz selectable update rate

0.5 degree heading resolution

1 degree repeatability

Supply current : 1ImA @ 3V
http://www.sparkfun.com/datasheets/Components/HMC6352.pdf

http://www.sparkfun.com/commerce/product info.php?products id=7915

NC STATE UNIVERSITY


http://ww1.microchip.com/downloads/en/DeviceDoc/21713M.pdf
http://www.sparkfun.com/datasheets/Components/HMC6352.pdf
http://www.sparkfun.com/commerce/product_info.php?products_id=7915

NC STATE UNIVERSITY

Changing 12C Baud Rate

ERP Chapter 8, p.315 doesn’t seem to work

Do this
= sudo nano /boot/config.txt
= Change line dtparam=i2c_arm=on to dtparam=i2c_arm=on,i2c_arm_baudrate=400000
= Save file and exit
= sudo reboot

= Maximum I2C baud rate for CPU (and many peripherals) is 400 kHz

= https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-
Peripherals.pdf

53


https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/BCM2835-ARM-Peripherals.pdf

Monitoring Communications with Logic Analyzer

= What is the baud rate?
= |s there any significant delay when preparing to send a message?

54

NC STATE UNIVERSITY



12C Interfacing in C

= Kernel device driver module i2c-dev provides
12C access

= Table of contents:
https://www.kernel.org/doc/html/latest/i2c/index

NC STATE UNIVERSITY

Ades oo
(A 6"3? A ,eae\/\&lﬁ ]‘)evwo

.html

= Nice overview:
https://www.kernel.org/doc/html/latest/i2c/dev-
interface.html

= Load module i2c-dev to use dev interface
from userspace

= Code often uses higher-level interface which
builds on this interface

55

QD

e @\J@l@ﬂ fectl] (s

T | Sk e I

T v (/s ¢ [ 1 ]



https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

NC STATE UNIVERSITY

12C Interfacing in C

[ Program B ]
= Kernel device driver module [ J
i2c-dev provides 12C access | \
= Table of contents: https://www.kernel.org/ i2c_smb.us_ i2c_smb.us_
doc/html/latest/i2c/index.html [read | write]_ [read | write]_
= Nice overview: byte [byte |word|block]_
https://www.kernel.org/doc/ data
html/latest/i2c/dev-interface.html no reg. adx. uses reg. adx.
v/
= [usr/include/linux/i2c-dev.h /
. '
= Load module i2c-dev to use dev / / V
interface from userspace (link with :
libi2c via -liZC) é open | close | ioctl | read rwrite
= Code often uses higher-level =
interface which builds on these
. f Slt(art Dev. Address ACK  Reg. Address ACK Data ACKStop
Intertaces +. = 5.1
Neme 10 T[ wReady [2oogsempies ev 1ago wmz 1 2016yn-25 11:16:51.4p8 v vy
e T pow e oot podies |

SSR Y 1 A N B
i U UL U LU U DU UL U UU U o ouU oL

56 X|v -Le4usgy 14.76 us



https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

@ @ NC STATE UNIVERSITY

12C Interfacing in C —

[ ] [Program B]
= Kernel device driver module ) \ 1 |
i2c-dev provides 12C access \\J /

= Table of contents: \ > ] i2c_smbus_
https://www.kernel.org/doc/ AN _ 2c_sm 'us_ [read |write]
html/latest/i2c/index.html A\ \‘ 5 | [read|write]_ [byte |word |block]_|
/ \

= Nice overview: user space HE
https://www.kernel.org/doc/
html/latest/i2c/dev-interface.html

data

kernel space

= [usr/include/linux/i2c-dev.h

* Load module i2c-dev to use
dev interface from userspace
(link with libi2c)

= Code often uses higher-level Bit-Bangw
interface which builds on - +tor 90,,‘3%;4
these interfaces oy, ¥ XY

57 X|> -Ledusfy 14.76 us


https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/index.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html
https://www.kernel.org/doc/html/latest/i2c/dev-interface.html

	Introduction
	Slide 1: Device Interfacing with Linux: I2C
	Slide 2: Protocol Comparison
	Slide 3: Factors to Consider
	Slide 4: Protocol Comparison
	Slide 5: Tools for Serial Communications Development

	I2C
	Slide 6: I2C Communications
	Slide 7: I2C Bus Overview
	Slide 8: I2C Bus Connections
	Slide 9: I2C Message Format
	Slide 10: I2C Addressing: Devices and Registers
	Slide 11: I2C Master Writing One Byte to Servant Device Register
	Slide 12: I2C Master Reading One Byte from Servant Device Register
	Slide 13: I2C Master Reading Multiple Bytes from Servant Register(s)

	Programmed Access
	Slide 14: Programmed Access to I2C Devices
	Slide 15: Background: Some Useful Device Driver Concepts
	Slide 16: I2C Interfacing in C
	Slide 17: Overview of Using Kernel’s I2C Device Driver
	Slide 18: I2C ioctl Commands
	Slide 19: Discussion: Why not use lseek, read and write?
	Slide 20: Writing I2C Device Registers
	Slide 21: Reading I2C Device Registers: Transaction Segments
	Slide 22: Data Structure for Transaction Segments: i2c_msg
	Slide 23: Data Structure for Transaction: i2c_rdwr_ioctl_data 
	Slide 24: Interface Encapsulation
	Slide 25: Write: set_i2c_register(file, addr, reg, value)
	Slide 26: Read: get_i2c_register(file, addr, reg, *value)
	Slide 27: Interfacing with a Three-Axis Magnetometer
	Slide 28: Pinouts
	Slide 29: Setting Up I2C on RPi
	Slide 30: Registers for HMC5883L
	Slide 31: Example Program: BES/I2C/Compass
	Slide 32: Compass Program
	Slide 33: configure_compass(file, address)
	Slide 34: Loop: Read Data
	Slide 35: Benefits of Single Transaction Reading Multiple Registers
	Slide 36: Loop: Use Data
	Slide 37: Alternative Implementations
	Slide 38: Comparing Alternative Implementations
	Slide 39: ??? (chumby) (built on ioctl I2C_RDWR)
	Slide 40: Example Program: BES/I2C/Compass0
	Slide 41: read and write?
	Slide 42: I2C Interfacing in C
	Slide 43: Limitations of using I2C Read and Write Operations
	Slide 44: Compass0: smbus functions
	Slide 45: SMBus Protocol
	Slide 46: Compass0 Program
	Slide 47: Configure Compass Sensor
	Slide 48: Read and Use Data

	Untitled Section
	Slide 49: Old Slides
	Slide 50: Interfacing with a Real-Time Clock
	Slide 51: DS3231 Register Map
	Slide 52: More I2C Devices
	Slide 53: Changing I2C Baud Rate
	Slide 54: Monitoring Communications with Logic Analyzer

	Old
	Slide 55: I2C Interfacing in C
	Slide 56: I2C Interfacing in C
	Slide 57: I2C Interfacing in C


