
1

Key ARM ISA

Features for Performance

2

▪ Barrel shifter for operand 2 [5.2.1]

▪ Integrates power-of-two multiply/divide into

single instruction

▪ Advanced addressing modes [5.3.1]

▪ Integrate offsets and pointers updates into

single instruction

▪ Load/Store multiple [5.3.2]

▪ … with a single instruction (includes pointer

updates)

▪ Conditional instruction execution [5.1.2]

▪ Not just for branches: ADDNE vs. BNE

▪ Eliminates conditional branches for short code

segments

▪ Cache preload instructions [5.6.5]

▪ PLD (data) and PLI (instruction)

▪ Table branches [A.1.154, 155]

▪ Use PC-relative forward branching with table

of offsets. Rn = table address, Rm = index

Key Features of ISA
[section references in Cortex A-Series Programmer’s Guide]

3

Barrel Shifter [5.2.1]

▪ Barrel shifter provided between register file and ALU

▪ Single cycle shift, rotate etc. regardless of shift amount

▪ If shift amount is in register, may take an extra cycle.

▪ Extra credit to evaluate on Cortex-A72?

▪ Can also perform “free” shift on last operand of an

instruction

▪ 8-bit constant rotated right (ROR) through even number of positions

▪ ADD r0, r1, #0xc5, 10

▪ r0 <= r1 + (0xc5 rotated right 10 bits)

▪ 0xc5 = 11000101

▪ Rotate right 10 times (or rotate left by 22 bits)

▪ 0011 0001 0100 0000 0000 0000 0000 0000

▪ Register shifted (LSL, ASR) or rotated (ROR, RRX) by constant or

another register

▪ SUB r0, r1, r2, LSR #10

▪ r0 <= r1 – (r2>>10)

Register
File

ALU

Shifter

8-bit const.

Shift Amount

5-bit const.

4

Addressing Modes Leverage Barrel Shifter [5.3.1]

▪ Form address by adding offset to register

▪ Offset options

▪ Unsigned 12 bit constant (allows offset of 0 to

4095)

▪ Register contents shifted/rotated by a five-bit

constant

▪ Examples

▪ STR r7, [r0], #24

▪ Post-indexed

▪ Memory[r0] <= r7

▪ r0 <= r0+24

▪ LDR r2, [r0], r4, ASR #4

▪ Post-indexed

▪ r2 <= Memory[r0]

▪ r0 <= r0 + r4>>4

▪ STR r3, [r0, r5, LSL #3]

▪ Pre-indexed

▪ Memory[r0 + (r5<<3)] <= r3

▪ LDR r6, [r0, r1, ROR#6]!

▪ Pre-indexed, write back

▪ r6 <= Memory[r0 + (r1>>6)]

▪ r0 <= r0 + (r1>>6)

5

Load/Store Multiple Instructions [5.3.2]

▪ LDM/STM: move several registers to/from

memory
▪ Smaller code size, faster execution

▪ Order in instruction does not matter: smallest register

number stored at smallest address

▪ Addressing modes
▪ IA: increment after, IB: increment before

▪ DA: decrement after, DB: decrement before

▪ !: Base register writeback

▪ STMIA r10, {r1, r3-r5, r8}
▪ Memory[r10] <= r1

▪ Memory[r10+4] <= r3

▪ Memory[r10+8] <= r4

▪ Memory[r10+12] <= r5

▪ Memory[r10+16] <= r8

▪ Doesn’t change r10

▪ LDMIB r11!, {r9, r4-r7}
▪ r4 <= Memory[r11+4]

▪ r5 <= Memory[r11+8]

▪ r6 <= Memory[r11+12]

▪ r7 <= Memory[r11+16]

▪ r9 <= Memory[r11+20]

▪ r11 <= r11 + 20

6

Conditional Instruction Execution [5.1.2]

7

Example: Removing Control Flow Hazards

▪ Source code: Speed/Scalar/compiler/opts.c

▪ Branches are slow in a pipelined processor

if mis-predicted

▪ So want to avoid changing control flow in

program

▪ Consider code layout and changes in

control flow (vs. fall-through)

▪ Possible control-flow changes

▪ n != 0 Loop-test branch easy to predict

▪ a[n] != 0 test is data-dependent, hard to predict

▪ Exit if true case

▪ Loop back edge

8

Example: Removing Control Flow Hazards

▪ Use driver program

▪ Loads array a[] so branches

flip back and forth under our control

▪ 0, 1, 0, 1, 0, 1, 0, 1, etc.

▪ Build* and run

▪ * Start by compiling with –O3 –fno-if-conversion2 to

show base case without ISA support for predication

▪ Performance: 5.725 cycles per array

element. Is

this good or bad?

▪ Check the object code!

9

Examining the Object Code

Reg. Contents

r0 b[n]

r1 pointer to b

r2 sum

r3 pointer to a

ip/r12 a[n]

fp/r11 stop value

▪ Look at all those branches!

▪ Only 7 instructions execute per

loop iteration

▪ Two are loads, two are conditional

branches

▪ So maybe this is not so bad? But

non-load instructions are taking

significant time…

10

Examining the Profile

Reg. Contents

r0 b[n]

r1 pointer to b

r2 sum

r3 pointer to a

ip/r12 a[n]

fp/r11 stop value

11

Good Enough? Do a Sensitivity Analysis

▪ Consider the branches

▪ Loop-test branch should be easily predicted

(always repeat except for iteration #10,000)

▪ Data test branch (a[n]!=0) is more difficult

▪ Testing the code with alternating taken/not taken

branches: T N T N T N

▪ Might really be stressing the branch predictor

▪ Use driver code lets us try different patterns

based on mask length in bits

▪ mask length 1: T N

▪ mask length 2 : T T T N

▪ mask length 3 : T T T T T T T N

▪ Branch predictor should benefit from longer

runs (and longer masks)

12

What to Do?

▪ Good thing we checked – double the performance by not mis-predicting branches?

▪ How? Use instruction set support for conditional execution (predication) of instructions

▪ Instruction commits its results if its condition (in suffix) is true

▪ Also called if-conversion: turns if/else structures into basic blocks without control flow

▪ Converts control dependencies to data dependencies -- microarchitecture can resolve these quickly

13

How to Do It?

▪ GCC automatically

enables if-conversion

with –O, -O2, -O3, -Os

▪ Avoid using suspicious

compiler optimization

flag –fno-if-

conversion2 in

Makefile (no- prefix

disables optimization)

14

ISA Features for Removing Control Flow Hazards

▪ New object code looks

great!

▪ addne

▪ subeq

▪ Only one branch!

▪ But is it fast?

Reg. Contents

r0 b[n]

r1 pointer to b

r2 sum

r3 pointer to a

ip a[n]

r4 stop value

15

Performance of Code with If-Conversion

▪ Fast! And predictable!

▪ perf report

▪ Notice how the load register

instructions now dominate profile

▪ Our next challenge?

16

Performance Comparison

▪ Limits to performance

improvement

▪ Longer runs are easier for

branch predictor, so less

benefit from eliminating the

if/else branches (shown in

graph)

▪ Instructions from both cases

use processor and consume

resources (e.g. time). Waste

time if a case is longer

than delay for

mis-predicted branch

▪ Why the bump at run length

= 31?

17

▪ Integer multiplication instructions [5.2.2,

5.2.3]

▪ 32 and 64 bit results, multiply/accumulate, low

and high words of product

▪ Byte reversal [5.6.6]

▪ Swap bytes or half-words

▪ Saturating arithmetic [5.5.1]

▪ Operations saturate instead of overflow, and

set sticky Q bit for testing

▪ Instructions to count leading zeroes

▪ Bit field operations [5.6.4]

▪ Insert, clear or extract bit fields (defined by

LSB position and width)

▪ Reverse bits within register

▪ 32-bit integer SIMD instructions [5.2.4]

▪ Use 32-bit data path (including registers and

memory) as two half-words or four bytes

▪ Add/subtract with exchange,

multiply/accumulate,

▪ Sum of absolute differences, multiply

add/subtract products,

▪ Saturation, packing, extraction, select bytes

▪ 128-bit Advanced SIMD instructions

▪ Adds new 128-bit-wide register file

▪ Integer and floating point operations

Key Features of ISA – Data Processing

18

32-BIT SIMD
El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

19

▪ Data path in CPU is 32 bits wide

▪ Registers, arithmetic/logic unit, memory

interface

▪ Interpret and process those 32 bits as

multiple elements of a vector

▪ E.g. two 16-bit values, four 8-bit values packed

into 32 bits

▪ Now a single instruction can operate on

multiple elements

▪ Up to 2x or 4x speed-up

▪ Available on Cortex-M4, M7

SIMD: Single Instruction performed on Multiple Data items

20

▪ 32-bit SIMD in ARMv7-M

▪ Operations

▪ Add, subtract, multiply, exchange, absolute

value, accumulate, select

▪ Data types and operation variants

▪ Size: 8 bit (byte) or 16 bit (halfword)

▪ Signed or unsigned (s, u)

▪ Saturating (q): result does not

overflow/underflow, but instead is clipped

▪ Halving (h): result is divided by two,

eliminating overflow possibility

▪ Not all operations are available for all data

types

▪ Full information in Armcc User Guide, Ch. 12

(ARMv6 SIMD Instruction Intrinsics)

▪ Advanced SIMD defined in ARMv7-A,

included in ARMv8-A

▪ Very-high-performance 128-bit data path

▪ Implemented in Neon unit in CPU, pipelined

▪ Adds SIMD register file with sixteen 128-bit

“quad” registers

▪ Data types

▪ 8, 16, 32 bits

▪ Signed, unsigned, float (single precision)

▪ Operations

▪ Far too many to list here!

SIMD Data Types and Instructions Available

21

▪ Data path (registers, ALU, buses, etc.) is

32 bits wide
▪ Can we pack multiple data items into a single 32-bit

value?

▪ SIMD: Single Instruction is applied to

Multiple Data values simultaneously
▪ One register has multiple lanes, each holding a data

value

▪ 32 1-bit lanes, four 8-bit lanes, two 16-bit lanes?

SIMD (Mini-Vector) Concepts

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

Data

+

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

Data

Data

22

▪ Text represented with 8-bit ASCII data

▪ Clear bit 6 to convert from lower to upper

case
▪ AND with ~0x20 (0xdf)

▪ Converts one character at a time

▪ Processor has 32-bit data path, which can

hold four 8-bit lanes. Can we do better?

Example Application: Convert Text to Upper Case

t h i s i s i t

t0xdf

&

T

T

Memory

Memory

Registers
8-bit load

8-bit store

32-bit AND

char *in, *out, t;
…

t = *in+;
t &= ~0x20;
*out++ = t;

23

▪ Have processor interpret data four

bytes at a time (as uint32_t)

▪ Data in memory is arranged sequentially, no

reorganization needed

▪ Convert inputs, temps, outputs to 32 bits

▪ Replicate constant ~0x20 across all lanes

(~0x20202020)

▪ Pointers will automatically be incremented

by 4 instead of 1

▪ Restrictions

▪ Assumes number of data items is multiple of four

▪ Will also convert some symbols if inputs are not

tested to be characters: {→[, }→], |→\,~→^

▪ Is AND a special operation, or will this work for

every operation?

Example Application: Convert Text to Upper Case

& &

T H I S

0xdf 0xdf 0xdf 0xdf t h i s

&&

t h i s i s i t

Memory

T H I S

Memory

32-bit load

32-bit store

32-bit AND

uint32_t *in,
*out, t;
…
t = *in++;
t &= ~0x20202020;
*out++ = t;

24

▪ This approach works if lanes are independent (one lane

cannot affect another)

▪ Independent lanes give inherently SIMD operations

▪ AND, NAND, OR, XOR, NOR, NOT

▪ Other instructions have dependence between lanes,

preventing SIMD operations

▪ Rotate, shift

▪ Add (carry), subtract (borrow), multiply, divide

▪ Need special versions of these operations

▪ ARMv7-M provides some 32-bit SIMD instructions based

on ADD, SUB, and MUL

Generalization to Other Operations?

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

25

ARMV7-M SIMD

AND DSP SUPPORT + +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

26

▪ Four eight-bit lanes ▪ Two sixteen-bit lanes

Data Sizes for 32-bit SIMD Instructions

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

+ +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

27

▪ Basic Instructions

▪ ADD[8|16]: Byte-wise or halfword-wise addition

▪ SUB[8|16]: Byte-wise or halfword-wise subtraction

▪ Result status bits in program status register

▪ Four bits GE[0-3], corresponding to each lane

▪ SADD, SSUB: sets lane bit to 1 if lane result ≥ 0

▪ UADD, USUB: sets lane bit to 1 if lane result overflows or underflows

▪ Prefixes

▪ Signed (S): signed math, updates GE bits

▪ Unsigned (U): unsigned math, updates CPSR GE bits

▪ Saturating (Q): Limit value to closest valid value

▪ Halving (H): Divide result by two

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+

Q/H

+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

28

▪ More Instructions

▪ ASX: Halfword-wise exchange, add, subtract

▪ SAX: Halfword-wise exchange, subtract, add

▪ Prefixes

▪ Saturating

▪ Halving

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+/-

Q/H

-/+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

29

▪ More Instructions

▪ USAD8: Unsigned sum of absolute differences

▪ USADA8: Unsigned sum of absolute differences

and accumulate

32-bit SIMD Arithmetic Instructions

- -

Src. Reg. 1 Src. Reg. 2

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

--

abs absabsabs

+

Dest. Reg.

Src. Reg. 3

30

▪ SM[U|L][A|S]{L}D{X}: Dual halfword signed

 multiply, add/subtract products

▪ [U|L] Options

▪ U: SMU – Base operation: multiply halfwords,

add/subtract products

▪ L: SML – Accumulate sum (or difference) of products

in 32-bit register

▪ [A|S] Options

▪ A: Add products

▪ S: Subtract products

▪ {L} Option

▪ L: Accumulate to 64-bit register

▪ {X} Option

▪ X: Exchange halfwords of one operand before multiplications

32-bit SIMD Multiplication Instructions

El. 1 El. 2 El. 1 El. 2

* *

Src. Reg. 1 Src. Reg. 2

+/-

Dest. Reg.

Src. Reg. 3

31

▪ Saturation

▪ SSAT16: Saturate halfwords to range -2n-1 to

2n-1-1, with n as argument

▪ USAT16: Saturate halfwords to range 0 to 2n-1,

with n as argument

▪ Extraction with extension (and optional

addition)

▪ UXT{A}B16: extract low byte of each half-word,

zero extend to 16 bits, optional add to first

operand

▪ SXT{A}B16: extract low byte of each half-word,

sign extend to 16 bits, optional add to first

operand

▪ Packing

▪ PKHBT: pack halfword, bottom and left-shifted

top (LSL)

▪ PKHTB: pack halfword, top and right-shifted

bottom (ASR)

32-bit SIMD Miscellaneous Instructions

32

▪ SEL: Select bytes based on GE (greater

than or equal) flags

▪ APSR GE flags updated by

[U|S][ADD|SUB][8|16]

▪ Example 1:

▪ SADD16 R0, R1, R2: Signed halfword add

▪ SEL R3, R4, R5: Select

▪ R3[15:0] = R4[15:0] if low-word result (of SADD16)

is ≥ 0, else R5[15:0]

▪ R3[31:16] = R4[31:16] if high-word result (of

SADD16) is ≥ 0, else R5[31:16]

▪ Example 2:

▪ UADD8 R0, R1, R2: Signed byte add

▪ SEL R3, R4, R5

▪ R3[7:0] = R4[7:0] if UADD8 low byte result

overflowed, else R5[7:0]

▪ Similar for other bytes

32-bit SIMD Miscellaneous Instructions: Selection

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

APSR.GE

0 1 2 3

33

References

▪ MDK Armcc User Guide: DUI0375

▪ Chapter 12: ARMv6 SIMD Instruction Intrinsics

▪ ARM C Language Extensions (ACLE):

IHI0053 (different syntax, not used for

armcc v5)

▪ 9.3: 16-bit multiplications

▪ 9.4: Saturating intrinsics

▪ 9.5: 32-bit SIMD intrinsics

▪ 11: Instruction generation

34

FLOATING-POINT MATH

35

▪ Extension register file added

▪ Support for floating point data

▪ S0-S31: Single-precision (32 bits)

▪ D0-D15/D31: Double-precision (64 bits)

▪ Also used for Advanced SIMD

▪ Other registers added
▪ FPSCR: status and control register.

Condition code flags N, Z, C, V.

▪ Others too: ID, exception, features

▪ Floating-point instructions (V…)

▪ Move immediate value into register

▪ Copy register

▪ Load/store one or multiple 32-bit

registers from/to memory

▪ Add, subtract, negate, absolute value

▪ Compare

▪ Multiply, divide, square root

▪ Multiply and negate, multiply

accumulate and negate, multiply

subtract and negate

▪ Convert to/from integer,

half/single/double precision

Support for Floating-Point Math

36

▪ Register files and

instructions are

partitioned

▪ Can’t access any

register from any

instruction

▪ Need special

instructions to cross

the boundary

▪ Need to use integer

registers as pointers

to access memory

Partition Between Integer and VFP/Adv. SIMD

(Integer)
Register File

(r*,
SP, LR, PC)

Extension
Register File

(s/d/q)

Condition
Code Flags

(APSR)

Condition
Code Flags

(FPSCR)

Instruction
Fetch &
Control

Flow

Memory

37

Load/Store

38

Register Transfer Instructions

39

Data Processing 1

40

Data Processing 2

41

Nice instructions.

But how long do they take to execute?

42

Cortex-A72 Instruction Processing Pipeline

10 pipeline stages 1 to 6 pipeline stages

New FP/ASIMD

units are only 6

pipe stages long

(vs. 10 on A57)

43

Integer

Instruction Type

Result Latency
(min. to max. cycles,

assuming L1 cache hits)

Branch 1

Arithmetic, Logic 1-2

Move, Shift 1-2

Divide 4-20. Blocking

Multiply 3-6

Saturating and Parallel

Arithmetic

2-4

Misc. Data Processing 1-4

Load 4-5

Store 1-3

Instruction Latencies

Other

Instruction Type

Result Latency
(min. to max. cycles, assuming L1

cache hits)

FP Data Processing 3-4

FP Divide 6-11 (SP), 6-18 (DP). Blocking

FP Square Root 6-17 (SP), 6-32 (DP). Blocking

FP Load 5-6

FP Store 1-4

ASIMD Integer 3-5

ASIMD FP 3-7

ASIMD Misc. 3-8

ASIMD Load 5-9

ASIMD Store 1-4

Crypto 3-6

CRC 2

3 to 12 pipeline stages

	Default Section
	Slide 1: Key ARM ISA Features for Performance
	Slide 2: Key Features of ISA
	Slide 3: Barrel Shifter [5.2.1]
	Slide 4: Addressing Modes Leverage Barrel Shifter [5.3.1]
	Slide 5: Load/Store Multiple Instructions [5.3.2]
	Slide 6: Conditional Instruction Execution [5.1.2]
	Slide 7: Example: Removing Control Flow Hazards
	Slide 8: Example: Removing Control Flow Hazards
	Slide 9: Examining the Object Code
	Slide 10: Examining the Profile
	Slide 11: Good Enough? Do a Sensitivity Analysis
	Slide 12: What to Do?
	Slide 13: How to Do It?
	Slide 14: ISA Features for Removing Control Flow Hazards
	Slide 15: Performance of Code with If-Conversion
	Slide 16: Performance Comparison

	More
	Slide 17: Key Features of ISA – Data Processing

	32-bit SIMD
	Slide 18: 32-bit SIMD
	Slide 19: SIMD: Single Instruction performed on Multiple Data items
	Slide 20: SIMD Data Types and Instructions Available
	Slide 21: SIMD (Mini-Vector) Concepts
	Slide 22: Example Application: Convert Text to Upper Case
	Slide 23: Example Application: Convert Text to Upper Case
	Slide 24: Generalization to Other Operations?
	Slide 25: ARMv7-M SIMD and DSP SUPPORT
	Slide 26: Data Sizes for 32-bit SIMD Instructions
	Slide 27: 32-bit SIMD Arithmetic Instructions
	Slide 28: 32-bit SIMD Arithmetic Instructions
	Slide 29: 32-bit SIMD Arithmetic Instructions
	Slide 30: 32-bit SIMD Multiplication Instructions
	Slide 31: 32-bit SIMD Miscellaneous Instructions
	Slide 32: 32-bit SIMD Miscellaneous Instructions: Selection
	Slide 33: References

	Floating Point Math
	Slide 34: Floating-Point Math
	Slide 35: Support for Floating-Point Math
	Slide 36: Partition Between Integer and VFP/Adv. SIMD
	Slide 37: Load/Store
	Slide 38: Register Transfer Instructions
	Slide 39: Data Processing 1
	Slide 40: Data Processing 2
	Slide 41: Nice instructions. But how long do they take to execute?
	Slide 42: Cortex-A72 Instruction Processing Pipeline
	Slide 43: Instruction Latencies

