
1

NEON Advanced SIMD Instructions

2

References

▪ NEON Programmer’s Guide DEN0018

(NPG) – read this first!

▪ Instr. Functionality: ARM Arch. Ref. Manual

▪ Load/Store: 4.11

▪ Register Transfer: 4.12

▪ Data Processing: 4.13, 4.14

▪ ARM C Language Extensions IHI0053

(ACLE)

▪ ARM NEON Intrinsics Reference IHI0073

(NIR)

▪ Performance: Cortex-A72 Software

Optimization Guide UAN0016

3

BASIC ASIMD INSTRUCTIONS:

INDEPENDENT LANES

4

Bitwise Logic

▪ VAND – AND

▪ VBIC – Bit Clear (arg1 & ~arg2)

▪ VEOR – Exclusive OR

▪ VORR – OR

5

Shifts

▪ VSHL – shift left

▪ VSHR – shift right

▪ VSLI – shift left and insert, leaving lower

bits unchanged

▪ VSRI – shift right and insert, leaving upper

bits unchanged

6

Bitwise Logic and Move

▪ VORN – Bitwise OR not

▪ VTST – If element-wise AND is non-zero,

set all element bits to 1

▪ VMOV - Move

▪ VMVN – Move Not. Invert all bits.

7

Math

▪ VADD

▪ VSUB

▪ VNEG – Negate

▪ Destination = - 1*source

▪ VMAX – write larger of two source lanes

to destination lane

▪ VMIN – write smaller of two source lanes

to destination lane

8

SIMD Math with Multiply

▪ VMUL – Multiply

▪ VMLA – Multiply Accumulate

▪ VMSA – Multiply Subtract

▪ VFMA – Fused Multiply Accumulate

▪ Products not rounded before adds, so better

accuracy

▪ VFMS – Fused Multiply Subtract

▪ Products not rounded before subtracts , so

better accuracy

9

Absolute Values

▪ VABS – Absolute Value

▪ VABD – Absolute Value of Difference

▪ VABA – Absolute Value of Difference and

Accumulate

10

Counting

▪ VCLS – Count consecutive leading sign bits

▪ VCLZ – Count consecutive leading zeroes

▪ VCNT – Count set (1) bits

11

Bitwise Multiplex Operations

▪ Bitwise: each lane is one bit wide

▪ Copy bits specified by mask register from source register to destination register

▪ VBIT: Bitwise Insert if True

▪ Qm is mask register

▪ VBIT Qd, Qn, Qm: If Qm[i] is one, copy Qn[i] to Qd[i]

▪ VBIF: Bitwise Insert if False

▪ Qm is mask register

▪ VBIF Qd, Qn, Qm: If Qm[i] is zero, copy Qn[i] to Qd[i]

▪ VBSL: Bitwise Select

▪ Qd is mask register

▪ VBSL Qd, Qn, Qm: If Qd[i] is one, copy Qn[i] to Qd[i],

else copy Qm[i] to Qd[i]

12

Compare and Absolute Compare

▪ Compare: Compare elements

▪ VCop {Qd,} Qn, Qm

▪ Inputs Qn[i], Qm[i]: integer (8, 16, 32) or float (32)

▪ Output Qd:[i] integer as wide as input

▪ Compares |Qn[i]| and |Qm[i]|

▪ Is result true?

▪ Yes: Qd[i] = 11….11

▪ No: Qd[i] = 00…00

▪ Instructions: VCEQ, VCLE, VCLT, VCGE, VCGT,

VCLE, VCLT

▪ Absolute Compare: Compare absolute

values of elements

▪ VACop {Qd,} Qn, Qm

▪ Inputs Qn[i], Qm[i]: must be float (F32)

▪ Output Qd:[i] integer as wide as input (32 bits)

▪ Compares |Qn[i]| and |Qm[i]|

▪ Is result true?

▪ Yes: Qd[i] = 11….11

▪ No: Qd[i] = 00…00

▪ Instructions: VACGE, VACGT, VACLE, VACLT

13

Vector Load/Store

14

Memory

▪ VLD

▪ VST

▪ VLDM

▪ VSTM

▪ VLDR

▪ VSTR

▪ VPOP

▪ VPUSH

15

Move (See NPG, Appendix C)

▪ VMOV

▪ VDUP

▪ VEXT

▪ VMN

▪ VREV

▪ VSWP

▪ VTRN

▪ VUZP

▪ VZIP

16

Structure Load/Store Instructions

with Element De-Interleaving/Interleaving

17

Arrays and Structures

▪ Array of structures

struct {

uint8_t Red, Green, Blue;

} image[N];

▪ Not a great fit for load/store register

instructions

▪ Could rewrite code to rearrange data in

memory into a structure of arrays:

struct {

uint8_t Red[N], Green[N], Blue[N];

} image;

▪ Is better fit for load/store instructions

▪ Requires significant code modifications 

Memory

Registers

18

▪ Instead of changing code to fit linear

loads/stores, use special loads

▪ VLD3.8 {d0, d1, d2}, [r0]!

▪ Structure load (VLDn) de-interleaves memory

into n separate registers

▪ Instructions: NPG, page C-63

“Structure Load” De-Interleaves From Memory Into Registers

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

19

▪ Structure store VSTn interleaves

multiple registers into memory

▪ VST3.8 {d0, d1, d2}, [r0]!

“Structure Store” Interleaves From Registers Into Memory

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

20

Another View

▪ Have support for 2, 3 and 4

element structures

▪ How well can it work?

▪ Wide interfaces between NEON

registers and memory

▪ L1 Data Cache

▪ 128 bit interface

21

Load Structure

22

Store Structure

23

Structure VLD/VST and Operand Syntax

Elements per

Structure

Load all structures

to all lanes. Load

every element of

every structure

Load one structure

to registers. Load

one element into

one lane in each

register

Load one structure

to all lanes. Load

multiple copies of

structure elements

into multiple

registers.

1 (no interleaving) {D0, D1} {D0[2], D1[2]} {D0[], D1[]}

2

3

4
Elements per

Structure

Store all registers

to all lanes. Store

every element of

every structure

Load one structure

to one lane

Load one structure

to all lanes

1 (no interleaving) {D0, D1} {D0[2], D1[2]} {D0[], D1[]}

2

3

4

24

25

26

UNCOMMON ASIMD

INSTRUCTIONS AND FEATURES

27

Table Lookup

▪ Table Lookup:VTBL Dd, list, Dm

▪ Only works on 8-bit data

▪ list: holds table in one to four

consecutive D registers, or

two consecutive Q registers

▪ Table is up to 256 bits (32 bytes) long

▪ Dm: vector of indices

▪ Is index Dm[i] in range (list)?

▪ Yes: return element number Dm[i] from list in Dd[i]

▪ No: else return zero in Dd[i]

▪ Table extension:VTBX Dd, list, Dm

▪ Same as VTBL, but doesn’t overwrite Dd[i] if Dm[i] is not in range

28

Vector Reciprocal and Reciprocal Square Root

▪ Approximate with estimate instruction, then refine step instruction(s)

▪ http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14282.html

▪ https://github.com/thenifty/neon-guide

▪ Estimate reciprocal

▪ More accurate (estimate plus one refinement step)

float32x4_t v = { 1.0, 2.0, 3.0, 4.0 };
float32x4_t reciprocal1 = vrecpeq_f32(v);
float32x4_t reciprocal2 = vmulq_f32(vrecpsq_f32(v, reciprocal1), reciprocal1);
// => inverse = { 0.999996185, 0.499998093, 0.333333015, 0.249999046 }

float32x4_t v = { 1.0, 2.0, 3.0, 4.0 };
float32x4_t reciprocal = vrecpeq_f32(v);
// => reciprocal = { 0.998046875, 0.499023438, 0.333007813, 0.249511719 }

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14282.html
https://github.com/thenifty/neon-guide

29

Lane Changes

30

Merge Lanes with Pairwise Reduction Operations

▪ VPMAX – Pairwise Maximum

▪ VPMIN – Pairwise Minimum

▪ VPADD – Pairwise Add

▪ VPADAL – Pairwise Add and Accumulate

Long

31

Change Lane Width with Instruction “Shape” Modifiers

32

Modifiers for Instruction Operation

33

34

Image Format Information

35

▪ Y: Luminance (brightness)

▪ Y components alone give gray-scale image (no color)

▪ U, V: Chrominance (color)

▪ U: Blue projection

▪ V: Red projection

▪ Slices of color space with fixed Y (luminance)

▪ References
▪ https://softpixel.com/~cwright/programming/colorspace/yuv/

▪ https://en.wikipedia.org/wiki/YUV

A Digression: YUV Color Space

By User:Brianski - Concept from en:Image:YUV_components.jpg, original public domain image at

en:Image:Barns_grand_tetons.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2792866

Y = 0 Y = 0.5 Y = 1.0

Full-Color

Image

Y Component:

Luminance

V Component:

Red Projection

U Component:

Blue projection

https://softpixel.com/~cwright/programming/colorspace/yuv/
https://en.wikipedia.org/wiki/YUV
https://commons.wikimedia.org/w/index.php?curid=2792866

36

V

A Further Digression: YUV Chrominance Subsampling

▪ Retina in human eye has far more brightness

sensors (rods) than color sensors (cones)

▪ →Worse spatial resolution for color than brightness

(except in very center of vision)

▪ Color in digital images is often spatially sub-sampled

▪ Removes information we can’t see, saving time and space

▪ Good explanation:

https://www.impulseadventure.com/photo/chroma-

subsampling.html

▪ 4:2:0 (aka 2x2) subsampling

▪ Average together chroma values of 4 adjacent pixels

▪ Reduces chrominance resolution by half horizontally and half

vertically compared with luminance resolution

▪ Example:

▪ 1 MPixel image needs to represent 3 million elements:

1M Y, 1M U, 1M V

▪ Subsampling reduces it to 1.5 million elements:

1M Y, 0.25M U, 0.25 M V

Y

Original Image

Y U

Reconstructed

Subsampled Image

U

V

Original Image

Reconstructed

Subsampled Image

https://www.impulseadventure.com/photo/chroma-subsampling.html
https://www.impulseadventure.com/photo/chroma-subsampling.html

37

Structures and Arrays in Memory

▪ In SIMD, want to work on same component from

multiple pixels simultaneously. Must first load them

from memory.

▪ YUV image data (from rpi-mmal)
typedef struct {

uint8_t *bY, *bU, *bV; } YUV_IMAGE_T;

YUV_IMAGE_T YUV_Image;

▪ Is a structure of arrays

▪ All Y’s are adjacent, so loading is quick

▪ RGB image data
▪ typedef struct { uint8_t R, G, B; } RGB_t;

▪ RGB_t RGB_Image[WIDTH*HEIGHT];

▪ Is an array of structures

▪ R’s are separated by G and B (and padding?), so

loading is harder and slower

38

Swap Registers

▪ Now can swap red and blue easily

VSWP d0, d2

39

	Default Section
	Slide 1: NEON Advanced SIMD Instructions
	Slide 2: References

	Basic Instructions
	Slide 3: Basic ASIMD Instructions: independent Lanes
	Slide 4: Bitwise Logic
	Slide 5: Shifts
	Slide 6: Bitwise Logic and Move
	Slide 7: Math
	Slide 8: SIMD Math with Multiply
	Slide 9: Absolute Values
	Slide 10: Counting
	Slide 11: Bitwise Multiplex Operations
	Slide 12: Compare and Absolute Compare
	Slide 13: Vector Load/Store
	Slide 14: Memory
	Slide 15: Move (See NPG, Appendix C)
	Slide 16: Structure Load/Store Instructions with Element De-Interleaving/Interleaving
	Slide 17: Arrays and Structures
	Slide 18: “Structure Load” De-Interleaves From Memory Into Registers
	Slide 19: “Structure Store” Interleaves From Registers Into Memory
	Slide 20: Another View
	Slide 21: Load Structure
	Slide 22: Store Structure
	Slide 23: Structure VLD/VST and Operand Syntax
	Slide 24
	Slide 25

	Uncommon Instructions
	Slide 26: Uncommon ASIMD Instructions and Features
	Slide 27: Table Lookup
	Slide 28: Vector Reciprocal and Reciprocal Square Root
	Slide 29: Lane Changes
	Slide 30: Merge Lanes with Pairwise Reduction Operations
	Slide 31: Change Lane Width with Instruction “Shape” Modifiers
	Slide 32: Modifiers for Instruction Operation
	Slide 33

	Image Format
	Slide 34: Image Format Information
	Slide 35: A Digression: YUV Color Space
	Slide 36: A Further Digression: YUV Chrominance Subsampling
	Slide 37: Structures and Arrays in Memory
	Slide 38: Swap Registers
	Slide 39

