NC STATE UNIVERSITY

NEON Advanced SIMD Instructions

NC STATE UNIVERSITY

References

= NEON Programmer’s Guide DENOOI8 Instr. Functionality: ARM Arch. Ref. Manual

(NPG) — read this first! = Load/Store: 4.1 |
" NEON Programmer’s Guide : RegISterTran?fer: 4.12
P Contents = Data Processing: 4.13,4.14
#1F preface
2 1 Introducti .
A | = ARM C Language Extensions IHI0053
2: Compiling NEON Instructions
= F 3: NEON Instruction Set Architecture (ACLE)
I 4: NEON Intrinsics
I 5. Optimizing NEON Cod .
g e = ARM NEON Intrinsics Reference IHI0073
6: NEON Code Examples with Intrinsics
#IF 7. NEON Code Examples with Mixed Operations (NIR)

+

¥ 8: NEON Code Examples with Optimization

[P A: NEON Microarchitecture
7 _ Lowmee | ® Performance: Cortex-A72 Software
B: Operating System Support & P .
ry

¥ ¢: NEON and VFP Instruction Summa T =1 Optlmlzatlon GUIde UANOO I 6
2 f D: NEON Intrinsics Reference

+

+

+

+

NC STATE UNIVERSITY

BASIC ASIMD INSTRUCTIONS:
INDEPENDENT LANES

NC STATE UNIVERSITY

Bitwise Logic

= VAND -AND = VEOR — Exclusive OR 3
YRR =

L o fedoe L[[[¥[Dm |

\ / \ { >7(or | xor | { xJor .' *xfm ‘\
2(0 < / \ \ ‘ Jf | }/:)
M\ 1
= VBIC - Bit Clear (argl & ~arg2) = VORR - OR s

| | | bn [| | | |Dm
‘% #Hmm e
ClokS
| | | |Dd s

kJ\{/LJ

S o

‘—OZ
—a@r
30

NC STATE UNIVERSITY

Shifts
= VSHL — shift left Y = VSLI — shift left and insert, leaving lower
Dm bits unchanged
l __ —#imm Element 1 Element 0
- \K /‘{ /[“5 /'"{, am
o |\<</ \<</ \<</ <</|
h@é l | }
L L
Dd Qd 0 0
= VSHR = shift righlt = VSRI — shift right and insert, leaving upper
bits unchanged
L | |Dm
I;-' ."I \"\.\ \ . Element O
#Hmm e ;’ff L \ Dm

e

NC STATE UNIVERSITY

Bitwise Logic and Move

= VORN - Bitwise OR not = VMOV - Move

|.|-[.|.|Dm

= VTST — If element-wise AND is non-zero, * YMVN — Move Not. Invert all bits.

set all element bits to | |
|] Dm

Dd

\Dm

7%}'\%/7\“ {"
O)

| \ +
\/ \/ \/ \/

= VNEG — Negate

= Destination = - |*source

NC STATE UNIVERSITY

= VMAX — write larger of two source lanes

to destination lane

= VMIN — write smaller of two source lanes

to destination lane

10 I

/

SIMD Math with Multiply

= VMUL - Multsiply

= VMSA — Multiply Subtract

[[on [[[Ipm

\\{ ?”f < PN
S
O x 771

X

N
/
\

* VFMA — Fused Multiply Accumulate

*, Products not rounded before adds, so better
accuracy

= VFMS — Fused Multiply Subtract

= Products not rounded before subtracts , so
better accuracy

NC STATE UNIVERSITY

Absolute Values

= VABS — Absolute Value = VABA — Absolute Value of Difference and
Dn Accumulate

J J | | | | Dn | | | | Dm
0 Y /
\\A‘BS/ ‘-\,‘ABS \aBs/ \ABS/
Y

I+\

0 VABD AbsoluteVaIue of leference
L Dn|

T

7<
YW \asSbre nesbrer 2
\ [
Dd

Dd

X =
|

NC STATE UNIVERSITY

Counting \ Joue
PN
A

= VCLS — Count consecutive Ieadiné sign bits PDestrre.

—T) o 227

opoI—— | s =2

32 -
t1 el O&W‘

VCLZ — Count consecutive leading zeroes

A UL‘5}/6 Mé VC(’IIAQ}

VCNT — Count set (1) bits

Bitwise Multiplex Operations w

NC STATE UNIVERSITY

b

———

~ {

= Bitwise: each lane is one bit wide

Copy bits specified by mask register from source register t
VBIT: Bitwise Insert if True

= Qm is mask register

= VBIT Qd, Qn, Qm: If Qm([i] is one, copy Qnl[i] to Qd[i]
VBIF: Bitwise Insert if False

= Qm is mask register

= VBIF Qd, Qn, Qm: If Qm[i] is zero, copy Qn[i] to Qd[i]
VBSL: Bitwise Select

= Qd is mask register

= VBSL Qd, Qn, Qm: If Qd[i] is one, copy Qn[i] to Qd][i],
else copy Qm[i] to Qd[i]

28, 25(-

=)
o desfti N [Stel

U ISTETCTETET0
ST

VBIT D1, DO, D2

NC STATE UNIVERSITY
Compare and Absolute Compare

1 ?{l o zl=laTdm AT T

— ¥
NCER OIOIOI0
|/ / @
HON0 [1\ (| o] [jxlil] Dd j\/\ T \
= Compare: Compare elements = Absolute Compare: Compare absolute
= VCop {Qd,} Qn,Qm values of elements
= Inputs Qn[i], Qml[i]: integer (8, 16, 32) or float (32) = VACop {Qd,} Qn,Qm
* Output Qd:[i] integer as wide as input = Inputs Qn[i], Qm[i]: must be float (F32)
= Compares |Qn[i]| and |Qm[i]| = Output Qd:[i] integer as wide as input (32 bits)
= s result true? = Compares |Qn[i]| and |QmIi]|
= Yes:Qd[i] = Il....11 = |s result true?
= No:Qd[i] = 00...00 = Yes:Qd[i] = Il....11
= |nstructions: VCEQ,VCLE, VCLT VCGE,VCGHT, = No: Qd[i] = 00...00

VCLE,VCLT = |nstructions:VACGE,VACGT,VACLE,VACLT

Vector Load/Store

NC STATE UNIVERSITY

Table A4-13 Extension register load/store instructions

Instruction

See

Operation

Vector Load Multiple

VLDM on page A8-626

Load 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)
Load 1-16 consecutive 32-bit registers (VFP only)

Vector Load Register

VLDR on page AS-628

Load one 64-bit register (Adv. SIMD and VFP)
Load one 32-bit register (VFP only)

Vector Store Multiple

VSTM on page A8-784

Store 1-16 consecutive 64-bit registers (Adv. SIMD and VFP)
Store 1-16 consecutive 32-bit registers (VFP only)

Vector Store Register

VSTR on page AB-T786

Store one 64-bit register (Adv. SIMD and VFP)
Store one 32-bit register (VFP only)

NC STATE UNIVERSITY

Memory

= VLD

= VST

= VLDM
= VSTM
= VLDR
= VSTR
= VPOP
= VPUSH

Move (See NPG,Appendix C)

= VMOV
= VDUP
= VEXT
= VMN
= VREV
= VSWP
= VIRN
= VUZP
= VZIP

NC STATE UNIVERSITY

Structure Load/Store Instructions
with Element De-Interleaving/Interleaving

NC STATE UNIVERSITY

Arrays and Structures

[T TT 7T 777] T T T1]

[T [T [T [T 1

= Array of structures = Could rewrite code to rearrange data in
struct { memory into a structure of arrays:
uint8_t Red, Green, Blue; struct {
} image[N]; uint8_t Red[N], Green[N], Blue[N];
= Not a great fit for load/store register } image;
instructions = |s better fit for load/store instructions

= Requires significant code modifications ®

NC STATE UNIVERSITY

“Structure Load” De-Interleaves From Memory Into Registers

Memory

VLD3.8 {d0, d1, d2}, [10]

R7 R6 RS R4 R3 R2 R1 RO do

= |nstead of changing code to fit linear _ "
loads/stores, use special loads
= VLD3.8 {do, di, d2}, [reo]! B7 | B6 | BS | B4 | B3 | B2 | Bl | BO | d2

= Structure load (VLDn) de-interleaves memory
into n separate registers

= |nstructions: NPG, page C-63

Loading RGB data with a structure load.

NC STATE UNIVERSITY

“Structure Store” Interleaves From Registers Into Memory

Memory

-| B7 B6 BS B4 B3 BR2 Bl BO do
= Structure store ¥YSTn interleaves _ "
multiple registers into memory

= VST3.8 {do, di, d2}, [reo]! | R7 | R6 | RS [R4 [R3 [R2 [RI [RO | d2

Another View

memory

20

0x3

i

RO

VLD
From memory to NEON
registers {dO, dl, d2}

BO

R1

Ox5

Ox6

Bl

R2

From NEON registers
{dO, d1,d2} to memory

VST

- R2

\/\/\/

R7

R6

R5

R4

R3

R2

R1

RO

do

[o= [o] -

B7

B6

BS

B4

B3

B2

Bl

BO

NEON structure loads and stores.

d2

memory

RO

BO

R1

Bl

NC STATE UNIVERSITY

= Have support for 2,3 and 4
element structures

= How well can it work?

= Wide interfaces between NEON
registers and memory

= LI Data Cache
= |28 bit interface

Load Structure

21

= NMUluple structure Access e.g. 2v, Liy
= Single Structure Access e.g. {D0[2], D1[2]}
= Single Structure Load to all lanes e.g. {DO[], D1[]}

Load single element

Multiple elements

VLDI (multiple single elements) on page A8-602

To one lane

VLDI (single element to one lane) on page A8-604

To all lanes

VLD (single element to all lanes) on page A8-606

Load 2-element structure

Multiple structures

VLD2 (multiple 2-element structures) on page A8-608

To one lane

VLD2 (single 2-element structure fo one lane) on page A8-610

To all lanes

VLD?2 (single 2-element structure to all lanes) on page A8-612

Load 3-element structure

Multiple structures

VLD3 (multiple 3-element structures) on page A8-614

To one lane

VLD3 (single 3-element structure io one lane) on page A8-616

To all lanes

VLD3 (single 3-element structure to all lanes) on page A8-618

Load 4-element structure

Multiple structures

VLD4 (multiple 4-¢lement structures) on page A8-620

To one lane

VLD4 (single 4-element structure to one lane) on page A8-622

To all lanes

VLD4 (single 4-element structure to all lanes) on page A8-624

C STATE UNIVERSITY

NC STATE UNIVERSITY

Store Structure

Store single element

Multiple elements VSTI (multiple single elements) on page A8-768

From one lane VSTI (single element from one lane) on page A8-T70

Store 2-element structure

Multiple structures VST2 (multiple 2-element structures) on page A8-772

From one lane VST2 (single 2-element struciure from one lane) on page A8-T74

Store 3-element structure

Multiple structures VST3 (multiple 3-element structures) on page A8-776

From one lane VST3 (single 3-element structure from one lane) on page A8-T78

Store 4-element structure

Multiple structures V5T4 (multiple 4-element structures) on page A8-780

From one lane V8T (single 4-element structure from one lane) on page AS-T82

22

Structure VLD/VST and Operand Syntax

Elements per Load all structures | Load one structure | Load one structure
Structure to all lanes. Load to registers.Load | to all lanes. Load = Three forn
every element of |one elementinto | multiple copies of
every structure one lane in each structure elements = Forms dist
register into multiple = Multiple
registers. = Single
| (no interleaving) {DO,D1} {DO[2], DI[2]} {DO[], DI[]} = Single
2
L.

Elements per Store all registers | Load one structure | Load one structure
Structure to all lanes. Store | to one lane to all lanes

every element of
every structure

| (no interleaving) {DO0,D1} {DO0[2], D 1[2]} {DO[],DI[]}
2
3
4

23

NC STATE UNIVERSITY

Multiple 2-Element Structure Access

= VLD2, VST2 provide access to multiple 2-element structures
= List can contain 2 or 4 registers
= Transfer multiple consecutive 8, 16, or 32-bit 2-element structures

[R3]
+2
[R1] +4
+2 +6
14 +8
16 ¢ +L0 x3 | x2 | x1 m DO
+8 +12
. = EEEE >
+12 +28 Iy3|y2|y1 D2
+14 +30 - - - =1 D3
o d Y7 | Y6 Y5 Y
VLD2.16 {D2,D3}, [R1] vLb2.16 {DO,D1,D2,D3}, [R3]'!

—

®
The Architecture for the Digital VWorld® ARM

24

NC STATE UNIVERSITY

Multiple 3/4-Element Structure Access

= VLD3/4, VST3/4 provide access to 3 or 4-element structures
= Lists contain 3/4 registers; optional space for building 128-bit vectors
= Transfer multiple consecutive 8, 16, or 32-bit 3/4-element structures

VST3.16 {D3,D4,D5}, [R1])
VLD3.16 {D0,D2,D4}, [R1]!

®
: The Architecture for the Digital World® ARM

25

NC STATE UNIVERSITY

UNCOMMON ASIMD
INSTRUCTIONS AND FEATURES

NC STATE UNIVERSITY

Table Lookup

= Table Lookup: VTBL Dd, list, Dm BEEEEEEaEERE
= Only works on 8-bitdata e —
= list:holds table in one to four T L '-,.“
consecutive D registers, or B E T HE 5'| = [® [= jip1,p2)

two consecutive Q registers M /
= Table is up to 256 bits (32 bytes) long
. . . 0 ' i a“"uiﬂql DO
= Dm: vector of indices

= |s index Dm[i] in range (list)? VIBL.8 DO, {D1, D2}, D3

= Yes: return element number Dm[i] from list in Dd[i]

= No:else return zero in Dd[i]

= Table extension: VIBX Dd, list, Dm
= Same as VTBL, but doesn’t overwrite Dd[i] if Dm[i] is not in range

27

NC STATE UNIVERSITY

Vector Reciprocal and Reciprocal Square Root

The NEON instruction set does not include:

. division operation (use VRECPE and VRECPS instead to perform Newton-Raphson iteration)
. square root operation (use VRSQRTE and VRSQRTS and multiply instead).

= Approximate with estimate instruction, then refine step instruction(s)

= http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.fags/ka 4282.html
= https://github.com/thenifty/neon-guide
= Estimate reciprocal

float32x4 tv={1.0,2.0,3.0,4.0};
float32x4 _t reciprocal = vrecpeq_132(v);
// => reciprocal = {0.998046875, 0.499023438, 0.333007813, 0.249511719 }

= More accurate (estimate plus one refinement step)

float32x4 tv={1.0,2.0,3.0,4.0};

float32x4 t reciprocall = vrecpeq_f32(v);

float32x4 t reciprocal2 = vmulg _f32(vrecpsq f32(v, reciprocall), reciprocall);
// =>inverse = {0.999996185, 0.499998093, 0.333333015, 0.249999046 }

28

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14282.html
https://github.com/thenifty/neon-guide

29

NC STATE UNIVERSITY

Lane Changes

NC STATE UNIVERSITY

Merge Lanes with Pairwise Reduction Operations

0 VPMAX Pairwise Maximum = VPADD - Pairwise Add

q 7 Dm _4{ Dn Dm Dn

\Q\?ﬁ// % ﬁ\ //

= VPMIN — Pairwise Mlnlmum

\c{/ = VPADAL - Pairwise Add and Accumulate
Long Dm

Dd

30

NC STATE UNIVERSITY

Change Lane Width with Instruction “Shape” Modifiers

[S T

I [Jom

JU0U

ERENENEY

|Dd
| | | | jan
f
¥
[oe | [or] [0] |on]
 J Y Y
L] e
L1 Jen
| | T -
LA HFHJ
[oe | [op | [0 |[op]
| | | | |

31

None specified

Both operands and results are the same width
Example:

VADD.I16 Q0, Q1, Q2

Narrow — N

Operands are the same width. Number of bits in
each result element is half the number of bits in each
operand element.

Example:

VADDHN.I16 DO, Q1, Q2

Long — L

Operands are the same width. Number of bits in each result
element is double the number of bits in each operand element.
Example:

VADDL.S16 Q@, D2, D3

Wide -W

Result and operand are twice the width of the second operand.
Example:

VADDW.I16 Q0, Ql, D4

Modifiers for Instruction Operation

32

NC STATE UNIVERSITY

Modifier

Action Example

Description

None

Basic operation VADD.I16 Q0, Q1, Q2

The result is not modified

Q

Saturation - VQADD.S16 D@, D2, D3
S

(
N
KN

7/

b~

Each element in the result vector is set to either the
maximum or minimum 1f 1t exceeds the

representable range. The range depends on the type
(number of bits and sign) of the elements. The sticky
QC bit in the FPSCR 1s set if saturation occurs 1n any

lane.

Halved VHADD.S16 Qo, Q1, Q4

Each element shifted right by one place (effectively
a divide by two with truncation). VHADD can be used to

calculate the mean of two 1nputs.

Doubled before VQDMULL.S16 Q@, D1, D3
saturation

This 1s commonly required when multiplying
numbers in Q15 format, where an additional
doubling 1s needed to get the result into the correct

form.

Rounded VRSUBHN.I16 D@, Q1, Q3

The instruction rounds the result to correct for the
bias caused by truncation. This 1s equivalent to
adding 0.5 to the result before truncating.

NC STATE UNIVERSITY

Example — adding all lanes

= Input in Q0 (DO and D1) w @Dl (A
= u16 input values

Do | D1 (A}Z

|VPADDL.U16 Q0, QO |

DO D1 o 5"
= Now QO contains 4x u32 values %_‘ 32

(with 15 headroom bits)

= Reducing/folding operation DO u 2
needs 1 bit of headroom
DO I O LY

VPADDL.U32 DO, DO

®
The Architecture for the Digital VWorld® ARM

34

NC STATE UNIVERSITY

Image Format Information

NC STATE UNIVERSITY

Full-Color = Y:Luminance (brightness)
Image = Y com I [le i
ponents alone give gray-scale image (no color)
= U,V: Chrominance (color)
: = U: Blue projection
ki Y Component: = V:Red projection .

Luminance

|

Slices of color space with fixed Y (luminance)

U Component:
Blue projection

Y=0

= References

= https://softpixel.com/~cwright/programming/colorspace/yuv/
= https://en.wikipedia.org/wiki/YUV

V Component:
Red Projection

By User:Brianski - Concept from en:Image:YUV_components.jpg, original public domain image at
en:lmage:Barns_grand_tetons.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2792866

https://softpixel.com/~cwright/programming/colorspace/yuv/
https://en.wikipedia.org/wiki/YUV
https://commons.wikimedia.org/w/index.php?curid=2792866

A Further Digression: YUV Chrominance Subsampling

. . £.7 W
Original Image (s B .
Cel¢e Orriginal Image

= Retina in human eye has far more brightness
sensors (rods) than color sensors (cones)

= —> Worse spatial resolution for color than brightness
(except in very center of vision)

Y \' e e . .
= Color in digital images is often spatially sub-sampled
= Removes information we can’t see, saving time and space .
= Good explanation: h
https://www.impulseadventure.com/photo/chroma-
subsampling.html
Y : R tructed
U‘ v = 4:2:0 (aka 2x2) subsampling SubizzanIer;(I:nfage
V) I'![H = Average together chroma values of 4 adjacent pixels

= Reduces chrominance resolution by half horizontally and half
vertically compared with luminance resolution

= Example:

= | MPixel image needs to represent 3 million elements:
IMY, IMU, IMV
= Subsampling reduces it to |.5 million elements: h

IMY,0.25M U, 0.25 MV

36

https://www.impulseadventure.com/photo/chroma-subsampling.html
https://www.impulseadventure.com/photo/chroma-subsampling.html

NC STATE UNIVERSITY

Structures and Arrays in Memory r#ye

v l\LTXr

= |n SIMD, want to work on same component from
multiple pixels simultaneously. Must first load them

from memory. \I\"\ Q7
\j\-\"
C‘NQ\KQZ JC (
Y u

YWY 1Y TV1Y
7 1

—

> QO pynt Thew
§><;7@(§(@-

: R —1 \[g ’
iage data (from r |mmal) :

f

= RGB image data
truct { = typedef struct { uint8_t R G, B; } RGB_t;
1nté L bV, *bU, *hV; I YOV_IMAGET; - RGB_t RGB_Image[WIDTH*HEIGHT];
. I!‘;V—:MA?:E—T YUV_Image; = s an array of structures
S’ ructure .ofarray > o = R’s are separated by G and B (and padding?), so
= AllY’s are adjacent, so loading is quick loading is harder and slower
37

Swap Registers

* Now can swap red and blue easily

38

VSWP do, d2

VSWP doO, d2

_—» B

B6

BS5

B4

B3

B2

Bl

BO

do

o[« [o [o]e] »

o R7

R6

RS

R4

R3

R2

R1

RO

Swapping the contents of registers dO and d2.

d2

NC STATE UNIVERSITY

NC STATE UNIVERSITY

	Default Section
	Slide 1: NEON Advanced SIMD Instructions
	Slide 2: References

	Basic Instructions
	Slide 3: Basic ASIMD Instructions: independent Lanes
	Slide 4: Bitwise Logic
	Slide 5: Shifts
	Slide 6: Bitwise Logic and Move
	Slide 7: Math
	Slide 8: SIMD Math with Multiply
	Slide 9: Absolute Values
	Slide 10: Counting
	Slide 11: Bitwise Multiplex Operations
	Slide 12: Compare and Absolute Compare
	Slide 13: Vector Load/Store
	Slide 14: Memory
	Slide 15: Move (See NPG, Appendix C)
	Slide 16: Structure Load/Store Instructions with Element De-Interleaving/Interleaving
	Slide 17: Arrays and Structures
	Slide 18: “Structure Load” De-Interleaves From Memory Into Registers
	Slide 19: “Structure Store” Interleaves From Registers Into Memory
	Slide 20: Another View
	Slide 21: Load Structure
	Slide 22: Store Structure
	Slide 23: Structure VLD/VST and Operand Syntax
	Slide 24
	Slide 25

	Uncommon Instructions
	Slide 26: Uncommon ASIMD Instructions and Features
	Slide 27: Table Lookup
	Slide 28: Vector Reciprocal and Reciprocal Square Root
	Slide 29: Lane Changes
	Slide 30: Merge Lanes with Pairwise Reduction Operations
	Slide 31: Change Lane Width with Instruction “Shape” Modifiers
	Slide 32: Modifiers for Instruction Operation
	Slide 33

	Image Format
	Slide 34: Image Format Information
	Slide 35: A Digression: YUV Color Space
	Slide 36: A Further Digression: YUV Chrominance Subsampling
	Slide 37: Structures and Arrays in Memory
	Slide 38: Swap Registers
	Slide 39

