
1

Using NEON Advanced SIMD Processing

2

References

▪ NEON Programmer’s Guide DEN0018

(NPG) – read this first!

▪ Instr. Functionality: ARM Arch. Ref. Manual

▪ Load/Store: 4.11

▪ Register Transfer: 4.12

▪ Data Processing: 4.13, 4.14

▪ ARM C Language Extensions IHI0053

(ACLE)

▪ ARM NEON Intrinsics Reference IHI0073

(NIR)

▪ Performance: Cortex-A72 Software

Optimization Guide UAN0016

3

USING THE ASIMD

INSTRUCTIONS

4

Again, Do Instruction Set Architectures Matter?

▪ Online discussion by Jack Ganssle, Bill Gatliff, Niall Murphy, and Jim Turley at
Embedded.com

▪ No!
▪ C compiler hides differences and emulates missing features with code
▪ Native word size, floating point math, subroutine call penalty, conditional branch delay

▪ Most compilers don’t use those great fast instructions
▪ Table lookup and interpolate, 3D matrix operations, etc

▪ As long as the processor runs fast enough, costs dominate
▪ Yes!

▪ Use “intrinsics” (inline assembly code) to use fast instructions
▪ Code density depends on processor
▪ It takes time and money to come up to speed on a new architecture, so go with what

gets you a product sooner
▪ More engineers available for hiring if you use a common architecture
▪ If no (or just buggy) tools are available, it’s not worth using

5

▪ Write C code, call functions from SIMD

libraries

▪ Need NEON-optimized libraries for your

application

▪ Write C code, rely on the compiler to

generate SIMD instructions

▪ Depends on compiler’s ability to vectorize code

▪ “How can I get the compiler to do what I

want?”

▪ Write C code with compiler intrinsics

to specify SIMD instructions

▪ Provides more control and takes care of many

details

▪ Need clear understanding of data layout and

processing flow

▪ Write a separate SIMD assembly code

module, link it with our C code

▪ Provides full control but you must manage all

the details

▪ Need clear understanding of data layout and

processing flow

▪ See “Getting Better Object Code”

How Can We Use These SIMD Instructions?

6

USING NEON LIBRARIES

7

▪ From NEON Programmer’s Guide, DEN0018A

▪ And search for “neon-optimized libraries”

Many NEON Libraries Available

8

HELPING THE COMPILER

9

Documentation

▪ NPG Chapter 2:

▪ And…

▪ NEON Support in Compilation

Tools:

http://infocenter.arm.com/help/inde

x.jsp?topic=/com.arm.doc.dht0004

a/ch01s01s01.html

▪ Introducing NEON:

http://infocenter.arm.com/help/topi

c/com.arm.doc.dht0002a/DHT000

2A_introducing_neon.pdf

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0004a/ch01s01s01.html
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/DHT0002A_introducing_neon.pdf

10

Helping GCC Make Fast Code

▪ CPU specification

▪ -mcpu=cortex-a72

▪ -mfpu=crypto-neon-fpu-armv8

▪ Vectorization – More details shortly

▪ -ftree-vectorize (enabled with –O3)

▪ Enables vectorization (both loop and basic-block)

▪ Defaults to 64-bit NEON double registers (Dn)

▪ -mvectorize-with-neon-quad

▪ Targets 128-bit NEON quad registers (Qn)

▪ -funsafe-math-optimizations

▪ Treat all summation variables as reduction

variables. More later…

▪ Other

▪ -fsingle-precision-constant

▪ Treat floating-point constants as single-precision,

not double-precision

▪ -ffast-math

▪ NEON floating point math uses Flush-to-Zero

mode, not compliant with IEEE-754

▪ This flag tells compiler it doesn’t need to generate

IEEE-754-compliant code

▪ -Ofast

▪ Enables all –O3 optimizations and -ffast-math, -

fallow-store-data-races and fno-protect-

parens

11

Linkage Methods

▪ How are floating-point subroutine arguments/return values passed?

▪ In ARM registers (r0-r3)? Software linkage

▪ In FPU and NEON registers? Hardware linkage

▪ Command line options

▪ soft: uses software linkage, and all floating-point operations are calls to library functions

▪ softfp: uses software linkage, but allows compiler to generate hardware floating-point instructions

▪ hard: uses hardware linkage and allows compiler to generate hardware floating-point instructions

▪ -mfloat-abi=hard

12

Runfast Mode
▪ Allows some VFP instructions to execute in NEON unit

▪ FADDS, FSUBS, FABSS, FNEGS, FMULS, FNMULS, FMACS, FNMACS, FMSCS, FNMSCS, FCMPS, FCMPES, FCMPZS, FCMPEZS,

FUITOS, FSITOS, FTOUIS, FTOSIS, FTOUIZS, FTOSIZS, FSHTOS, FSLTOS, FUHTOS, FULTOS, FTOSHS, FTOSLS, FTOUHS,

FTOULS

void enable_runfast() {

static const unsigned int x = 0x04086060;

static const unsigned int y = 0x03000000;

int r;

asm volatile (

"fmrx %0, fpscr \n\t" //r0 = FPSCR

"and %0, %0, %1 \n\t" //r0 = r0 & 0x04086060

"orr %0, %0, %2 \n\t" //r0 = r0 | 0x03000000

"fmxr fpscr, %0 \n\t" //FPSCR = r0

: "=r"(r)

: "r"(x), "r"(y)

);

}

▪ Applicable to Cortex-A8. Does it still apply for Cortex-A72?

13

More GCC Flags

▪ -ffinite-math-only

▪ There will be no overflows or results that are equivalent to infinity in the code, enabling more

optimizations.

▪ -fno-math-errno

▪ Eliminate all math error handling/generation code. Functions such as the sqrt() generate math errors

when appropriate, and this can prevent inlining of such functions

14

BASICS OF VECTORIZATION

15

Want SIMD? Help Compiler Vectorize the Code

▪ Background

▪ Scalar code: operates on one set of operands at

a time

▪ Vector code: operates on multiple sets of

operands at a time

▪ Vectorization: converting code from scalar to

vector form

▪ Vectorization is main compiler

optimization enabling use of SIMD

instructions

▪ Others possible, but don’t work on as much

code, harder to implement in compiler

▪ Best to try to vectorize loops first

▪ Innermost loops often dominate execution time

▪ Arrangement of instructions and data make

vectorization easier (than the general case, e.g.

straight-line code)

▪ Vectorization of loops is built on loop

unrolling

▪ Next:

▪ Basic methods for loop unrolling

▪ Command-line options for compiler

▪ Coding practices

16

Example Program: Neon0

▪ Per element: Multiply ax and bx,

add product to az

▪ Sum all resulting az elements,

return as prod_sum

ax 0 1 2 3 4 5 6 7 8 9 ay 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

prod_sum

17

What Does the Compiler Do With the Code?

▪ Build with -O3 optimization

▪ Very fast! 1.547 cycles per element

▪ What’s the compiler doing? Examine object code

▪ Inner loop (c8): Vectorized loop body

▪ Reduction code after inner loop body

18

Data Flow – Loop Body
ax 0 1 2 3 4 5 6 7 8 9

ay 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

*az: q8/d16-17 0 1 2 3

*ax: q11/d22-23 0 1 2 3

*ay: q10/d20-21 0 1 2 3

prod_sum: q9 0 1 2 3

ax: r1

ay: r2

az: r3

i1

i2

i3

i4

i5

i6

i7

i8

Memory

Registers

*az: q8/d16-17 0 1 2 3

prod_sum: q9 0 1 2 3

19

Data Flow – Reduction for prod_sum

d18 d19

prod_sum: q9/d18-19 0 1 2 3

i9

i10

i11

i12

d18 0 1

d18 0 1

r3

sum of

az[1,5…]

sum of

az[0,4…]

sum of

az[3,7…]
sum of

az[2,6…]

20

Reflections

▪ Fast! Only 8 instructions execute to process 4 sets

of array elements

▪ Performance

▪ Most time (95.16%) is spent waiting for three load

instructions

▪ => Memory-bound program

▪ Best-case aspects of this example

▪ Data is in separate arrays, easy to load into registers

▪ Compiler can optimize and eliminate general-case code

▪ Fixed iteration count

▪ Vector size of 4 cleanly divides iteration count

▪ No control flow in loop body

▪ No data dependencies between loop iterations

21

What If? Disable Vectorization

▪ -fno-tree-vectorize

▪ Not as fast: 3.379 cycles

▪ Still have 8 instructions in inner loop, but they only

process one set of array elements at a time

▪ Why is vectorized version only 3.379/1.547=2.18 times

faster, despite processing 4x data per loop iteration?

22

BASICS OF LOOP UNROLLING

FOR VECTORIZATION

23

▪ Compiler tries to unroll loops when optimizing

▪ Let’s help the compiler by providing better code

▪ We may need to tweak code to enable loop unrolling

▪ We may want to manually unroll loops

▪ If compiler can’t

▪ If not using the compiler

Why Understanding Loop Unrolling Matters

24

Basic Loop Unrolling Process

▪ Unroll loop body

▪ New loop body will perform F iterations of

original loop body

▪ Modify loop control code

▪ Test: confirm at least F more iterations remain

▪ Increment: Scale update by factor of F

▪ Unroll loop by factor of vector size

▪ Modify data processing instructions: Make F-1

copies of loop body instructions

▪ Update references to data: Add 1 to F-1 to data

value indices. May update pointers by factor of F.

▪ Create clean-up loop

▪ Implement remaining iterations with non-

unrolled code

▪ No initialization of i

// Original loop
for (i=0; i<n; i += 1) {

sum_val += x[i];
}

// Unrolled loop
for (i=0; i < n-(F-1); i += F) {

sum_val += x[i];
sum_val += x[i+1];
...
sum_val += x[i+(F-1)];

}

// Loop for remaining iterations
for (; i < n; i++) {

sum_val += x[i];
}

25

Loop Iteration Count Considerations

▪ Unrolling a loop with L iterations by a

factor of F

▪ Unrolled loop performs floor(L/F) iterations

of the unrolled loop (performing F times as

much work per iteration)

▪ This unrolled loop will later be vectorized

▪ Clean-up loop performs L modulo F

remaining iterations of the original loop

(performing 1x work per iteration)

▪ Compiler must generate code which

operates correctly regardless of whether L

is a multiple of F or not

▪ Typically involves generating code to determine

if there are at least F more iterations of work

to perform

▪ Can be simplified if compiler can determine if L

is a multiple of F

26

Basic Loop Unrolling and Vectorization Process

▪ Create prelude

▪ Create vector values (and loop-independent

variables) from scalars

▪ Unroll loop body

▪ Modify loop control code

▪ Test: confirm at least F more iterations remain

▪ Increment: Scale update by factor of F

▪ Unroll loop by factor of vector size

▪ Modify loop body data processing instructions

▪ If Unrolling: Make F-1 copies of instructions

▪ If Vectorizing: replace each scalar instruction with a

vector instruction

▪ Update references to data: Add 1 to F-1 to data

value indices. May update pointers by factor of F.

▪ Create postlude

▪ Reduce (gather, condense, sum) data from

vector to scalar form

▪ Clean-up

▪ Implement remaining iterations with non-

vectorized code

27

Selecting Good Loops

▪ Select an inner-most loop

▪ With data in arrays

▪ Without

▪ Subroutine calls

▪ Conditional control flow

▪ Data dependencies within F successive loop iterations

▪ Determine loop unroll factor (= vector size) F

▪ NEON registers 128 bits wide, options are:

▪ 4 element vector of words

▪ 8 element vector of half-words

▪ 16 element vector of bytes

28

HELPING THE COMPILER WITH

SIMD AND VECTORIZATION

29

Guidance for Making Code More Easily Vectorizable

▪ Refer to NPG 2.1.10

▪ Use short, simple loops

▪ Don’t use break to exit loops

▪ Make loop iterations a power of two

▪ Let compiler know number of loop iterations

▪ Inline all functions called within the loop to vectorize

▪ Use arrays with indexing instead of pointers

▪ Don’t use indirect addressing (multiple indexing or dereferencing)

▪ Use restrict to indicate that pointers don’t reference overlapping areas of memory

30

Want SIMD? Write Code to Imply SIMD

▪ NPG, Section 2.8

▪ Write loops to imply SIMD

▪ Use contents of structure

in a single loop.

▪ Improves cache performance.

▪ Tell compiler where to unroll inner loops

▪ https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html

▪ #pragma GCC ivdep There are no loop-carried dependencies preventing concurrent execution

▪ #pragma unroll n Loop should be unrolled n times

https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html

31

Remember To Use The GCC Vectorization Flags

▪ -ftree-vectorize

▪ Enables vectorization

▪ -ftree-loop-vectorize loop vectorization

▪ -ftree-slp-vectorize basic-block vectorization

▪ Defaults to NEON double register (D), 64 bits

long

▪ –O3 implies –ftree-vectorize

▪ -mvectorize-with-neon-quad

▪ Targets NEON quad register (Q), 128 bits long

▪ -ftree-vectorizer-verbose=<level>

▪ <level> can range from 1 to 6

▪ At 6, provides extensive (excessive?)

information on vectorization attempts and

barriers

▪ -funsafe-math-optimizations

▪ Treat all summation variables as reduction

variables. This assumption eliminates the

inherent loop-carried-dependencies for

such variables, thus allowing vectorization.

32

Constraining Loop Iteration Count

▪ Example: What if len is always a multiple

of four?

▪ Can tell compiler by masking off two

LSBs of len in loop test
▪ len & ~3 = len & 0x1111111…111100

▪ There are no remaining iterations to keep

compiler from vectorizing the loop
Source: DHT 0004A, ARM Ltd.

33

Avoid Loop-Carried Dependencies

▪ Loop-carried dependency exists if a

calculation in iteration j depends on the

result of any previous iteration i, where i<j

▪ This dependency prevents vectorization

▪ Can’t do multiple iterations simultaneously

▪ Sometimes is possible to restructure code

to remove it, but not always

float x[N], y[N];

for (n=1; n<N; n++) {
x[n] = y[n] * x[n-1];

}

// Unrolling once leads to this
for (n=1; n<N; n+=2) {

x[n] = y[n] * x[n-1];
x[n+1] = y[n+1] * x[n];

}

34

Use restrict Keyword

▪ Read from c and d, write to e

▪ e[i] depends on c[i] and d[i]

▪ What if e and d point to overlapping arrays?

▪ e[i] might also be an element in d (e.g. d[i], d[i+1]…)

▪ Order of operations may change with vectorization

▪ Compiler can’t vectorize safely, so it won’t

▪ Tell compiler that the location accessed by p is not

accessed by any other pointer within the current

scope

▪ Use restrict (C99 keyword) to describe a pointer p

▪ GCC also supports __restrict and __restrict__

Source: DHT 0004A, ARM Ltd.

c

d

e

35

Use Appropriate Data Types

▪ In the ARM integer core, 8-bit operations

are slower than 32-bit operations

▪ Need code to extract byte from register before

operation, extend it, and merge it back in after

operation

▪ So, promote shorter data up to 32 bits

▪ In the NEON unit, 8-bit operations are as

fast as 32-bit operations

▪ So, don’t promote shorter data

36

Avoid Conditions in Loops

▪ SIMD – Single instruction, multiple data

▪ Conditions (if, ?:, etc.) usually introduce conditional control-flow in the loop body

▪ Multiple control-flow operations -> Multiple PCs -> Multiple Instruction

▪ Not allowed in SIMD

▪ Some NEON instructions allow elimination of control flow

▪ Saturating math: VQADD, VQSUB,VQDMULH, etc.

▪ Bitwise logic operations: VAND, VBIC, VEOR, VMVN, VORR, VORN

▪ Bitwise select: VBIF, VBIT, VBSL

▪ Comparison: VAC<cond>, VC<cond>, VTST

▪ Will the compiler generate these instructions?

37

USING INTRINSICS AND ARM

C-LANGUAGE EXTENSIONS

38

ARM C Language Extensions

▪ What are intrinsics?

▪ Compiler keywords which specify architecture-specific operations:

NEON and other instructions, support operations

▪ May be implemented as functions, macros, other

▪ Where are the NEON intrinsics described?

▪ NPG: Chapters 4 and 6

▪ ARM: IHI0053D_acle_2_0.pdf,

IHI0073A_arm_neon_intrinsics_ref.pdf

▪ GCC: https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/ARM-C-Language-

Extensions-_0028ACLE_0029.html

▪ How can we use them?

▪ Header file

▪ #include <arm_neon.h> for neon intrinsics

▪ #include <arm_acle.h> for non-neon intrinsics

▪ Makefile

▪ –mfpu=neon

https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/ARM-C-Language-Extensions-_0028ACLE_0029.html#ARM-C-Language-Extensions-_0028ACLE_0029

39

NEON Programmer’s Guide, Chapters 4 & 6

40

Data Types

▪ Scalar data types

▪ Based on standard types from <stdint.h>: int8_t, uint16_t, float32_t, float64_t

▪ Vector data types: base_typexvector_element_count_t

▪ Lane type uses standard types from <stdint.h>

▪ Multiple indicates vector element count

▪ Examples: int8x8_t, float32x4_t

▪ Vector array types base_typexvector_element_countxarray_element_count_t

▪ Based on vector data types, have multiples of 2, 3 or 4.

▪ Examples: int8x8x2_t, int16x4x2_t

41

Example Program: Neon1

▪ In Speed/Vector/Neon1

▪ Find min, max and sum of values in array

▪ What will slow this code down the most?

float x[N_POINTS];
... main(...) {
for (i=0; i<N_POINTS; i++) {

if (x[i] < min_val)
min_val = x[i];

if (x[i] > max_val)
max_val = x[i];

sum_val += x[i];
}

42

Manual Vectorization: Neon1

▪ Goal: operate on four float values at a time

▪ We will have to load the data, process it

and reduce it

▪ Are there any vector min or max

instructions available to eliminate control

flow?

▪ Examine NPG Chapter 3, Appendix C for

instruction overviews

for (i=0; i<N_POINTS; i++) {
if (x[i] < min_val)
min_val = x[i];

if (x[i] > max_val)
max_val = x[i];

sum_val += x[i];
}

43

Vector Max and Min Instructions

▪ VMAX (Vector Maximum)

compares corresponding

elements in two vectors, and

writes the larger of them into

the corresponding element in

the destination vector.

▪ VMIN (Vector Minimum)

compares corresponding

elements in two vectors, and

writes the smaller value into

the corresponding element in

the destination vector.

44

Vector Pairwise Max and Min Instructions

▪ Pairwise: merging data lanes

▪ VPMAX (Vector Pairwise

Maximum) compares adjacent

pairs of elements in two

vectors and writes the larger

of each pair into the

corresponding element in the

destination vector.

▪ VPMIN (Vector Pairwise

Minimum) compares adjacent

pairs of elements in two

vectors, and writes the smaller

of each pair into the

corresponding element in the

destination vector.

▪ Operands and results must

be doubleword vectors.

45

Program Outline

▪ Set up variables

▪ Vector processing loop

▪ Load data elements from memory

▪ Find each lane’s minimum

▪ Find each lane’s maximum

▪ Find each lane’s sum

▪ Vector reduction

▪ Find minimum of all lane minima

▪ Find maximum of all lane maxima

▪ Find sum of all lane sums

▪ Clean-up processing for remaining iterations

min_val

max_val

sum_val

46

Data Flow – Loop Body

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

x

Memory

Registers

v4_max_val 3 2 1 0

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmax

vmin

vadd

vld1

? ? ?

47

Declare and Initialize Vector Variables

▪ See NPG Chapter 4

▪ Declare vector variables

(v4_*) of type float32x4_t

▪ Initialize the vector

variables. Two approaches:

▪ Load scalar from memory and

duplicate to all lanes

▪ Load constant and duplicate

to all lanes

48

Debug Support

49

Data Flow Overview

▪ Initialize vector values for min, max and sum

▪ Load vector with x data

▪ Determine min, max and sum

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

x

Memory

Registers

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmax

vmin

vadd

vld1

vdupq_n_f32 vdupq_n_f32 vdupq_n_f32

v4_max_val 3 2 1 0

vmaxq_f32

50

Code – Loop Body

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

Memory

Registers

v4_max_val 3 2 1 0

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmaxq_f32

vminq_f32

vaddq_f32

vld1q_f32

51

Data Flow – Min (& Max) Reduction

v4_min_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

min_val 0

vpmin

vpmin

?

?

Need to use 2-element vectors since pairwise

instructions work on D registers

52

Code – Min (& Max) Reduction

v4_min_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

min_val 0

vpmin_f32

vpmin_f32

vget_high_f32

vget_lane_f32

vget_low_f32

53

Data Flow – Sum Reduction

v4_sum_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

sum_val 0

vpadd

vpadd

?

?

54

Code – Sum Reduction

v4_sum_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

sum_val 0

vpadd

vpadd

vget_high_f32

vget_lane_f32

vget_low_f32

v2_zero 1 0

55

Resulting Code

56

Can the Compiler Vectorize Neon1?

▪ Try it out

▪ -O1?

▪ -O2?

▪ -O3?

▪ -Ofast?

57

Interleaving and De-Interleaving

58

Memory Layout May Not Match Vector Layout

▪ Example: NPG, Section 6.1 swaps red and blue

▪ Regular load (VLD1) puts some red, green, blue in

each register

▪ VLD1.8 {d0, d1, d2}, [r0]!

▪ (Note that memory is little-endian: register LSB gets

first byte from memory)

▪ Could rewrite code so data in memory is a

structure of arrays instead:

struct {

uint8_t Red[N], Green[N], Blue[N];

} image;

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

MSB LSB

59

Arrays and Structures

▪ Array of structures

struct {

uint8_t Red, Green, Blue;

} image[N];

▪ Could rewrite code to rearrange

data in memory into a structure

of arrays:

struct {

uint8_t Red[N], Green[N], Blue[N];

} image;

▪ Is better fit for normal (linear)

vector loads

60

▪ Instead of changing code to fit linear

loads/stores, use special loads/stores

▪ VLD3.8 {d0, d1, d2}, [r0]!

▪ Structure load (VLDn) de-interleaves memory

into n separate registers

▪ Instructions: NPG, page C-63

“Structure Load” De-Interleaves From Memory Into Register

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

61

Swap Registers

▪ Now can swap red and blue easily

VSWP d0, d2

62

▪ Structure store interleaves multiple

registers into memory

▪ VST3.8 {d0, d1, d2}, [r0]!

“Structure Store” Interleaves From Register Into Memory

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

63

Big Picture

▪ Have support for 2, 3 and 4

element structures

▪ How can it work?

▪ Wide interfaces between NEON

registers and memory

▪ L1 Data Cache

▪ 128 bit interface

64

