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Using NEON Advanced SIMD Processing
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References

▪ NEON Programmer’s Guide DEN0018 

(NPG) – read this first!

▪ Instr. Functionality: ARM Arch. Ref. Manual

▪ Load/Store: 4.11

▪ Register Transfer: 4.12

▪ Data Processing: 4.13, 4.14

▪ ARM C Language Extensions IHI0053 

(ACLE) 

▪ ARM NEON Intrinsics Reference IHI0073 

(NIR)

▪ Performance:  Cortex-A72 Software 

Optimization Guide UAN0016
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USING THE ASIMD 

INSTRUCTIONS
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Again, Do Instruction Set Architectures Matter?

▪ Online discussion by Jack Ganssle, Bill Gatliff, Niall Murphy, and Jim Turley at 
Embedded.com

▪ No!
▪ C compiler hides differences and emulates missing features with code 
▪ Native word size, floating point math, subroutine call penalty, conditional branch delay

▪ Most compilers don’t use those great fast instructions
▪ Table lookup and interpolate, 3D matrix operations, etc

▪ As long as the processor runs fast enough, costs dominate
▪ Yes!

▪ Use “intrinsics” (inline assembly code) to use fast instructions
▪ Code density depends on processor
▪ It takes time and money to come up to speed on a new architecture, so go with what 

gets you a product sooner
▪ More engineers available for hiring if you use a common architecture 
▪ If no (or just buggy) tools are available, it’s not worth using
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▪ Write C code, call functions from SIMD

libraries

▪ Need NEON-optimized libraries for your 

application

▪ Write C code, rely on the compiler to 

generate SIMD instructions

▪ Depends on compiler’s ability to vectorize code

▪ “How can I get the compiler to do what I 

want?”

▪ Write C code with compiler intrinsics

to specify SIMD instructions

▪ Provides more control and takes care of many 

details

▪ Need clear understanding of data layout and 

processing flow

▪ Write a separate SIMD assembly code

module, link it with our C code

▪ Provides full control but you must manage all 

the details

▪ Need clear understanding of data layout and 

processing flow

▪ See “Getting Better Object Code”

How Can We Use These SIMD Instructions?
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USING NEON LIBRARIES



7

▪ From NEON Programmer’s Guide, DEN0018A

▪ And search for “neon-optimized libraries”

Many NEON Libraries Available
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HELPING THE COMPILER
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Documentation

▪ NPG Chapter 2:

▪ And…

▪ NEON Support in Compilation 

Tools: 

http://infocenter.arm.com/help/inde

x.jsp?topic=/com.arm.doc.dht0004

a/ch01s01s01.html

▪ Introducing NEON: 

http://infocenter.arm.com/help/topi

c/com.arm.doc.dht0002a/DHT000

2A_introducing_neon.pdf

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0004a/ch01s01s01.html
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/DHT0002A_introducing_neon.pdf
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Helping GCC Make Fast Code

▪ CPU specification

▪ -mcpu=cortex-a72

▪ -mfpu=crypto-neon-fpu-armv8

▪ Vectorization – More details shortly

▪ -ftree-vectorize (enabled with –O3)

▪ Enables vectorization (both loop and basic-block)

▪ Defaults to 64-bit NEON double registers (Dn)

▪ -mvectorize-with-neon-quad

▪ Targets 128-bit NEON quad registers (Qn)

▪ -funsafe-math-optimizations

▪ Treat all summation variables as reduction 

variables.  More later…

▪ Other

▪ -fsingle-precision-constant

▪ Treat floating-point constants as single-precision, 

not double-precision

▪ -ffast-math 

▪ NEON floating point math uses Flush-to-Zero 

mode, not compliant with IEEE-754

▪ This flag tells compiler it doesn’t need to generate 

IEEE-754-compliant code

▪ -Ofast

▪ Enables all –O3 optimizations and -ffast-math, -

fallow-store-data-races and fno-protect-

parens
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Linkage Methods

▪ How are floating-point subroutine arguments/return values passed?

▪ In ARM registers (r0-r3)? Software linkage

▪ In FPU and NEON registers? Hardware linkage

▪ Command line options

▪ soft: uses software linkage, and all floating-point operations are calls to library functions

▪ softfp: uses software linkage, but allows compiler to generate hardware floating-point instructions

▪ hard: uses hardware linkage and allows compiler to generate hardware floating-point instructions

▪ -mfloat-abi=hard
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Runfast Mode
▪ Allows some VFP instructions to execute in NEON unit

▪ FADDS, FSUBS, FABSS, FNEGS, FMULS, FNMULS, FMACS, FNMACS, FMSCS, FNMSCS, FCMPS, FCMPES, FCMPZS, FCMPEZS, 

FUITOS, FSITOS, FTOUIS, FTOSIS, FTOUIZS, FTOSIZS, FSHTOS, FSLTOS, FUHTOS, FULTOS, FTOSHS, FTOSLS, FTOUHS, 

FTOULS

void enable_runfast() {

static const unsigned int x = 0x04086060;

static const unsigned int y = 0x03000000;

int r;

asm volatile (

"fmrx %0, fpscr \n\t" //r0 = FPSCR

"and %0, %0, %1 \n\t" //r0 = r0 & 0x04086060

"orr %0, %0, %2 \n\t" //r0 = r0 | 0x03000000

"fmxr fpscr, %0 \n\t" //FPSCR = r0

: "=r"(r)

: "r"(x), "r"(y)

);

}

▪ Applicable to Cortex-A8. Does it still apply for Cortex-A72?
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More GCC Flags

▪ -ffinite-math-only

▪ There will be no overflows or results that are equivalent to infinity in the code, enabling more 

optimizations.

▪ -fno-math-errno

▪ Eliminate all math error handling/generation code. Functions such as the sqrt() generate math errors 

when appropriate, and this can prevent inlining of such functions
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BASICS OF VECTORIZATION
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Want SIMD? Help Compiler Vectorize the Code

▪ Background

▪ Scalar code: operates on one set of operands at 

a time

▪ Vector code: operates on multiple sets of 

operands at a time

▪ Vectorization: converting code from scalar to 

vector form

▪ Vectorization is main compiler 

optimization enabling use of SIMD 

instructions

▪ Others possible, but don’t work on as much 

code, harder to implement in compiler

▪ Best to try to vectorize loops first

▪ Innermost loops often dominate execution time

▪ Arrangement of instructions and data make 

vectorization easier (than the general case, e.g. 

straight-line code)

▪ Vectorization of loops is built on loop 

unrolling 

▪ Next:

▪ Basic methods for loop unrolling

▪ Command-line options for compiler

▪ Coding practices
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Example Program: Neon0 

▪ Per element: Multiply ax and bx, 

add product to az

▪ Sum all resulting az elements, 

return as prod_sum

ax 0 1 2 3 4 5 6 7 8 9 ay 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

prod_sum
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What Does the Compiler Do With the Code?

▪ Build with -O3 optimization

▪ Very fast! 1.547 cycles per element

▪ What’s the compiler doing? Examine object code

▪ Inner loop (c8): Vectorized loop body 

▪ Reduction code after inner loop body
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Data Flow – Loop Body
ax 0 1 2 3 4 5 6 7 8 9

ay 0 1 2 3 4 5 6 7 8 9

az 0 1 2 3 4 5 6 7 8 9

*az: q8/d16-17 0 1 2 3

*ax: q11/d22-23 0 1 2 3

*ay: q10/d20-21 0 1 2 3

prod_sum: q9 0 1 2 3

ax: r1

ay: r2

az: r3

i1

i2

i3

i4

i5

i6

i7

i8

Memory

Registers

*az: q8/d16-17 0 1 2 3

prod_sum: q9 0 1 2 3
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Data Flow – Reduction for prod_sum

d18 d19

prod_sum: q9/d18-19 0 1 2 3

i9

i10

i11

i12

d18 0 1

d18 0 1

r3

sum of 

az[1,5…]

sum of 

az[0,4…]

sum of 

az[3,7…]
sum of 

az[2,6…]
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Reflections

▪ Fast! Only 8 instructions execute to process 4 sets 

of array elements

▪ Performance

▪ Most time (95.16%) is spent waiting for three load 

instructions

▪ => Memory-bound program

▪ Best-case aspects of this example

▪ Data is in separate arrays, easy to load into registers

▪ Compiler can optimize and eliminate general-case code

▪ Fixed iteration count

▪ Vector size of 4 cleanly divides iteration count

▪ No control flow in loop body

▪ No data dependencies between loop iterations
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What If? Disable Vectorization

▪ -fno-tree-vectorize

▪ Not as fast: 3.379 cycles

▪ Still have 8 instructions in inner loop, but they only 

process one set of array elements at a time

▪ Why is vectorized version only 3.379/1.547=2.18 times 

faster, despite processing 4x data per loop iteration?



22

BASICS OF LOOP UNROLLING 

FOR VECTORIZATION
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▪ Compiler tries to unroll loops when optimizing

▪ Let’s help the compiler by providing better code

▪ We may need to tweak code to enable loop unrolling

▪ We may want to manually unroll loops 

▪ If compiler can’t

▪ If not using the compiler

Why Understanding Loop Unrolling Matters



24

Basic Loop Unrolling Process

▪ Unroll loop body

▪ New loop body will perform F iterations of 

original loop body

▪ Modify loop control code

▪ Test: confirm at least F more iterations remain

▪ Increment: Scale update by factor of F

▪ Unroll loop by factor of vector size

▪ Modify data processing instructions: Make F-1 

copies of loop body instructions

▪ Update references to data: Add 1 to F-1 to data 

value indices. May update pointers by factor of F.

▪ Create clean-up loop

▪ Implement remaining iterations with non-

unrolled code

▪ No initialization of i

// Original loop
for (i=0; i<n; i += 1) {

sum_val += x[i];
}

// Unrolled loop
for (i=0; i < n-(F-1); i += F) {

sum_val += x[i];
sum_val += x[i+1];
...
sum_val += x[i+(F-1)];

}

// Loop for remaining iterations
for (; i < n; i++) {

sum_val += x[i];
}
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Loop Iteration Count Considerations

▪ Unrolling a loop with L iterations by a 

factor of F 

▪ Unrolled loop performs floor(L/F) iterations 

of the unrolled loop (performing F times as 

much work per iteration)

▪ This unrolled loop will later be vectorized

▪ Clean-up loop performs L modulo F 

remaining iterations of the original loop 

(performing 1x work per iteration)

▪ Compiler must generate code which 

operates correctly regardless of whether L 

is a multiple of F or not

▪ Typically involves generating code to determine 

if there are at least F more iterations of work 

to perform

▪ Can be simplified if compiler can determine if L 

is a multiple of F
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Basic Loop Unrolling and Vectorization Process

▪ Create prelude

▪ Create vector values (and loop-independent 

variables) from scalars

▪ Unroll loop body

▪ Modify loop control code

▪ Test: confirm at least F more iterations remain

▪ Increment: Scale update by factor of F

▪ Unroll loop by factor of vector size

▪ Modify loop body data processing instructions

▪ If Unrolling: Make F-1 copies of instructions

▪ If Vectorizing: replace each scalar instruction with a 

vector instruction

▪ Update references to data: Add 1 to F-1 to data 

value indices. May update pointers by factor of F.

▪ Create postlude

▪ Reduce (gather, condense, sum) data from 

vector to scalar form

▪ Clean-up

▪ Implement remaining iterations with non-

vectorized code
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Selecting Good Loops

▪ Select an inner-most loop 

▪ With data in arrays 

▪ Without

▪ Subroutine calls

▪ Conditional control flow

▪ Data dependencies within F successive loop iterations

▪ Determine loop unroll factor (= vector size) F

▪ NEON registers 128 bits wide, options are:

▪ 4 element vector of words

▪ 8 element vector of half-words

▪ 16 element vector of bytes
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HELPING THE COMPILER WITH 

SIMD AND VECTORIZATION
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Guidance for Making Code More Easily Vectorizable 

▪ Refer to NPG 2.1.10

▪ Use short, simple loops

▪ Don’t use break to exit loops

▪ Make loop iterations a power of two

▪ Let compiler know number of loop iterations

▪ Inline all functions called within the loop to vectorize

▪ Use arrays with indexing instead of pointers

▪ Don’t use indirect addressing (multiple indexing or dereferencing)

▪ Use restrict to indicate that pointers don’t reference overlapping areas of memory
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Want SIMD? Write Code to Imply SIMD

▪ NPG, Section 2.8

▪ Write loops to imply SIMD

▪ Use contents of structure 

in a single loop. 

▪ Improves cache performance.

▪ Tell compiler where to unroll inner loops 

▪ https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html

▪ #pragma GCC ivdep There are no loop-carried dependencies preventing concurrent execution

▪ #pragma unroll n Loop should be unrolled n times

https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html
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Remember To Use The GCC Vectorization Flags

▪ -ftree-vectorize 

▪ Enables vectorization

▪ -ftree-loop-vectorize loop vectorization

▪ -ftree-slp-vectorize basic-block vectorization

▪ Defaults to NEON double register (D), 64 bits 

long

▪ –O3 implies –ftree-vectorize

▪ -mvectorize-with-neon-quad

▪ Targets NEON quad register (Q), 128 bits long

▪ -ftree-vectorizer-verbose=<level> 

▪ <level> can range from 1 to 6

▪ At 6, provides extensive (excessive?) 

information on vectorization attempts and 

barriers

▪ -funsafe-math-optimizations

▪ Treat all summation variables as reduction 

variables. This assumption eliminates the 

inherent loop-carried-dependencies for 

such variables, thus allowing vectorization.
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Constraining Loop Iteration Count

▪ Example: What if len is always a multiple 

of four?

▪ Can tell compiler by masking off two 

LSBs of len in loop test 
▪ len & ~3 = len & 0x1111111…111100

▪ There are no remaining iterations to keep 

compiler from vectorizing the loop
Source: DHT 0004A, ARM Ltd.
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Avoid Loop-Carried Dependencies

▪ Loop-carried dependency exists if a 

calculation in iteration j depends on the 

result of any previous iteration i, where i<j

▪ This dependency prevents vectorization

▪ Can’t do multiple iterations simultaneously

▪ Sometimes is possible to restructure code 

to remove it, but not always

float x[N], y[N];

for (n=1; n<N; n++) {
x[n] = y[n] * x[n-1];

}

// Unrolling once leads to this
for (n=1; n<N; n+=2) {

x[n] = y[n] * x[n-1];
x[n+1] = y[n+1] * x[n];

}
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Use restrict Keyword

▪ Read from c and d, write to e

▪ e[i] depends on c[i] and d[i]

▪ What if e and d point to overlapping arrays?

▪ e[i] might also be an element in d (e.g. d[i], d[i+1]…)

▪ Order of operations may change with vectorization

▪ Compiler can’t vectorize safely, so it won’t

▪ Tell compiler that the location accessed by p is not 

accessed by any other pointer within the current 

scope

▪ Use restrict (C99 keyword) to describe a pointer p

▪ GCC also supports __restrict and __restrict__

Source: DHT 0004A, ARM Ltd.

c

d

e
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Use Appropriate Data Types

▪ In the ARM integer core, 8-bit operations 

are slower than 32-bit operations

▪ Need code to extract byte from register before 

operation, extend it, and merge it back in after 

operation

▪ So, promote shorter data up to 32 bits

▪ In the NEON unit, 8-bit operations are as 

fast as 32-bit operations

▪ So, don’t promote shorter data
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Avoid Conditions in Loops

▪ SIMD – Single instruction, multiple data

▪ Conditions (if, ?:, etc.) usually introduce conditional control-flow in the loop body

▪ Multiple control-flow operations -> Multiple PCs -> Multiple Instruction

▪ Not allowed in SIMD

▪ Some NEON instructions allow elimination of control flow

▪ Saturating math: VQADD, VQSUB,VQDMULH, etc.

▪ Bitwise logic operations: VAND, VBIC, VEOR, VMVN, VORR, VORN

▪ Bitwise select: VBIF, VBIT, VBSL

▪ Comparison: VAC<cond>, VC<cond>, VTST

▪ Will the compiler generate these instructions?



37

USING INTRINSICS AND ARM 

C-LANGUAGE EXTENSIONS
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ARM C Language Extensions

▪ What are intrinsics?

▪ Compiler keywords which specify architecture-specific operations: 

NEON and other instructions, support operations

▪ May be implemented as functions, macros, other

▪ Where are the NEON intrinsics described?

▪ NPG: Chapters 4 and 6

▪ ARM: IHI0053D_acle_2_0.pdf, 

IHI0073A_arm_neon_intrinsics_ref.pdf

▪ GCC: https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/ARM-C-Language-

Extensions-_0028ACLE_0029.html

▪ How can we use them?

▪ Header file

▪ #include <arm_neon.h>  for neon intrinsics

▪ #include <arm_acle.h> for non-neon intrinsics

▪ Makefile

▪ –mfpu=neon

https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/ARM-C-Language-Extensions-_0028ACLE_0029.html#ARM-C-Language-Extensions-_0028ACLE_0029
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NEON Programmer’s Guide, Chapters 4 & 6
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Data Types

▪ Scalar data types

▪ Based on standard types from <stdint.h>:  int8_t, uint16_t, float32_t, float64_t

▪ Vector data types: base_typexvector_element_count_t

▪ Lane type uses standard types from <stdint.h>

▪ Multiple indicates vector element count

▪ Examples: int8x8_t, float32x4_t

▪ Vector array types base_typexvector_element_countxarray_element_count_t

▪ Based on vector data types, have multiples of 2, 3 or 4.

▪ Examples: int8x8x2_t, int16x4x2_t
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Example Program: Neon1

▪ In Speed/Vector/Neon1

▪ Find min, max and sum of values in array

▪ What will slow this code down the most?

float x[N_POINTS];
... main(...) {
for (i=0; i<N_POINTS; i++) {

if (x[i] < min_val)
min_val = x[i];

if (x[i] > max_val)
max_val = x[i];

sum_val += x[i];
}
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Manual Vectorization: Neon1

▪ Goal: operate on four float values at a time

▪ We will have to load the data, process it 

and reduce it 

▪ Are there any vector min or max 

instructions available to eliminate control 

flow? 

▪ Examine NPG Chapter 3,  Appendix C for 

instruction overviews

for (i=0; i<N_POINTS; i++) {
if (x[i] < min_val)
min_val = x[i];

if (x[i] > max_val)
max_val = x[i];

sum_val += x[i];
}
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Vector Max and Min Instructions

▪ VMAX (Vector Maximum) 

compares corresponding 

elements in two vectors, and 

writes the larger of them into 

the corresponding element in 

the destination vector.

▪ VMIN (Vector Minimum) 

compares corresponding 

elements in two vectors, and 

writes the smaller value into 

the corresponding element in 

the destination vector.
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Vector Pairwise Max and Min Instructions

▪ Pairwise: merging data lanes

▪ VPMAX (Vector Pairwise 

Maximum) compares adjacent 

pairs of elements in two 

vectors and writes the larger

of each pair into the 

corresponding element in the 

destination vector.

▪ VPMIN (Vector Pairwise 

Minimum) compares adjacent 

pairs of elements in two 

vectors, and writes the smaller

of each pair into the 

corresponding element in the 

destination vector.

▪ Operands and results must 

be doubleword vectors.
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Program Outline

▪ Set up variables

▪ Vector processing loop

▪ Load data elements from memory

▪ Find each lane’s minimum

▪ Find each lane’s maximum

▪ Find each lane’s sum

▪ Vector reduction

▪ Find minimum of all lane minima

▪ Find maximum of all lane maxima

▪ Find sum of all lane sums

▪ Clean-up processing for remaining iterations

min_val

max_val

sum_val
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Data Flow – Loop Body

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

x

Memory

Registers

v4_max_val 3 2 1 0

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmax

vmin

vadd

vld1

? ? ?
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Declare and Initialize Vector Variables

▪ See NPG Chapter 4

▪ Declare vector variables 

(v4_*) of type float32x4_t

▪ Initialize the vector 

variables. Two approaches:

▪ Load scalar from memory and 

duplicate to all lanes

▪ Load constant and duplicate 

to all lanes
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Debug Support
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Data Flow Overview

▪ Initialize vector values for min, max and sum

▪ Load vector with x data

▪ Determine min, max and sum

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

x

Memory

Registers

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmax

vmin

vadd

vld1

vdupq_n_f32 vdupq_n_f32 vdupq_n_f32

v4_max_val 3 2 1 0

vmaxq_f32
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Code – Loop Body

x 0 1 2 3 4 5 6 7 8 9

v4_max_val 3 2 1 0

v4_x 3 2 1 0

v4_min_val 3 2 1 0 v4_sum_val 3 2 1 0

Memory

Registers

v4_max_val 3 2 1 0

v4_min_val 3 2 1 0

v4_sum_val 3 2 1 0

vmaxq_f32

vminq_f32

vaddq_f32

vld1q_f32
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Data Flow – Min (& Max) Reduction

v4_min_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

min_val 0

vpmin

vpmin

?

?

Need to use 2-element vectors since pairwise 

instructions work on D registers
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Code – Min (& Max) Reduction

v4_min_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

min_val 0

vpmin_f32

vpmin_f32

vget_high_f32

vget_lane_f32

vget_low_f32
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Data Flow – Sum Reduction

v4_sum_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

sum_val 0

vpadd

vpadd

?

?
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Code – Sum Reduction

v4_sum_val 3 2 1 0

v2_u 1 0 v2_l 1 0

v2_u 1 0

v2_u 1 0

sum_val 0

vpadd

vpadd

vget_high_f32

vget_lane_f32

vget_low_f32

v2_zero 1 0
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Resulting Code



56

Can the Compiler Vectorize Neon1?

▪ Try it out

▪ -O1?

▪ -O2?

▪ -O3?

▪ -Ofast?
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Interleaving and De-Interleaving
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Memory Layout May Not Match Vector Layout

▪ Example: NPG, Section 6.1 swaps red and blue

▪ Regular load (VLD1) puts some red, green, blue in 

each register

▪ VLD1.8 {d0, d1, d2}, [r0]! 

▪ (Note that memory is little-endian: register LSB gets 

first byte from memory)

▪ Could rewrite code so data in memory is a 

structure of arrays instead: 

struct { 

uint8_t Red[N], Green[N], Blue[N]; 

} image; 

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8

MSB LSB
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Arrays and Structures

▪ Array of structures

struct { 

uint8_t Red, Green, Blue; 

} image[N]; 

▪ Could rewrite code to rearrange 

data in memory into a structure 

of arrays: 

struct { 

uint8_t Red[N], Green[N], Blue[N]; 

} image; 

▪ Is better fit for normal (linear) 

vector loads
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▪ Instead of changing code to fit linear 

loads/stores, use special loads/stores 

▪ VLD3.8 {d0, d1, d2}, [r0]! 

▪ Structure load (VLDn) de-interleaves memory 

into n separate registers

▪ Instructions: NPG, page C-63

“Structure Load” De-Interleaves From Memory Into Register

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
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Swap Registers 

▪ Now can swap red and blue easily

VSWP d0, d2
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▪ Structure store interleaves multiple 

registers into memory

▪ VST3.8 {d0, d1, d2}, [r0]! 

“Structure Store” Interleaves From Register Into Memory

Memory

0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8
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Big Picture

▪ Have support for 2, 3 and 4 

element structures

▪ How can it work?

▪ Wide interfaces between NEON 

registers and memory

▪ L1 Data Cache 

▪ 128 bit interface
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