
1

Applying NEON Advanced SIMD
to find_chroma_matches

2

 Analyze control flow
 Create CFG
 Mark up CFG with plan for modifications and simplifications

 Inline subroutine calls, perform if conversion, apply special instructions

 Analyze data flow
 Evaluate data layout in memory and compatibility with vector registers
 Create DFG
 Mark up DFG with plan for instructions/features to apply
 Evaluate data sizes and minimum precision needed

 Write code
 prolog
 body
 epilog

 reduce results

Applying Neon Advanced SIMD to find_chroma_matches

3

1. Analyze Control Flow

int find_chroma_matches(YUV_IMAGE_T * i, YUV_T * tc, int * rc_col,
 int * rc_row, int sep){
 int col, row;
 int matches=0, diff;
 YUV_T color, prev_color={0,0,0};
 int c_col=0, c_row=0;
 YUV_T * match_color = &pink;
 YUV_T v_color;

 for (row = sep/2; row <= i->h - sep/2; row += sep) {
 for (col = sep/2; col <= i->w - sep/2; col += sep) {
 Get_Pixel_yuv(i, col, row, &color); // To Do: Inline
 // Identify pixels with right color
 diff = Sq_UV_Difference_yuv(&color, tc); // To Do: Inline

 if (diff < color_threshold) { // To Do:
 match_color = &pink; // To Do: Manually hoist outside loops
 c_col += col; // To Do: If-conversion TBD
 c_row += row; // To Do: If-conversion TBD
 matches++; // To Do: If-conversion
 Draw_Match_Marker(i, col, row, sep, match_color); // To Do:
 // Figure out how to merge with ex. data
 }
 } // for col
 } // for row

 if (matches > 0) {
 c_col /= matches;
 c_row /= matches;
 *rc_col = c_col;
 *rc_row = c_row;
 }

 return matches;
}

 Create plan to improve
control flow
 Inline subroutine calls
 Apply any special

instructions or features
which can eliminate
conditional control flow
 Conditional

instruction execution
 Saturating math
 Absolute value, min,

max, count bits, count
leading bits, etc.

 Bitwise select/insert
 Perform if-conversion

4

5

If Conversion – Eliminate Conditional Control Flow

 Convert code with conditional control flow (“If”) to
unconditional control flow
 Execute code from both true and false conditions

 No code for false condition in this example.
 Merge results, ignoring results of code from wrong condition.

 Two methods
 ARM ISA has conditional instruction execution (predication).

 See “ARMv7A Features for Performance” slides
 Compiler may be able to implement

 Masking. Squash/replace unwanted result data with
math/logic/move operations
 Sum: replace with 0 (e.g. use vector AND with #0)
 Product: replace with 1 (e.g. use vector bit insert/select)
 Min, max: replace with max_int or min_int for data type

(e.g. use vector bit insert/select)

Code for
True Condition

if Code for
True Condition

Compare Compare

Code to Squash
Unwanted Results

6

2. Analyze Data Flow

 Compare data layout in memory vs.
SIMD registers

 Create data flow graph with variables
and operations

 Evaluate element data precision
requirements

 Plan data reduction

7

 Does data layout in memory match ideal
register layout?

 Yes: Structure of arrays (SoA). Use
[vldr|vstr]

 No: Array of structures (AoS). Use
structure load/store [vld|vst][1|2|3|4]

Evaluate Data Layout

777666555444333222111000

8

 Show data and operations
 Nodes: operations (instructions)
 Edges: data variables and intermediate results

 Define if-conversion to remove code from conditionals
 Use vector compare to create mask register
 Use that mask to select relevant results

 Identify where to apply other useful Neon instructions
 Fused operations: MAC (multiply accumulate), SAD (sum of absolute differences), etc.
 Zip/unzip, transpose
 Table lookup
 etc…

Create Data Flow Graph

9

 Annotate DFG
 Mark data types for input data values

 signed/unsigned, size (bits), integer/float
 Mark operations which increase minimum precision

 + = <b+1>
 * = <b+b>

 Propagate data types through DFG to mark intermediate
data values

 Define data types for intermediate variables and outputs

 Consider reducing precision to increase elements
per vector
 Clip precision with saturating math
 Reduce precision by scaling. Use halving instructions

Evaluate Precision Requirements for Data Elements

10

Plan Data Reduction

 Combine each element (lane) in
vector to determine overall data
value

 Use pairwise operations to merge
lanes
 Pairwise add, multiply, minimum,

maximum, etc.

