NC STATE UNIVERSITY

Using NEON Advanced SIMD Processing

NC STATE UNIVERSITY

References

= NEON Programmer’s Guide DENOOI8 Instr. Functionality: ARM Arch. Ref. Manual

(NPG) — read this first! = Load/Store: 4.1 |
" NEON Programmer’s Guide : RegISterTran?fer: 4.12
P Contents = Data Processing: 4.13,4.14
#1F preface
2 1 Introducti .
A | = ARM C Language Extensions IHI0053
2: Compiling NEON Instructions
= F 3: NEON Instruction Set Architecture (ACLE)
I 4: NEON Intrinsics
I 5. Optimizing NEON Cod .
g e = ARM NEON Intrinsics Reference IHI0073
6: NEON Code Examples with Intrinsics
#IF 7. NEON Code Examples with Mixed Operations (NIR)

+

¥ 8: NEON Code Examples with Optimization

[P A: NEON Microarchitecture
7 _ Lo wmee | ® Performance: Cortex-A72 Software
B: Operating System Support & PP
ry

¥ ¢: NEON and VFP Instruction Summa T =1 Optlmlzatlon GUIde UANOO I 6
2 f D: NEON Intrinsics Reference

+

+

+

+

NC STATE UNIVERSITY

USING THE ASIMD
INSTRUCTIONS

NC STATE UNIVERSITY

Again, Do Instruction Set Architectures Matter?

= Online discussion by Jack Ganssle, Bill Gatliff, Niall Murphy, and Jim Turley at
Embedded.com

= No!
= C compiler hides differences and emulates missing features with code
= Native word size, floating point math, subroutine call penalty, conditional branch delay

= Most compilers don’t use those great fast instructions
= Table lookup and interpolate, 3D matrix operations, etc

= As long as the processor runs fast enough, costs dominate
" Yes!
= Use “intrinsics” (inline assembly code) to use fast instructions
= Code density depends on processor
= |t takes time and money to come up to speed on a new architecture, so go with what
gets you a product sooner
= More engineers available for hiring if you use a common architecture
= |f no (or just buggy) tools are available, it’s not worth using

How Can We Use These SIMD Instructions?

" Write C code, call functions from SIMD = Write C code with compiler intrinsics

libraries to specify SIMD instructions
= Need NEON-optimized libraries for your = Provides more control and takes care of many
application details

= Need clear understanding of data layout and
processing flow

" Write a separate SIMD assembly code
module, link it with our C code

= Provides full control but you must manage all
the details

= Need clear understanding of data layout and
processing flow

= See “Getting Better Object Code”

= Write C code, rely on the compiler to
generate SIMD instructions
= Depends on compiler’s ability to vectorize code

= “How can | get the compiler to do what |
want?”’

NC STATE UNIVERSITY

USING NEON LIBRARIES

Many NEON Libraries Available

NelO library functions, the C interfaces to the functions provide assembler and NEON
implementations. See http://projectnel®d.github.com/Neld/.

OpenMAX, a set of APIs for processing audio, video, and still images. It 1s part of a
standard created by the Khronos group. There is a free ARM implementation of the
OpenMAX DL layer for NEON. See http://waww.khronos.org/openmax/.

ffmpeg, a collection of codecs for many different audio and video standards under LGPL
license at http://ffmpeg.org/.

Eigen3, a linear algebra, matrix math C++ template library at eigen.tuxfamily.org/.
Pixman, a 2D graphics library (part of Cairo graphics) at http://pixman.org/.

x264, a rights-free GPL H.264 video encoder at
http://www.videolan.org/developers/x264.html.

Math-neon at http://code.google.com/p/math-neon/.

* From NEON Programmer’s Guide, DENOOI8A
= And search for “neon-optimized libraries”

7

NC STATE UNIVERSITY

NC STATE UNIVERSITY

HELPING THE COMPILER

v [2: Compiling NEON Instructions NC STATE UNIVERSITY

1 > [d 2.1 Vectorization
Documentation
> I:] 2.2 Generating NEON code using the vectorizing
compiler
> |:| 2.3 Vectorizing examples
= NPG Chapter 2: > [d 2.4 NEON assembler and ABI restrictions
= And... [d 2.5 NEON libraries

= NEON Support in Compilation W 28ntinsics

Tools: > |:| 2.7 Detecting presence of a NEON unit
http://infocenter.arm.com/help/inde v [2.8 Writing code to imply SIMD
x.jsp!topic=/com.arm.doc.dht0004 [1 2.8.1 Writing loops to imply SIMD
a/ch01s01s0l.html [l 2.8.2 Tell the compiler where to unroll inner loops
= Introducing NEON: [d 2.8.3 Write structures to imply SIMD
http://infocenter.arm.com/help/topi v R 29 oA

c/com.arm.doc.dht0002a/DHT000
2A_introducing_neon.pdf

l:] 2.9.1 Option to specify the CPU

|:] 2.9.2 Option to specify the FPU

[d 2.9.3 Option to enable use of NEON and
floating-point instructions

|:] 2.9.4 Vectorizing floating-point operations

I:I 2.9.5 Example GCC command line usage for
NEON code optimization

? [l 2.9.6 GCC information dump

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dht0004a/ch01s01s01.html
http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/DHT0002A_introducing_neon.pdf

NC STATE UNIVERSITY

Helping GCC Make Fast Code

= CPU specification = Other

= -fsingle-precision-constant
= Treat floating-point constants as single-precision,
not double-precision

o . = -ffast-math
" Vectorization — More details shortly = NEON floating point math uses Flush-to-Zero
= -ftree-vectorize (enabled with —-O3) mode, not compliant with IEEE-754
= This flag tells compiler it doesn’t need to generate
|IEEE-754-compliant code

= -Ofast
= Enables all -O3 optimizations and -ffast-math, -
fallow-store-data-races and fno-protect-
parens

" -mcpu=cortex-a72
= -mfpu=crypto-neon-fpu-armv8

= Enables vectorization (both loop and basic-block)

= Defaults to 64-bit NEON double registers (Dn)
= -mvectorize-with-neon-quad

= Targets 128-bit NEON quad registers (Qn)

» -funsafe-math-optimizations

= Treat all summation variables as reduction
variables. More later...

NC STATE UNIVERSITY
Linkage Methods

How are floating-point subroutine arguments/return values passed!?
= |n ARM registers (r0-r3)? Software linkage
* |n FPU and NEON registers? Hardware linkage

Command line options
= soft: uses software linkage, and all floating-point operations are calls to library functions
= softfp: uses software linkage, but allows compiler to generate hardware floating-point instructions
= hard: uses hardware linkage and allows compiler to generate hardware floating-point instructions

= .mfloat-abi=hard

NC STATE UNIVERSITY
Runfast Mode

= Allows some VFP instructions to execute in NEON unit

= FADDS, FSUBS, FABSS, FNEGS, FMULS, FNMULS, FMACS, FNMACS, FMSCS, FNMSCS, FCMPS, FCMPES, FCMPZS, FCMPEZS,
FUITOS, FSITOS, FTOUIS, FTOSIS, FTOUIZS, FTOSIZS, FSHTOS, FSLTOS, FUHTOS, FULTOS, FTOSHS, FTOSLS, FTOUHS,
FTOULS

void enable_runfast() {
static const unsigned int x = 0x04086060;
static const unsigned int y = 0x03000000;
int r;
asm volatile (
"fmrx %0, fpscr \n\t" //r0 = FPSCR
"and %0, %0, %1 \n\t" //r0 = rO0 & 0x04086060
"orr %0, %0, %2 \n\t" //r0 = rO | 0x03000000
"fmxr fpscr, %0 \n\t" //FPSCR = rO
"=r"(r)
OO, ()
);
3
= Applicable to Cortex-A8. Does it still apply for Cortex-A72?

12

NC STATE UNIVERSITY
More GCC Flags

= ffinite-math-only

= There will be no overflows or results that are equivalent to infinity in the code, enabling more
optimizations.

= .fho-math-errno

= Eliminate all math error handling/generation code. Functions such as the sqrt() generate math errors
when appropriate, and this can prevent inlining of such functions

NC STATE UNIVERSITY

BASICS OF VECTORIZATION

NC STATE UNIVERSITY

Want SIMD? Help Compiler Vectorize the Code

= Background » Best to try to vectorize loops first
= Scalar code: operates on one set of operands at ® Innermost loops often dominate execution time
a time = Arrangement of instructions and data make
= Vector code: operates on multiple sets of vectorization easier (than the general case, e.g.
operands at a time straight-line code)
= Vectorization: converting code from scalar to = Vectorization of |OOpS is built on |00p
vector form unrolling
* Vectorization is main compiler = Next:
optimization enabling use of SIMD - Basic methods for loop unrolling
Instructions = Command-line options for compiler
= Others possible, but don’t work on as much » Coding practices

code, harder to implement in compiler

NC STATE UNIVERSITY
Example Program: NeonO

“HFTTE:;EZ—/ﬁnnEqFEE@EE

az !lllﬂ!l@ﬂﬂgﬂﬂ
@@c—/

.. ENINEN

prod_sum

int mult_ints{int * ax, int * ay, int * az, int n)

{

= Per element: Multiply ax and bx, int prod sum = @
for (int i=@; 1 = n; i++
add product to az abi] = axlifoayiile
= Sum all resulting az elements, , prod-sum = Azl

return as prod_sum , return prod_sum;

NC STATE UNIVERSITY

What Does the Compiler Do With the Code?

int prod _sum = @;
for (int i=@:; i = n; i++) {

= Build with -O3 optimization az[i] += ax[il*ay[il:
:~/AES-20820/Speed/Vector/Neon® $ sudo perf record ./neonB prod_sum += az[i];
Sum = 1829808256 3 N
Average 1.031 ns (1.547 cycles) per element (10000)
[perf record: Woken up 1 times to write data] Samples: 4K of event 'cpu-clock', © Hz,
[perf record: Captured and wrote ©.165 MB perf.data (4128 samples)] main Jhome/pi/AES-2020/5peed/Vector/Ne
Percent mow ro, #0
- | .82 b4: vmow.132 g9, #0 ; Ox000
Very fast! 1.547 cycles per element o ;
* What'’s the compiler doing? Examine object code novt T3
= Inner loop (.&):Vectorized loop body \ \ J mov r2, r6
S 4 44.26 | cB o —VIdI 32 {d16-d17}, [r3]
QQ\}L/ 23.34 ,vldl.32 {d22-d23}, [rl1]

, , 27.56 "v1d1.32 {d20-d21}, [r2]!
= Reduction code after inner loop body ’ D,T “mla.i32 g8, qii, qio
£ l%@ 4.75 ,vstl.32 {di16-d17}, [r3]
‘(‘3 > =2 'D(\D‘b suh ~cmp re, r3
- -vadd.132 @9,) q9, g8
(| _—bne céﬂi’ __////

0.e7 vadd.1 dig, dis, dig

(\ﬂ' ’K\ /\—// (ZZDQ} yao(- subs r4, r4, #1

)

NG C/bg’ vpadd.i32 dis, dis, dis8
vmov .32 r3, dils[o]

REPRET 2
Data Flow — Loop Body XL TR,
~ (NN ENENE © Q 2 ﬂllﬂ 3 1405 (6178 9

/I
2 V)

< ax: ql 1/d22-23 @

- 2

Memory

Registers

ax:ri

&2

int prod_sum = 8;

for (int i=68; 1 = n; i++) {
az[i] += ax[i]*ay[1];
prod_sum += az[1i];

} Gb \@5

o o b oo
prod_sum: q9 IIIII.I!F

1Y wldl.32 ({d16-d17};

iV wld1.32 {d22-d23}, [riJ!
i3V, wldl.32 {d2e-d21}, Trz]!
i4/ wvmla.132 g8, qll1, gl@
i5v/ wstl.32 {dl6-d17}, [r3]!
i6 Mmg JO, ra_

17 vadd.132 &9__, gy, g8

4.8 one C

NC STATE UNIVERSITY

Data Flow — Reduction for prod sum

int mult_ints(int * ax, int * ay, int * az, int n)
{
int prod_sum = 8;
for (int i=6; i = n; i++) {
az[i] += ax[1]*ay[i];
prod_sum += az[1i];
}
return prod_sum;

}

dig8

o~ y
(iov” vadd.i32 di18, di18, dil9
110 _~subs rd, rd, #1

i11 vpadd.i32 di8, gdis, dis

N i12 wvmov.32 r3, dig[o]

pV

o,

r3

NC STATE UNIVERSITY

Reflections
= Fast! Only 8 instructions execute to process 4 sets H:TELEHD;;;IiEenEr?cpup;égckecthEE
of array elements Percent mov r5, #0
- B.B2 b4: vmov.132 g9, #0 ; Ox0600
= Performance e movw 3, #704 ;
] mowvt r3, #9
= Most time (95.16%) is spent waiting for three load mov rl, r7
; : mowv rZ2, ri
Instructions 44,26 | c8: —.v1d1.32 {d16-d17}, [r3]
= => Memory-bound program i 23.34 vldi.32 {d22-d23}, [ri]!
. 27 .56 vldi.32 {d2e-d21}, [r2]!
= Best-case aspects of this example vmla.i32 g8, qll, ql®
.. . . : 4.75 vstl.32 {dl16-d17}, [r3]
= Data is in separate arrays, easy to load into registers cmp 0, r3
= Compiler can optimize and eliminate general-case code _Eﬁ:d'ﬂisqg' q9, q8
= Fixed iteration count 6.087 vadd.i32 di18, di18, dig
. subs rd, rd4, #1
= Vector size of 4 cleanly divides iteration count vpadd.i32 dis. dis, di8
= No control flow in loop body vmov.32 r3, dig[e]

= No data dependencies between loop iterations

20

NC STATE UNIVERSITY

What If? Disable Vectorization

» -fno-tree-vectorize Samples: 9K of event 'cpu-clock', @ H:

main /home/pi/AES-2020/Speed/Vector/

:~/AES-2020/Speed/Vector/Neon® 5 sudo perf record ./neond® Percent _ bl _ clock_gettime
Sum = LEgSRHE256 _ | 0.06 | 98: ldr r2, [pc, #256]
Average Z.253 ns (2.379 cycles) per element (10608))) L !
[perf record: Woken up 2 times to write data] mov 1p, r6
[perf record: Captured and wrote 0.352 MB perf.data (9614 samples)] mow ré, rs
mow rl, #0
37.74 af: —1ldr Llr, [r2, #4]!
= Not as fast: 3.379 cycles T dr 3, %FEH 94%;
24 .39 |dr rég, [ip, #4]!
cmp rZ, r9
= Still have 8 instructions in inner loop, but they only by r3, r8, r3, Ir
_ A0 rli, rl, r3
process one set of array elements at a time 7.66 Lr r3, [r2]
—bne al
.82 subs rd, rd, #1
add r7, r7, rl

= Why is vectorized version only 3.379/1.547=2.18 times
faster, despite processing 4x data per loop iteration!?

21

NC STATE UNIVERSITY

BASICS OF LOOP UNROLLING
FORVECTORIZATION

Why Understanding Loop Unrolling Matters

= Compiler tries to unroll loops when optimizing
= Let’s help the compiler by providing better code
= We may need to tweak code to enable loop unrolling

= We may want to manually unroll loops
= |f compiler can’t

= If not using the compiler

23

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Basic Loop Unrolling Process

// original loop

for (i=0; di<n; i += 1) { = Unroll loop body
1 sum_val += x[1]; = New loop body will perform F iterations of
original loop body

@ = Modify loop control code

= Test: confirm at least F more iterations remain
// unrolled Tloop

for (i=0; 1 < n-(F-1); 1 4= F) {

sum_val += x[1];
sum_val += X :-i +]_] : * Modify data processing instructions: Make F-1

copies of loop body instructions

= Increment: Scale update by factor of F

= Unroll loop by factor of vector size

él:lr‘.n_va-| += x[i1+(F-1)]; " Updat.e r?ferences to data:Add | to F-1 to data
1 value indices. May update pointers by factor of
= Create clean-up loop
// Loop for remaining iterations = Implement remaining iterations with non-
for (G 1 < n; ++) { unrolled code

sum_val += x[1]; = No initialization of i

NC STATE UNIVERSITY

Loop Iteration Count Considerations

= Unrolling a loop with L iterations by a = Compiler must generate code which
factor of F operates correctly regardless of whether L
= Unrolled loop performs floor(L/F) iterations is a multiple of F or not

of the unrolled loop (performing F times as

= Typically involves generating code to determine
much work per iteration)

if there are at least F more iterations of work

= This unrolled loop will later be vectorized to perform
= Clean-up loop performs L modulo F = Can be simplified if compiler can determine if L
remaining iterations of the original loop is a multiple of F

(performing Ix work per iteration)

25

Basic Loop Unrolling and

= Unroll loop body

= Modify loop control code
= Test: confirm at least F more iterations remain
= Increment: Scale update by factor of F

= Unroll loop by factor of vector size

* Modify loop body data processing instructions

= If Unrolling: Make F-1 copies of instructions

= Update references to data:Add | to F-1 to data
value indices. May update pointers by factor of F.

26

NC STATE UNIVERSITY

Process

= Clean-up

* |Implement remaining iterations with non-
vectorized code

I Q/,}:S
oAk

NC STATE UNIVERSITY

Selecting Good Loops

= Select an inner-most loop

= With
= Without
" C i -.....; \-VII\-I\J: I‘:\JW
| D-*—n dependenci i " successive l~An ifaratiAnc
127 0
= Determine loop unroll factor (= vector size) F | On |
= NEON registers |28 bits wide, options are: [¥32 [*¥32 [F¥32 [F32

= 4 element vector of words

S8]S8 SBISBISBISEISBISBISEISBISB 58]1S8|s8 SEISBI

= 8 element vector of half-words

= |6 element vector of bytes
vecrorerty I 128-bit >

27

NC STATE UNIVERSITY

HELPING THE COMPILERWITH
SIMD AND VECTORIZATION

NC STATE UNIVERSITY

Guidance for Making Code More Easily Vectorizable

= Refer to NPG 2.1.10

= Use short, simple loops

= Don’t use break to exit loops

= Make loop iterations a power of two

" Let compiler know number of loop iterations

= |nline all functions called within the loop to vectorize

= Use arrays with indexing instead of pointers

* Don’t use indirect addressing (multiple indexing or dereferencing)

= Use restrict to indicate that pointers don’t reference overlapping areas of memory

29

Want SIMD? Write Code to Imply SIMD

NPG, Section 2.8

for (...)
= Write loops to imply SIMD _ {
P PYY for (...) { outbuffer[i]l.r =; } outbuffer[il.r = :
= Use contents of structure for (...) { outbuffer[il.g =; } outbuffer[i].g - j
in a single loop. for (...) { outbuffer[il.b =: } outbuffer[i]:b _ :
= Improves cache performance. 1

= Tell compiler where to unroll inner loops

~ol] e~ o~ PR i | 1 / C D PR
= htt[? JUI L/ VUITNTTICTUUCS/ S UL/ VU PJTJPJOLlTIVT 1T a |||uo.||\....!
| S = : : =

= =

» fpragma GCC ivdep There are no loop-carried dependencies preventing concurrent execution
» #pragma unroll n Loop should be unrolled n times

30

https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html

NC STATE UNIVERSITY

Remember To Use The GCC Vectorization Flags

= ftree-vectorize

= Enables vectorization
= -ftree-loop-vectorize loop vectorization
= -ftree-slp-vectorize basic-block vectorization

= Defaults to NEON double register (D), 64 bits
long

= —O3 implies —ftree-vectorize

" -mvectorize-with-neon-quad

31

= Targets NEON quad register (Q), |28 bits long

= -ftree-vectorizer-verbose=<level>
= <level> can range from | to 6

= At 6, provides extensive (excessive?)
information on vectorization attempts and
barriers

* -funsafe-math-optimizations

= Treat all summation variables as reduction
variables. This assumption eliminates the
inherent loop-carried-dependeiicies for
such variables, thus allowing vectorization.

NC STATE UNIVERSITY

Constraining Loop Iteration Count

int accumulate(int « ¢, int len) = Example:What if len is always a multiple

{ int 1, retval, of four?
For(i=0, retval = @: i < (1en & ~3) & iss) { = Can tell compiler by masking off two
retvm{[i]; LSBs of len in loop test
} - Ien&~3=Ier.&0xiiiiil|...||i!@
return retval; = There are no remaining iterations to keep
} compiler from vectorizing the loop

Source: DHT 0004A, ARM Ltd.

32

NC STATE UNIVERSITY

Avoid Loop-Carried Dependencies

= Loop-carried dependency exists if a float x[N], y[N];
calculation in iteration j depends on the

result of any previous iteration i, where i<j for (n=1; n<Nj n++) {

x[n] = yln] * x[n-1];
}

= This dependency prevents vectorization

= Can’t do multiple iterations simultaneously // unrolling once leads to this

for (n=1; n<N;
= Sometimes is possible to restructure code x[nT~= 1 * x[n-1]

to remove it, but not always x[n+1] W’*ﬁ[n] ;
})

<

33

Use restrict Keyword

int accumulateZ(char + c, char = d, char = restrict e, int len)

{

r

int 1;

for(i=0 ; 1 < (len & ~3) ; i++) {
e[i] = d[1] + c[i];

}

return i;

Source: DHT 0004A, ARM Ltd.

= Read from c and d, write to e

= e[i] depends on c[i] and d[i]

* What if e and d point to overlapping arrays!?

34

= ¢e[i] might also be an element in d (e.g. d[i], d[i+1]...)
= Order of operations may change with vectorization
= Compiler can’t vectorize safely, so it won’t

NC STATE UNIVERSITY

C\p_

d
T
~

= Tell compiler that the location accessed by p is not

accessed by any other pointer within the current
scope

= Use restrict (C99 keyword) to describe a pointer p
= GCC also supports __ restrict and __ restrict

Use Appropriate Data Types

= |In the ARM integer core, 8-bit operations = In the NEON unit, 8-bit operations are as
are slower than 32-bit operations fast as 32-bit operations

= Need code to extract byte from register before s So, don’t promote shorter data
operation, extend it,and merge it back in after

operation

= So, promote shorter data up to 32 bits

35

NC STATE UNIVERSITY

Avoid Conditions in Loops

= SIMD - Single instruction, multiple data

= Conditions (if, !;, etc.) usually introduce conditional control-flow in the loop body

= Multiple control-flow operations -> Multiple PCs -> Multiple Instruction
= Not allowed in SIMD

= Some NEON instructions allow elimination of control flow R
= Saturating math:VOADD,VOSUB,VODMULH, etc. Jb

= Bitwise logic operations:VAND,VBIC,VEOR,VMVN,VORR,VORN 'L'

= Bitwise select:VBIFVBIT,VBSL

= Comparison:VAC<cond>VC<cond>VTST
= Will the compiler generate these instructions!?

36

NC STATE UNIVERSITY

USING INTRINSICS AND ARM
C-LANGUAGE EXTENSIONS

ARM C Language Extensions

38

What are intrinsics?

= Compiler keywords which specify architecture-specific operations:
NEON and other instructions, support operations

= May be implemented as functions, macros, other

Where are the NEON intrinsics described?
= NPG: Chapters 4 and 6

= ARM:IHIOO053D acle 2 0.pdf,
IHIOO73A_arm_neon_intrinsics refpdf

" GCC Iﬂ*fnq //0(C OoNii Oroc/ot |] s AN/ 7'.._. — s o

AN A7~ ™ AN ! 1

r‘-A---.
AN AN AN s A JAAN 11 A S RAJNATTREE

How can we use them!?

= Header file
= #include <arm_neon.h> for neon intrinsics
= #include <arm_acle.h> for non-neon intrinsics

= Makefile

= —mfpu=neon

NC STATE UNIVERSITY

ARM® C Language Extensions
Release 2.1

Document number: IHI 0053D
Date of Issue: 24/03/2016
Abstract

This document specifies the ARM C Language Extensions to enable C/C++ programmers to exploit the ARM
architecture with minimal restrictions on source code portability.

Keywords
ACLE, ABI, C, C++, compiler, armcce, gee, intrinsic, macro, attribute, NEON, SIMD, atomic

How to find the latest release of this specification or report a defect in it
Please check the ARM Information Center (http:/finfocenter.arm.com/) for a later release if your copy is more than
one year old. This document may be found under *Developer Guides and Articles”, “Software Development”.
Please report defects in this specification to arm dot acle at arm dot com.

Confidentiality status
This document is Non-Confidential.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
Mo part of this document may be reproduced in any form by any means without the express prior written
permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

THIS DOCUMENT IS PROVIDED “AS 1S™. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHAMNTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

IHI 0053D Copyright @ 2011-2016 ARM Limited. All rights reserved. Page 1 of 74
Mon-Confidenfial

https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/ARM-C-Language-Extensions-_0028ACLE_0029.html#ARM-C-Language-Extensions-_0028ACLE_0029

NEON Programmer’s Guide, Chapters 4 & 6

v [4: NEON Intrinsics v [6: NEON Code Examples with Intrinsics
[l 4.1 Introduction v [6.1 Swapping color channels
[d 4.2 Vector data types for NEON intrinsics [l 6.1.1 How de-interleave and interleave work
[l 4.3 Prototype of NEON Intrinsics l:] 6.1.2 Single or multiple elements
l:] 4.4 Using NEON intrinsics I:] 6.1.3 Addressing
> I:I 4.5 Variables and constants in NEON code H 6.1.4 Other loads and stores
[l 4.6 Accessing vector types from C v [J 6.2 Handling non-multiple array lengths
[l 4.7 Loading data from memory into vectors l:] 6.2.1 Leftovers
[l 4.8 Constructing a vector from a literal bit pattern [l 6.2.2 Example problem
I:I 4.9 Constructing multiple vectors from interleaved |:| 6.2.3 Larger arrays
memory

[l 4.10 Loading a single lane of a vector from memory [6.2.4 Overlapping

I:I 4.11 Programming using NEON intrinsics H 6.2.5 Single element processing

[l 4.12 Instructions without an equivalent intrinsic [626 Alignment

[l 6.2.7 Using ARM instructions
39

NC STATE UNIVERSITY
Data Types

= Scalar data types
= Based on standard types from <stdint.h>: int8_t,uintl6_t, float32 t,float64 t

= Vector data types: base_fypexvector clement_count_t
= Lane type uses standard types from <stdint.h>
= Multiple indicates vector element count

= Examples: int@x8 t,float32x4 t
= Vector array types base typexvector element_countxarray element count t

= Based on vector data types, have multiples of 2, 3 or 4.
= Examples: int8x8x2_t,intl6x4x2 t

g 8 v &

g e i

40

Example Program: Neon |

* |In Speed/Vector/Neon|
= Find min, max and sum of values in array
* What will slow this code down the most?

float X[N_POINTS];
main(...) {
for (1=0; 1<N_POINTS; i++) {

it (x[1] < min_val)
min_val = x[1];

it (x[1] > max_val)
max_val = x[1];

sum_val += x[1];

¥

41

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Manual Vectorization: Neon |

= Goal: operate on four float values at a time for (1'1=c0; 1<N_POINTS; 1i++) {
: : 1T (x[1] < min_val
* We will have to load the data, process it (x[1] .)
, min_val = x[1];
and reduce it if (x[1] > max_val)
= Are there any vector min or max max_val = x[1];
instructions available to eliminate control sum_val += x[1];
flow? }

= Examine NPG Chapter 3, Appendix C for
instruction overviews

42

NC STATE UNIVERSITY

Vector Max and Min Instructions

VMAX (Vector Maximum) | &
compares corresponding Syntax |
elements in two vectors, and VMAX{cond}.datatype Qd, Qn, Qm

writes the larger of them into ~ VMAX{cond}.datatype Dd, Dn, Dm o
VMIN{cond}.datatype Qd, Qn, Qm 2

the corresponding element in VMIN{cond}.datatype Dd. Dn. Dm ©v) r\@
the destination vector. \ ,, /
.
=

cond 1s an optional conditional code. (%]

where:

= VMIN (Vector Minimum)
compares corresponding datatype 1s one of S8. S16. S32. U8, Ul6. U32. or F32.
elements in two vectors, and Qd. Qn. and Qm specify the destination. first operand and second operand registers for a quadword
writes the smaller value into gperation.
the corresponding element in

Lo Dd. Dn. and Dm specify the destination. first operand and second operand registers for a
the destination vector.

doubleword operation.

43

NC STATE UNIVERSITY

Vector Pairwise Max and Min Instructions

= Pairwise: merging data lanes

= VPMAX (Vector Pairwise
Maximum) compares adjacent
pairs of elements in two
vectors and writes the larger
of each pair into the
corresponding element in the
destination vector.

= VPMIN (Vector Pairwise
Minimum) compares adjacent
pairs of elements in two
vectors, and writes the smaller
of each pair into the
corresponding element in the
destination vector.

= Operands and results must

be doubleword vectors.
44

VPMAX.S16 Dd, Dn, Dm

Syntax
VPMAX{cond}.datatype Dd, Dn, Dm [? @, O Dm | |@ | 'Dn
VPMIN{cond}.datatype Dd, Dn, Dm A /
m 22X ax
where: N \
W
cond is an optional conditional code. |— | | Dd

datatype is one of S8. S16. 532. U8. Ul6. U32. or F32.

Dd. Dn. and Dm specify the destination. first operand and second operand registers for a
doubleword operation.

NC STATE UNIVERSITY

Program Outline

= Set up variables ARIFdZAPAATAL
P , AVAvAVAVANI/AT
= Vector processing loop ZARa VA VAN /15
: L.oad data element.s .from memory (/ L// 7 // (/ g
* Find each lane’s minimum [, /1G] [1]
= Find each lane’s maximum l/ 7 L/, [/ b
{ (el
= Find each lane’s sum
= Vector reduction
= Find minimum of all lane minima min val (%[« [Z]«
= Find maximum of all lane maxima ,
= Find sum of all lane sums max_val ¥Zz7|7\zZ]
= Clean-up processing for remaining iterations sum val AV |4

45

NC STATE UNIVERSITY

Data Flow — Loop Body

? ? ?

?ﬂllﬂ v4_max_val EEIII? v4_sum_val [

v4 _min_val
- =

v4 _min_val 2 n | vinax

v4_max_val nn_& vadd
v4_sum_val EEII&

46

NC STATE UNIVERSITY

Declare and Initialize Vector Variables

= See NPG Chapter 4 int main (void) {

struct timespec start, end, pre;
long long diff;

. float sum val = 68, min val = 1e308, max val = -1e36, el time;
* Declare vector variables int n, i:

(v4_*) of type float32x4 t

#if @ // load values from memory

* Initialize the vector v4 min_val = vldig dup f32(&min wval); // g = guadword
variables. Two approaches: va_max_val = vldig_dup_f32(amax_val);
v4d sum val = vlidlig _dup f32(&sum val);
= Load scalar from memory and #else // load values with constants
duplicate to all lanes v4_min_val = wvdupg n_f32(1e30);
] vd4 max¥ val = vdupg n T32(-1e30);
= Load constant and duplicate v4_sum val = vdupg n_f32(8);

to all lanes gendif

47

Debug Support

vold print_float32x4(float32x4_t v4) {
int 1i;
float v[4],;
float32x2_t v2;

v2 = vget_low_f32(v4),;

v[0@] = vget_lane_f32(v2, 0);
v[1i] = vget_lane_f32(v2, 1),
v2 = vget_high_f32(v4);

v[2] vget_lane_f32(v2, 0),;
v[3] vget_lane_f32(v2, 1);

for (1=0, 1i<4; 1i++)
printf("%f \t", v[i]);

48

NC STATE UNIVERSITY

Data Flow Overview

. ?{{? 4 5 (617 18 9

Reglster

vdupqg _n_f32 vdupo_n_f32 vdupqg_n_f32

dé& v4_min_val umuu v4_max_val nn“n v4 _sum_val mnun
0

— I\ WY

vmin vmaxc._.f32

X

v4_min_val [E] R va_max var [N N NI N

= |nitialize vector values for min, max and sum

= Load vector with x data va_sum_val |0 [0

= Determine min, max and sum

49

Code — Loop Body

« KHINEN 5 6 7 08 19

Registers

Memory
vamin val [EEEREEIEE v4 max val [ENESNIOMEY v4 sum var EEEET TN

v1d1d]£32
\/7\

vniing_f32
va_min_val [ERIEMIENIEN

/f process all elements through lanes vmaxg_t32
for (i=08; i1 <= N_ELEMENTS; i+=4) {

v4 ¥ = vldig f32(&x[1]); // load vector of

// find minima va_max_val [EIENEMIEN

v4 min_val = vming_f32{v4 min_val, v4 X);

A find maxima vaddq_f32

vd4 max val = vmaxg f32({v4 max val, v4 x);
A Tind sums

v4_sum val = vaddg f32({v4 _sum _val, v4 x); v4 sum val unnu

50

Data Flow — Min (& Max) Reduction

va_min_val 0PI Need to use 2-element vectors since pairwise

. instructions work on D registers

v [N v [

vpmin

vz [IEEE

vpmin

vz (IR
?

51

Code — Min (& Max) Reduction

v4 min val /4 Reduce lane results to single values
_min_val [T /) Red
_ float3zx2 €t v2 u, v2_1;
vget_high_f32 vget_low_f32 float32x2 t v2 zero = vdup_n_f32(0.0):;
vazu [w2 1 o | v2 u = vget_high f32(v4 min_val);
v2 1 = vget low f32(v4 min_wval);
vpmin_f32 vZ2 U = vpmin_f32(v2 u, v2_1);
v2 U = vpmin_f32(vZ2_u, v2_u);
v2 u nn min_wal = vget lane f32(vZ u, 0);
vpmin_f32 /4 max
v2 U = vget _high f3z2(v4 max val);

vpmax_f32(v2_u, v2_1);
V2 U = vpmax_ f32(vz u, v2 _Zero);
max _val = vget lane f32(v2 u, 0);

v2 u nu v2z 1 z vget low F32(v4 max val);

vget_lane_f32

min_val n

52

Data Flow — Sum Reduction

va_sum_val [E I

?

v [v [

vpadd

vz [0

vpadd

ve.u (R
?

53

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Code — Sum Reduction

v4 sum_val Ennn Ffsum

v2 U = vget high f32(v4 sum val),;
vget_high_f32 vget_low_f32 vZ_1 = vget_low f32(v4_sum_val);
vZ2 U = vpadd f32(v2 u, v2_1);
v2 U = vpadd f32(v2 u, v2 zZero);
vau [0 10 | sum val = vget lane f32(v2 u, 0):
vpadd
v2_u nu v2_zero nu
vpadd

ve.u (R

vget_lane_f32

sum_val u

54

NC STATE UNIVERSITY

Jf Reduce lane results to single wvalues

Resulting Code

int main (void) { £/ min
struct timespec start, end, pre: float3zx2_t v2_u, v2_1;
long long diff; float32x2 t v2 7zero = vdup_n_fT32(0.0);
float sum val = @8, min val = 1e368, max val = -1e36, el time;
nt n, 1; v2_u = vget_high_f32(v4_min_val);
float32x4 t v4 x, v4 min_val, v4 _max_wval, v4_sum_val; va_Ll = vge’g_luw_fﬂzwai_mln_val];
. - ! - - e vZ2 U = vpmin_ f32{v2 u, vZ 1);
#1f @ // load values from memory vZ U = vpmin f32(vZ u, v2 u);

v4 min_val = vldig dup f32(&min_wal); // Q = gquadword
v4 max val = vidig dup f32(&max wval),;
v4 sum val = vidig dup f32(&sum_wval);

min_val = wvget_ lane f32(v2_u, 0);

#else // load values with constants // max
v4 min_val = vdupg_n_f32(1e38); v2_u = vget_high_f32(v4 _max_wval);
v4_max_val = vdupg_n_f32(-1e30); vZ2 1 = vget low f32(v4 max val);
v4_sum_val = vdupg_n_f32(@); V2 U = vpmax f32({v2 u, vz 1);
#endif v2 u = vpmax_f32(v2_u, v2 zero);
A process all elements through lanes max_val = vget lane f32(v2 u, 8):

for (i=@; i1 < N_ELEMENTS: i+=4) {
v4 ¥ = vldig_f32(&x[1]); /4 load wvector of 7.
// find minima SHm

v4 min val = vming f32(v4_min_wval, v4 x): v2_u = vget_high_f32(v4_sum_val);

J/ find maxima vz 1 = vget low f32(v4 sum val);
M_rnax_ual = vmaxq f32(v4 max val, v4 x); vZ2 U = vpadd f32(v2 u, v2 1);
£/ Tind sums v2 u = vpadd_f32(v2_u, v2 _zero);

vd sum_val = vaddg f32{v4 _sum val, v4 x); sum_val = vget lane f32(vZ u, 8):
p— — — — T r

55

Can the Compiler Vectorize Neon|?

= Try it out
= -01?
= -02?
= -0O3?
= -Ofast!?

56

NC STATE UNIVERSITY

57

NC STATE UNIVERSITY

Interleaving and De-Interleaving

NC STATE UNIVERSITY

Memory Layout May Not Match Vector Layout

Memory

VLDI1.8 {d0,d1, d2}, [10]

MSB

E

d2

LSB

do

= Example: NPG, Section 6.1 swaps red and blue N\ RI | BO RO

= Regular load (VLDI) puts some red, green, blue in
each register
= VLD1.8 {do, di, d2}, [reo]!
= (Note that memory is little-endian: register LSB gets
first byte from memory) Loading RGB data with a linear load.

= Could rewrite code so data in memory is a
structure of arrays instead:

struct {
uint8_t Red[N], Green[N], Blue[N];

} image;
58

NC STATE UNIVERSITY

Arrays and Structures

= Array of structures
sruc e I
uint8_t Red, Green, Blue;
} image[N];

* Could rewrite code to rearrange

data in memory into a structure | _

of arrays:

struct {
uint8_t Red[N], Green[N], Blue[N];
} image;

= |s better fit for normal (linear)
vector loads

59

NC STATE UNIVERSITY

“Structure Load” De-Interleaves From Memory Into Register

Memory

VLD3.8 {d0, d1, d2}, [10]

R7 R6 RS R4 R3 R2 R1 RO do

dl
= |nstead of changing code to fit linear _

loads/stores, use special loads/stores B7 | B6 | BS | B4 | B3 | B2 | BI | BO | d2
- VLD308 {d@’ dl) d2}, [r\@]! Loading RGB data with a structure load.

= Structure load (VLDn) de-interleaves memory
into N separate registers

= |nstructions: NPG, page C-63

60

Swap Registers

* Now can swap red and blue easily

61

VSWP do, d2

VSWP doO, d2

Y

B6

BS5

B4

B3

B2

Bl

BO

do

o[« [o [o]e] »

o R7

R6

RS

R4

R3

R2

R1

RO

Swapping the contents of registers dO and d2.

d2

NC STATE UNIVERSITY

NC STATE UNIVERSITY

“Structure Store” Interleaves From Register Into Memory

Memory

-I B7 | B6 B5 | B4 | B3 | B2 Bl BO do
= Structure store interleaves multiple _ "
registers into memory

= VST3.8 {do, di, d2}, [reo]! | R7 | R6 | RS [R4 [R3 [R2 [RI [RO | d2

62

Big Picture

63

0x3

memory

i

RO

VLD
From memory to NEON
registers {dO, dl, d2}

BO

R1

Ox5

Ox6

Bl

R2

From NEON registers
{dO, d1,d2} to memory

VST

- R2

\/\/\/

R7

R6

R5

R4

R3

R2

R1

RO

do

[o= [o] -

B7

B6

BS

B4

B3

B2

Bl

BO

NEON structure loads and stores.

d2

memory

RO

BO

R1

Bl

NC STATE UNIVERSITY

= Have support for 2,3 and 4
element structures

= How can it work?

= Wide interfaces between NEON
registers and memory

= LI Data Cache
= |28 bit interface

NC STATE UNIVERSITY

