NC STATE UNIVERSITY

Key ARM [SA
Features for Performance

Key Features of ISA

[section references in Cortex A-Series Programmer’s Guide]

= Barrel shifter for operand 2 [5.2.1] = Conditional instruction execution [5.1.2]
"= Integrates power-of-two multiply/divide into = Not just for branches: ADDNE vs. BNE
single instruction = Eliminates conditional branches for short code
segments

= Advanced addressing modes [5.3.1]
= Integrate offsets and pointers updates into ~ ® Cache preload instructions [5.6.5]

single instruction = PLD (data) and PLI (instruction)
= Load/Store multiple [5.3.2] = Table branches [A.1.154, |55]
= ... with a single instruction (includes pointer = Use PC-relative forward branching with table

updates) of offsets. Rn = table address, Rm = index

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Barrel Shifter [5.2.1]

= Barrel shifter provided between register file and ALU
= Single cycle shift, rotate etc. regardless of shift amount File

= |If shift amount is in register, may take an extra cycle.

= Extra credit to evaluate on Cortex-A72? o
= IT CONSs
= Can also perform “free” shift on last operand of an P\
instruction T

. wS___-_b_iéEonstant rotated right (ROR) tll'ough even number of positions
- AEE) ro, rl, - 10
= r0 <= rl + (Oxc5 rotated right 10 bits) ; Shift Amount
- Oxc5 = 11000101 6‘2<<Z
= Rotate right 10 times (or rotate left by 22 bits) :
= 00110001 0100 0000 0000 0000 0000 0000 ALU

= Register shifted (LSL, ASR) or rotated (ROR RRX) by constant or " :

another reglster \\\}(> O
= SUB rO rl,r2, LSR #10 L \ - “Mjwb ,{(:

- r0<=rl - 2>>10) 9) éb H}?J.m laasenunananns :
— pocts = 20 -

NC STATE UNIVERSITY

Addressing Modes Leverage Barrel Shifter [5.3.1]

* Form address by adding offset to register = Examples
= Offset options = STR r7, [r0], #24

= Unsigned 12 bit constant (allows offset of 0 to * Post-indexed

o =M 0] <=r7
4095) emory[r0] <=r

= Register contents shifted/rotated by a five-bit * r0 <= r0+24

* Post-indexed
= r2 <= Memory[r0]
= r0 <=r0 + r4>>4
= STR r3, [rO, r5, LSL #3]
* Pre-indexed
= Memory[r0 + (r5<<3)] <=r3

= Pre-indexed, write back
= r6 <= Memory[r0 + (r1>>6)]
" r0<=r0 + (ri>>6)

NC STATE UNIVERSITY

= LDM/STM: move several registers to/from =STMIA r10,{rl, r3-r5, r8}
memory = Memory[rl0] <=rl

Memory[r10+4] <=r3 LL
Memory[r|10+8] <= r4 ? WS M
Memory[r10+12] <=

Memory[rl0+16] <=r8

= Doesn’t change rl0

Load/Store Multiple Instructions [5.3.2]

= Smaller code size, faster execution

= Order in instruction does not matter: smallest register

B

S—
number stored at smallest address

= Addressing modes

= |A:increment after, IB: increment before

- %:ie_g_r_e__me_n_t_;c;n DB: decrement before = LDMIB rl I!, {I‘9 r4- I’7} FG? %N
= I: Base register writeback * r4 <= Memory[rl1+4]

= r5 <= Memory[r| | +8]
" r6 <= Memory[rl|1+12]
= r7 <= Memory[rl | +16]
= r9 <= Memory[rl 1+20]
“rll <=rll +20

NC STATE UNIVERSITY
Conditional Instruction Execution [5.1.2]

Conditional Execution and Flags

= ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field. B

= This improves code density and performance by reducing the number of
forward branch instructions.

K znn(DofiE|

= By default, cjg’@m_ss_lngwmons do not affect the condition code flags but
the flags can be optionally set by using °S”. CMP does not need “S”.

<«—| decrement r1 and set flags

if Z flag clear then branch

The Architecture for the Digital YWorld® AR I

NC STATE UNIVERSITY

= Source code: Speed/Scalar/compiler/opts.c = Consider code layout and changes in
control flow (vs. fall-through)

Example: Removing Control Flow Hazards

int do_testi(void) {
int sum=0; for (int n=ARRAY_SIZE-1;

for (int n=ARRAY_SIZE-1; n!=0; n--) { =n'=0;
if (a[n] - 9) ;&WE Qn —(Z/({‘Ougz«
m += . K 3
Sum 2= binl; Q b sun = bIniTave PC s D Y\N‘lea/

else 3 /

%Hm -= b[n]; — ;‘ . . N . df/
%eturn sum; E Ir wu)m -= b[n]; >‘€Q AD@}\AJ S’f’ }
} N l””_ '

= Branches are slow in a pipelined processor == })
if mis-predicted = Possible control-flow changes*’\ﬁqﬁ % <
= So want to avoid changing control flow in = n != 0 Loop-test branch easy to predict
program A—C[— = a[n] != O test is data-dependent, hard to predict

= Exit if true case

T
\RDV\ eSS S
e BS / = Loop back edge ' t

NC STATE UNIVERSITY

int do_testli(void) {
int sum=0;
for (int n=ARRAY_SIZE-1; n!=0; n--) {

Example: Removing Control Flow Hazards

= Use driver program

= Loads array a[] so branches it (a[n] '= 0)
flip back and forth under our control sum += o(nl; € 3B 7
eLse
= 0,1,0,1,0,1,0, I, etc. LS el 2z 4 &
return sum;
}

= Build* and run

= * Start by compiling with —03 —fnmto

show base case without ISA support for predication

= Performance: 5.725 cycles per array pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $./opts
Assuming clock of 1.5 GHz
element. Is 10000 elements in array, 10000 tests, mask length is 1 bits
thiS OOd or b&d’ Mask Ox1 leads to a[n]==0 every 2 entries]
g : Cycles per array element: minimum 5.708, average 5.725
pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $ | -

= Check the object code!

Examining the Object Code

int do_testi(void) { Ldr
int sum=0; mov
for (int n=ARRAY_SIZE-1; n!'=0; n--) { ldr
if (a[n] !'= 0) b
sum += b[n];
else
sum -= b[n];
}
return sum;
}

= Look at all those branches!

= Only 7 instructions execute per
loop iteration

= Two are loads, two are conditional
branches

= So maybe this is not so bad? But
non-load instructions are taking
significant time...

r3, [pc, #312]
r2, #0
ri, [pc,

NC STATE UNIVERSITY

Reg. | Contents
r0 b[n]
rl pointer to b
r2 sum
r3 pointer to a
ip/r12 | a[n]

\—fp/rl | | stop value

NC STATE UNIVERSITY

Examining the Profile

int do_testl(void) { R Content 0 '40 1dr r3' [pcl #312]
i -0 eg. ontents
;2:5 ?;rr?t@r?:ARRAY_SIZE-l; nt=a; n--) { g mov r21 #0
ey 0 | bln] \ ldr ri, [pc, #308]
“ e = brml; rl__ | pointertob ngé« ® + b 100
1}'eturn sum; r2 sum \6\,‘] "-——;>
H
r3 pointer to a g ‘{/a-\ add re, r2, ré
ldr r3, [pc, #312] ip/r12 | a[n] 6 i beg 11¢c
mov r2, #0 /—j Q 3
. ;dr ri, [pc, #308] fp/rI'1 | stop value ZV\

r2, r2, ro
11

\

ip, #0
f4

n
£
"/
2

sub r2. r2 8 ——
t- bne 100
©.16 |1lc: ldr r3, [sp, #8]

r2, r2, ro

1TL"“N\
l1ic: dr r3, [sp, #8]

Good Enough? Do a Sensitivity Analysis

= Consider the branches

= Loop-test branch should be easily predicted
(always repeat except for iteration #10,000)

= Data test branch (a[n]!=0) is more difficult

ith alternating taken/not taken

= Might really be stressing the branch predictor
= Use driver code lets us try different patterns
based on mask length in bits
= mask length |: T N

* mask length 2 .- TTTN7TT NT7TN WQL

= mask length 3:TTTTTTTN (2

* Branch predictor should benefit from longer
runs (and longer masks)

Cycles per array element:
Cycles per array element:
Cycles per array element:
Cycles per array element:
Cycles per array element:

Cycles per array element:
Mask oxf leads to a[n]==
Cycles per array element:
Mask Ox7 leads to a[n]==
Cycles per array element:
IMask ©x3 leads to a[n]==
ICycles per array element:

f&_yask 0x1 leads to a[n]==

Cycles per array element:

@j a@;

Mask Ox1ff leads to a[n]==

minimum 2.800, average
© every 512 entries]
minimum 2.819, average

Mask Oxff leads to a[n]==0 every 256 entries]

minimum 2.858, average

Mask Ox7f leads to a[n]==0 every 128 entries]
Mask 0x3f leads to a[n]==0 every 64 entries]

Mask Ox1f leads to a[n]==0 every 32 entries]

minimum 2.942, average
minimum 3.100, average
minimum 2.919, average
every 16 entries]
minimum 2.778, average
every 8 entries]
minimum 3.214, average
every 4 entries]
minimum 4.208, average
every 2 entries]
minimum 5.708, average

pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $ |}

S~

—_—

20

2.

20

NC STATE UNIVERSITY

pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $./opts 10
Assuming clock of 1.5 GHz

10000 elements in array, 10000 tests, mask length is 10 bits
Mask Ox3ff leads to a[n]==0 every 1024 entries]

819

836

874

.955

2

.437

.794

.226

£ 228

.723

R Le&ﬂ—

NC STATE UNIVERSITY

= Good thing we checked — double the performance by not mis-predicting branches?

What to Do!?

* How? Use instruction set support for conditional execution (predication) of instructions
= |nstruction commits its results if its condition (in suffix) is true
= Also called if-conversion: turns if/else structures into basic blocks without control flow

= Converts control dependencies to data dependencies -- microarchitecture can resolve these quickly

NC STATE UNIVERSITY

How to Do It?

= GCC automatically e e
enables if-conversion Attempt to transform conditional jumps into branch-less equivalents. This includes use
with =0, -02, -03, -Os of EDHdl’[[DHHLIIHGVESI. min, max, set ﬂagg f!:ld abs instructions, ..f:.md some tlrul:ks dn::.able
by standard arithmetics. The use of conditional execution on chips where it is available
= Avoid using suspicious is controlled by -if-conversion2.

compiler optimization
flag —fno-if-
conversion2 in

Makefile (no- prefix Use conditional execution (where available) to transform conditional jumps into
branch-less equivalents.

Enabled at levels -0, -02, -03, -0s, but not with -og.

-fif-conversion?

disables optimization)
Enabled at levels -0, -02, -03, -0s. but not with -o0g.

No if-conversion

CFLAGS = -c -Wall -ggdb -03 -mfﬂnat-abizhard -mcpu=cortex-a72 -mfpu=crypto-neon-fp-armvd -fno-tree-vectorize -fno-if-conversion2
if-conversion

CFLAGS = -c -Wall -ggdb -03 -mfloat-abi=hard -mcpu=cortex-a72 -mfpu=crypto-neon-fp-armvd -fno-tree-vectorize

NC STATE UNIVERSITY

ISA Features for Removing Control Flow Hazards

int do_testi(void) { Reg. | Contents ldr r3, [pc, #300]
Int sum=6; 0 | b[n] mov r2, #0
for (int n=ARRAY_SIZE-1; n!=0; n--) { |F 1d
i 1= r ri, c, #296
7 (a[nl - B? ri pointer to b [p]
sum += b[n];
else r2 sum
-= h ;
1 o] r3 pointer to a cmp ip, #0
}"E‘t”” sum; ip | a[n] addne r2, r2, ro
r4 stop value subeq r2, r2, re
ldr r3, [pc, #300] . cmp r4, r3
ol ?0 - = New object code looks bne ed
r 1. Ipc.
== great! ldr r3, [sp, #8]
T | . add add ri, sp, #24
s ol addne mov ro, #3
o rg: r2, re = subeq add 2. ra; ra
S Eeq r2, r2, ro
W = Only one branch! str r2, [sp, #8]
1 bne eo ,

= But is it fast!?
ldr r3, [sp, #8]

NC STATE UNIVERSITY

Performance of Code with If-Conversion

/ / _ _ _
pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $./opts 10
. F&St’ And predlctable' \S{ (l) .{7/ Assuming clock of 1.5 GHz
74 10000 elements in array, 10000 tests, mask length is 10 bits
(7 Mask 0x3ff leads to a[n]==0 every 1024 entries]
/ Cycles per array element: minimum 3.303, average 3.318
Mask Ox1ff leads to a[n]==0 every 512 entries] _
@ Cycles per array element: minimum 3.303, average 3.315
Mask Oxff leads to a[n]==0 every 256 entries] —
p ip #0 Cycles per array element: minimum 3.303, average 3.315
_ g Mask 0x7f leads to a[n]==0 every 128 entries] —_—
r2, r2, ré@ — Cycles per array element: minimum 3.303, average 3.315
ubeq /r2, r2, roe ~ Mask 0x3f leads to a[n]==0 every 64 entries] —_—
1.52 cmp r4a, r3 Cycles per array element: minimum 3.300, average 3.314
t bne 00 Mask 0x1f leads to a[n]==0 every 32 entries]
§/ Cycles per array element: minimum 3.300, average 3.315
- Mask Oxf leads to a[n]==0 every 16 entries] —
perf report Cycles per array element: minimum 3.303, average 3.315
. . Mask 0x7 leads to a[n]==0 every 8 entries] —_—
. NOtlce hOW the Ioad reglster Cycles per array element: minimum 3.303, average 3.315
. : : H Mask 0x3 leads to a[n]==0 every 4 entries]
Instructions now domlnate PrOfIIe Cycles per array element: minimum 3.300, average 3.314
- Mask 0x1 leads to a[n]==0 every 2 entries] —_—
Our next Cha”enge? Cycles per array element: minimum 3.303, average 3.315
—_— I pi@raspberrypi:~/AES-2020/Speed/Scalar/compiler $ |j —

NC STATE UNIVERSITY

Performance Comparison

\ No :EQ"(”GNQ&M
= Limits to performance \

improvement ¢

= Longer runs are easier for .) —~
branch predictor, so less Q > Pﬁ\\ ~— * = conretdg
benefit from eliminating the X\ 9 [
if/else branches (shown in
graph) ‘

= |nstructions from both cases Q- — ' -
use processor and consume (} T 19 3] (3 127 Z';.‘;' 5”
resources (e.g. time).Waste P

mis-predicted branch

time if a case is longer L
than delay for } e \""f R\LV\ 9 g
* Why the bump at run length
=3?

NC STATE UNIVERSITY

Key Features of ISA — Data Processing

everse bits within register

= 32-bit integer SIMD instructions [5.2.4]

= Use 32-bit data path (including registers and
memory) as two half-words or four bytes

= Add/subtract with exchange,
multiply/accumulate,

= Integer multiplication instructions [5.2.2,

5.2.3] «

= 32 and 64 bit results, multi y,gacc: umulate, low
and high words of product

= Byte reversal [5.6.6] L L
= Swap bytes or half-words '[f

= Saturating arithmetic [5.5.1]
= Operations saturate instead of overflowsand

set sticky Q bit for testing E

= |nstructions to count leading zeroes

= Bit field operations [5.6.4]

= Insert, clear or extract bit fields (defined by

LSB position and width) I]///%{ T 77 -:

= Sum of absolute differences, multiply
add/subtract products,

Saturation, packing, extraction, select bytes

= | 28-bit Advanced SIMD instructions

= Adds new |28-bit-wide register file
= Integer and floating point operations

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2
El.1 | EIl 2 El.1 | EIl 2
32-BIT SIMD
El.1 | EIl 2

Dest. Reg.

SIMD: Single Instruction performed on Multiple Daw

Source
_—~— Registers

b estination
Register
= Data path in CPU is 32 bits wide * Now a single instruction can operate on
= Registers, arithmetic/logic unit, memory multiple elements
interface = Up to 2x or 4x speed-up
= Interpret and process those 32 bits as = Available on Cortex-M4, M7

multiple elements of a vector

= E.g. two | 6-bit values, four 8-bit values packed
into 32 bits

NC STATE UNIVERSITY

SIMD Data Types and Instructions Available

= 32-bit SIMD in ARMv7-M = Advanced SIMD defined in ARMv7-A,
= Operations included in ARMv8-A
= Add, subtract, multiply, exchange, absolute = Very-high-performance [28-bit data path
value, accumulate, select = Implemented in Neon unit in CPU, pipelined
= Data types and operation variants = Adds SIMD register file with sixteen 128-bit
= Size: 8 bit (byte) or 16 bit (halfword) “quad” registers
= Signed or unsigned (s, u) = Data types
= Saturating (q): result does not = 8, 16, 32 bits
overflow/underflow, but instead is clipped = Signed, unsigned, float (single precision)
= Halving (h): result is divided by two, = Operations
eliminating overflow possibility = Far too many to list here!
= Not all operations are available for all data
types

= Full information in Armcc User Guide, Ch. |12
(ARMv6 SIMD Instruction Intrinsics)

20

SIMD (Mini-Vector) Concepts

Src. Reg. 2

= Data path (registers,ALU, buses, etc.) is

21

Src. Reg. 1

Data

Data

32 bits wide

= Can we pack multiple data items into a single 32-bit

value!?

Data

Dest. Regqg.

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2
El.1 | El.2 El.1 | El.2
El.1 | EIl 2
Dest. Reg.

= SIMD: Single Instruction is applied to
Multiple Data values simultaneously

= One register has multiple lanes, each holding a data
value

= 32 |-bit lanes, four 8-bit lanes, two |6-bit lanes?

NC STATE UNIVERSITY

Example Application: Convert Text to Upper Case

Memory

Char Dec Oct Hex | Char Dec Oct Hex t h [S i S [t

|

. 8-bit load

@ 64 0100 0x40 | 96 0140 0x60 Registers o
A 65 0101 Ox41 | a 07 0141 0x61 e %]
B 66 0102 0x42 | b 08 0142 0x62 Oxdf t char *in, *out, t;
C 67 0103 0x43 | ¢ 99 0143 0x63
D 68 0104 Ox44 | d 100 0144 0x64
E 69 0105 0x45 | e 101 0145 Ox65 ,
F 70 0106 Ox46 | f 102 0146 0x66 32-bit AND .
G 71 0107 0x47 | g 103 0147 Ox67 t = *1n+,
H 72 0110 0x48 | h 104 0150 Ox68 _ .
| 73 0111 0x49 | i 105 0151 Ox69 t &= ~0x20;
J 74 0112 Oxda | | 106 0152 Ox6a % — +-
K 75 0113 Ox4b | k 107 0153 Ox6b T Out++ t;
L 76 0114 Oxdc | | 108 0154 Ox6e N
M 77 0115 Ox4d | m 109 0155 Ox6d 8-bit store
Kl T0o A I e Pard I - 44N NACE MiariS Memory

T

= Text represented with 8-bit ASCI| data = Converts one character at a time

= Clear bit 6 to convert from lower to upper = Processor has 32-bit data path, which can

case hold four 8-bit lanes. Can we do better?
= AND with ~0x20 (0xdf)

22

Example Application: Convert Text to Upper Case

= Have processor interpret data four
bytes at a time (as uint32_t)

= Data in memory is arranged sequentially, no
reorganization needed Oxdlf

= Convert inputs, temps, outputs to 32 bits

= Replicate constant ~0x20 across all lanes
(~0x20202020)

= Pointers will automatically be incremented
by 4 instead of |
= Restrictions
= Assumes number of data items is multiple of four

= Will also convert some symbols if inputs are not
tested to be characters: {—[, }—], |—=\,~—"

* |Is AND a special operation, or will this work for
every operation?

23

Oxdf Oxdf

NC STATE UNIVERSITY

Memory

t

h

S

i S i t

N\

| 1 1
32-bit load

32-bit store

uint32_t *1in,
*out, t;

t = *1n++;

t &= ~0x20202020;
“out++ = t;

Memory

N

H

NC STATE UNIVERSITY

Generalization to Other Operations?

= This approach works if lanes are independent (one lane Src. Reg. 1 Src. Reg. 2
cannot affect another) el 1 | el 2 el 1| EL2

* Independent lanes give inherently SIMD operations
= AND, NAND, OR, XOR, NOR, NOT

= Other instructions have dependence between lanes,
preventing SIMD operations

= Rotate, shift
= Add (carry), subtract (borrow), multiply, divide

El.1 | EI.2

* Need special versions of these operations

= ARMv7-M provides some 32-bit SIMD instructions based
on ADD, SUB, and MUL

Dest. Regqg.

24

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

ARMV7-M SIMD
AND DSP SUPPORT

Dest. Reg.

NC STATE UNIVERSITY

Data Sizes for 32-bit SIMD Instructions

Src. Reg. 1 Src. Reg. 2 Src. Reg. 1 Src. Reg. 2
El.1 | EIl 2 El.L1 | EIl.2
El.1 | EIl.2
Dest. Reg.

* Four eight-bit lanes = Two sixteen-bit lanes

26

32-bit SIMD Arithmetic Instructions

= Basic Instructions
= ADDI8|16]: Byte-wise or halfword-wise addition
= SUB[8|16]: Byte-wise or halfword-wise subtraction

= Result status bits in program status register

= Four bits GE[0-3], corresponding to each lane
= SADD, SSUB: sets lane bit to | if lane result = 0

= UADD, USUB: sets lane bit to | if lane result overflows or underflows El.1 | EIl. 2

" Prefixes
= Signed (S): signed math, updates GE bits
= Unsigned (U): unsigned math, updates CPSR GE bits
= Saturating (Q): Limit value to closest valid value
= Halving (H): Divide result by two

27

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Prefixes for Parallel Instructions

S
Q
SH
U
UQ
UH

Signed arithmetic modulo 28 or 21, sets CPSR GE bits
Signed saturating arithmetic

Signed arithmetic, halving results

Unsigned arithmetic modulo 28 or 2'°, sets CPSR GE bits

Unsigned saturating arithmetic

Unsigned arithmetic, halving results

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

32-bit SIMD Arithmetic Instructions

= More Instructions
= ASX: Halfword-wise exchange, add, subtract
= SAX: Halfword-wise exchange, subtract, add

= Prefixes \
= Saturating e e

El.1 | EL2 El.1 | E2

= Halving

Prefixes for Parallel Instructions
S Signed arithmetic modulo 28 or 216, sets CPSR GE bits @

Q Signed saturating arithmetic
SH | Signed arithmetic, halving results Dest. Reg
U Unsigned arithmetic modulo 28 or 21°, sets CPSR GE bits

El.1 | EI.2

UQ | Unsigned saturating arithmetic

UH | Unsigned arithmetic, halving results

28

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2 Src. Reg. 3

32-bit SIMD Arithmetic Instructions

= More Instructions

= USADS8: Unsigned sum of absolute differences

= USADABS8: Unsigned sum of absolute differences
and accumulate

Dest. Req.

29

NC STATE UNIVERSITY

32-bit SIMD Multiplication Instructions

= SM[UJ|L][A[S{LID{X}: Dual halfword signed ore. Reg. 1 src. Reg- 2~ Src. Reg. 3
multiply, add/subtract products El.1 | EL2 El.1 | EL2

= [U|L] Options - '
= U: SMU — Base operation: multiply halfwords, > ‘

add/subtract products 6

= L: SML — Accumulate sum (or difference) of products
in 32-bit register

= [A|S] Options @
= A:Add products
= S:Subtract products

= {L} Option
= L: Accumulate to 64-bit register
= {X} Option

= X: Exchange halfwords of one operand before multiplications

Dest. Reg.

30

NC STATE UNIVERSITY

32-bit SIMD Miscellaneous Instructions

= Saturation = Packing
= SSAT | 6: Saturate halfwords to range -2™! to = PKHBT: pack halfword, bottom and left-shifted
2"™1-1, with n as argument top (LSL)
= USAT | 6: Saturate halfwords to range 0 to 2"-1, = PKHTB: pack halfword, top and right-shifted
with n as argument bottom (ASR)

= Extraction with extension (and optional
addition)
= UXT{A}BI16: extract low byte of each half-word,

zero extend to |6 bits, optional add to first
operand

= SXT{A}B16: extract low byte of each half-word,
sigh extend to |6 bits, optional add to first
operand

31

NC STATE UNIVERSITY

32-bit SIMD Miscellaneous Instructions: Selection

APSR.GE Src. Reg. 1 Src. Reg. 2

El. = Example |:
4 = SADD16 RO, RI, R2: Signed halfword add

Ol1 2|3

= SEL R3, R4, R5: Select
= R3[15:0] = R4[15:0] if low-word result (of SADD6)

is 2 0, else R5[15:0]
= R3[31:16] = R4[31:16] if high-word result (of
SADD6) is 2 0, else R5[31:16]
= Example 2:
= UADDS8 RO, R1, R2: Signed byte add
= SEL R3, R4, R5
Dest. Reg. = R3[7:0] = R4[7:0] if UADDS low byte result
= SEL: Select bytes based on GE (greater overflowed, else R5[7:0]
than or equal) flags = Similar for other bytes

= APSR GE flags updated by
[U|S][ADD|SUB][8|16]

32

References

= MDK Armcc User Guide: DUIO375
= Chapter 12: ARMvé6 SIMD Instruction Intrinsics
= ARM C Language Extensions (ACLE):
IHIO053 (different syntax, not used for
armcc v5)
= 9.3: | 6-bit multiplications
= 9.4: Saturating intrinsics
= 9.5:32-bit SIMD intrinsics
= | |:Instruction generation

33

NC STATE UNIVERSITY

NC STATE UNIVERSITY

FLOATING-POINT MATH

Support for Floating-Point Math

NC STATE UNIVERSITY

D0-D15 D0-D31
S0-S31 VFPv2 or VFPv3-D32 or Q0-Q15
VFP only VFPv3-D16 Advanced SIMD Advanced SIMD only
= 32 — DO — — DO —
. . . ° 5> A D €4 Qo —é‘?
= Extension register file added 2 |32 o1 — o gy
. . 8 132 0 A
= Support for floating point data 54 1., | i
= S0-S31: Single-precision (32 bits) zz —————————————————————————— — a1 —
= D0-D15/D31: Double-precision (64 bits) s N |
= Also used for Advanced SIMD oA VWA Vi A VA 5\
= Other registers added T
— D14 — - D14 —
= FPSCR: status and control register. Sl R R | o7
S30
Condition code flags N, Z, C,V. — — D15 — — D15
= Others too: ID, exception, features - Compare I
° ° ° ° \/ . . . L I— Q8 5 |
* Floating-point instructions (V...) = Multiply, divide, square root | o
= Move immediate value into register = Multiply and negate, multiply — ———
= Copy register accumulate and negate, multiply NI MU
= Load/store one or multiple 32-bit subtract and negate I |
registers from/to memory = Convert to/from integer, — ais—|
. o« . — D31 —
= Add, subtract, negate, absolute value half/single/double precision | ~ |

35

Partition Between Integer and VFP/Adv. SIMD

= Register files and
instructions are
partitioned

= Can’t access any
register from any
instruction

= Need special
instructions to cross
the boundary

= Need to use integer
registers as pointers
to access memory

36

Memory

daa

<

NC STATE UNIVERSITY

QNS T

e il I
QTR; S;}/\:J © % Register File

oL 1 (r ’ /d/)

*~—-< ik SP, LR, PC) (s/d/q

MRS T JHSR ﬁ‘@m

Instruction Cg,} contifron | Condition
Fetch & 2| Code Flags \ Code Flags

Control (APSR) {(FPSCR)

Flow /][/}\

Load/Store

NC STATE UNIVERSITY

Vector Load Multiple

VLDM on page A8-626

Load 1-16 consecutive 64-bit registers (Adv. SIMD and VEP)
Load 1-16 consecutive 32-bit registers (VFP only)

Vector Load Register

VLDR on page A8-628

Load one 64-bit register (Adv. SIMD and VFP)
Load one 32-bit register (VFP only)

Vector Store Multiple

VSTM on page AS-784

Store 1-16 consecutive 64-bit registers (Adv. SIMD and VEP)
Store 1-16 consecutive 32-bit registers (VFP only)

Vector Store Register

VSTR on page A8-786

Store one 64-bit register (Adv. SIMD and VFP)
Store one 32-bit register (VFP only)

37

Register Transfer Instructions

NC STATE UNIVERSITY

Copy byte, halfword, or word from ARM core register to
extension register

VMOV (ARM core register to scalar) on
page A8-644

Copy byte, halfword, or word from extension register to ARM
core register

VMOV (scalar to ARM core register) on
page A8-646

Copy from single-precision VFP register to ARM core register,
or from ARM core register to single-precision VFP register

VMOV (between ARM core register and
single-precision register) on page A8-648

Copy two words from ARM core registers to consecutive
single-precision VFP registers. or from consecutive
single-precision VFP registers to ARM core registers

VMOV (between two ARM core registers and
two single-precision registers) on page A8-050

Copy two words from ARM core registers to doubleword
extension register, or from doubleword extension register to
ARM core registers

VMOV (between two ARM core registers and a
doubleword extension register) on page A8-652

Copy from Advanced SIMD and VFP extension System Register
to ARM core register

VMRS on page AB-658
VMRS on page B6-27 (system level view)

Copy from ARM core register to Advanced SIMD and VFP
extension System Register

VMSR on page AB-660
VMSR on page B6-29 (system level view)

NC STATE UNIVERSITY

Data Processing |

Absolute value VABS on page A8-532

Add VADD (floating-point) on page A8-538

Compare (optionally with exceptions enabled) VCMP, VCMPE on page A8-572

Convert between floating-point and integer VCVT, VCVTR (between floating-point and integer, VFP) on
page AB-578

Convert between floating-point and fixed-point VCVT (between floating-point and fixed-point, VFP) on
page AB-582

Convert between double-precision and VCVT (between double-precision and single-precision) on

single-precision page AB-584

Convert between half-precision and single-precision VCVTB, VCVTT (between half-precision and
single-precision, VFP) on page AB-388

39

Data Processing 2

40

NC STATE UNIVERSITY

Divide

VDIV on page A8-390

Multiply Accumulate, Multiply Subtract

VMILA, VMLS (floating-point) on page A8-636

Move immediate value to extension register

VMOV (immediate) on page A8-640

Copy from one extension register to another

VMOV (register) on page A8-642

Multiply

VMUL (floating-point) on page A8-664

Negate (invert the sign bit)

VNEG on page AB-672

Multiply Accumulate and Negate, Multiply Subtract
and Negate, Multiply and Negate

VNMLA, VNMLS, VNMUL on page A8-674

Square Root

VSORT on page A8-762

Subtract

VSUB (floating-point) on page A8-790

NC STATE UNIVERSITY

Nice instructions.
But how long do they take to execute!

Cortex-A72 Instruction Processing Pipeline

|0 pipeline stages

&

>

NC STATE UNIVERSITY

<

Fetch

—>

Decode,

Rename,

Dispatch

42

IN ORDER

Issue

—» Eranch

| to 6 pipeline stages

—» Integer 0

—» Integer 1

—» Integer Multi-Cycle

>

—> FP/ASIMD 0
> FP/ASIMD 1
—DI Load

—» Store

OUT OF ORDER

New FP/ASIMD
units are only 6
pipe stages long
(vs. 10 on A57)

nstruction Latencies

Result Latency
Integer (min. to max. cycles,
Instruction Type assuming L1 cache hits)

Branch I

Arithmetic, Logic |-2

Move, Shift -2

Divide 4-20. Blocking
Multiply 3-6

43

Saturating and Parallel 2-4 | & SHIUD
Arithmetic

Misc. Data Processing |1-4
Load 4-5
Store |-3

3 to |12 pipeline stages

Other
Instruction Type

FP Data Processing
FP Divide

FP Square Root
FP Load

FP Store
ASIMD Integer
ASIMD FP
ASIMD Misc.
ASIMD Load
ASIMD Store
Crypto

CRC

NC STATE UNIVERSITY

Result Latency
(min. to max. cycles, assuming LI
cache hits)

3-4
°-11 (SP), 6-18 (DP). Blocking
6-17 (SP), 6-32 (DP). Blocking
5-6

-4

3-5

3-7

3-8

5-9

|-4

3-6

2

	Default Section
	Slide 1: Key ARM ISA Features for Performance
	Slide 2: Key Features of ISA
	Slide 3: Barrel Shifter [5.2.1]
	Slide 4: Addressing Modes Leverage Barrel Shifter [5.3.1]
	Slide 5: Load/Store Multiple Instructions [5.3.2]
	Slide 6: Conditional Instruction Execution [5.1.2]
	Slide 7: Example: Removing Control Flow Hazards
	Slide 8: Example: Removing Control Flow Hazards
	Slide 9: Examining the Object Code
	Slide 10: Examining the Profile
	Slide 11: Good Enough? Do a Sensitivity Analysis
	Slide 12: What to Do?
	Slide 13: How to Do It?
	Slide 14: ISA Features for Removing Control Flow Hazards
	Slide 15: Performance of Code with If-Conversion
	Slide 16: Performance Comparison

	More
	Slide 17: Key Features of ISA – Data Processing

	32-bit SIMD
	Slide 18: 32-bit SIMD
	Slide 19: SIMD: Single Instruction performed on Multiple Data items
	Slide 20: SIMD Data Types and Instructions Available
	Slide 21: SIMD (Mini-Vector) Concepts
	Slide 22: Example Application: Convert Text to Upper Case
	Slide 23: Example Application: Convert Text to Upper Case
	Slide 24: Generalization to Other Operations?
	Slide 25: ARMv7-M SIMD and DSP SUPPORT
	Slide 26: Data Sizes for 32-bit SIMD Instructions
	Slide 27: 32-bit SIMD Arithmetic Instructions
	Slide 28: 32-bit SIMD Arithmetic Instructions
	Slide 29: 32-bit SIMD Arithmetic Instructions
	Slide 30: 32-bit SIMD Multiplication Instructions
	Slide 31: 32-bit SIMD Miscellaneous Instructions
	Slide 32: 32-bit SIMD Miscellaneous Instructions: Selection
	Slide 33: References

	Floating Point Math
	Slide 34: Floating-Point Math
	Slide 35: Support for Floating-Point Math
	Slide 36: Partition Between Integer and VFP/Adv. SIMD
	Slide 37: Load/Store
	Slide 38: Register Transfer Instructions
	Slide 39: Data Processing 1
	Slide 40: Data Processing 2
	Slide 41: Nice instructions. But how long do they take to execute?
	Slide 42: Cortex-A72 Instruction Processing Pipeline
	Slide 43: Instruction Latencies

