
1

Getting Better Object Code

2

Using the ISA Features

3

▪ Write C code, rely on the compiler

to generate instructions

▪ Depends on compiler’s ability to optimize code

▪ Can turn into game of “How can I get the

compiler to do what I want?”

▪ Write C code with compiler

intrinsics to specify key instructions

▪ Provides some control

▪ Takes care of most details

▪ Write C code with inline assembly

code to specify key instructions

▪ Provides more control

▪ Takes care of a few details

▪ Write a separate assembly code

module, link it with our C code

▪ Provides full control

▪ You must manage all the details

How Can We Use These Great Instructions?

4

Do Instruction Set Architectures Matter?

▪ Online discussion by Jack Ganssle, Bill
Gatliff, Niall Murphy, and Jim Turley at
Embedded.com

▪ No!
▪ C compiler hides differences and

emulates missing features with code
▪ Native word size, floating point math, subroutine

call penalty, conditional branch delay

▪ Most compilers don’t use those great fast
instructions
▪ Table lookup and interpolate, 3D matrix

operations, etc

▪ As long as the processor runs fast
enough, costs dominate

▪ Yes!
▪ Use “intrinsics” (inline assembly code) to

use fast instructions
▪ Code density depends on processor
▪ It takes time and money to come up to

speed on a new architecture, so go with
what gets you a product sooner

▪ More engineers available for hiring if you
use a common architecture

▪ If no good tools are available, it’s not
worth using

5

▪ Write C code, rely on the compiler to generate instructions

▪ Write C code with compiler intrinsics to specify key instructions

▪ Write C code with inline assembly code to specify key instructions

▪ Write a separate assembly code module, link it with our C code

How Can We Use These Great Instructions?

6

▪ Eliminating common sub-expressions

▪ May need to do manually

▪ Loop unrolling

▪ Benefit reduced on A72 thanks to branch

prediction and out-of-order execution, but may

still be helpful. Depends on your code!

▪ May increase cache pressure, reducing

performance

▪ GCC optimization options to use

▪ -O3

▪ -Ofast

▪ -funroll-loops

▪ -mcpu=cortex-a72

▪ -mfpu=crypto-neon-fp-armv8 (neon is name for

Advanced SIMD technology)

▪ -mfloat-abi=hard

▪ Loop termination

▪ Integer loops counting down to zero get free test

(no CMP instruction needed)

▪ Use 32-bit int loop counters (native word size)

▪ Reduce stack and heap usage

▪ Minimize live variables

▪ Limit function parameters to fit in four registers

▪ Variable selection

▪ Words are faster than bytes and halfwords due

to code for extension and overflow

How to Help the Compiler
Cortex A-Series Programmer’s Guide, Chapter 17

7

▪ Pointer aliasing

▪ In general case, pointers can alias (point to

overlapping regions in memory), constraining

some compiler optimizations

▪ Tell compiler pointer parameters can’t alias with

restrict keyword

▪ Division and modulo

▪ Division is always slower than multiplication, so

replace if possible

▪ Modulo is also slow, so avoid it

▪ Extern data

▪ Loading external variables requires extra

instructions, so group them in a structure to

share the base pointer

▪ Inline or embedded assembler

▪ Avoid it! First try improving algorithm, then

compiler optimizations

▪ Use –S –fverbose-asm to generate annotated

assembly code

▪ Unaligned access

▪ Accesses to non-word-aligned values are slow

▪ Accesses crossing cache line boundaries are even

slower

▪ Turned on with –O2 and above

▪ -falign-[functions|labels|loops|jumps]

More Help
Cortex A-Series Programmer’s Guide, Chapter 17

8

GCC Compiler Optimization Settings

▪ Get help from gcc

▪ gcc --help=common

▪ gcc --help=optimizers

▪ gcc -dumpmachine

▪ Options that control optimizations

▪ https://gcc.gnu.org/onlinedocs/gcc/Optimize-

Options.html#Optimize-Options

▪ Many tunable parameters

▪ --param name=value

▪ --help=param -Q

▪ Target-specific help

▪ gcc --target-help

▪ https://gcc.gnu.org/onlinedocs/gcc/ARM-

Options.html

▪ Common options

▪ -O3 optimization (maximum)

▪ Optimize for speed, disregarding exact

standards compliance

▪ -Ofast

▪ -ffast-math

▪ -funsafe-math-optimizations

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

9

▪ Switch can be implemented with if/elseif ladder, a jump table, or

computed jump…

▪ Here compiler uses two instructions and a jump table

▪ cmp r3,#3 Compare r3 with #3, setting condition flags (NZVC)

▪ ldrls pc, …. Conditionally load PC with case code address if r3 is less than or

same (<=) as #3

▪ Case code addresses stored in jump table starting at 1108c (cases 0, 1, 2, 3)

▪ Table location determined by adding pc and r3 left-shifted by 2 (= pc+4*r3)

▪ If r3 > 3, then ldrls does nothing, and b11154 executes to branch past last

case

▪ Note how ldrls dominates execution time (>50%)

▪ Floating point math executes very quickly

▪ Load to PC (if executed) introduces branch delay penalty, flushing all following

instructions in pipeline

Example: Switch Statement for Cosine Range Reduction

10

▪ Write C code, rely on the compiler to generate instructions

▪ Write C code with compiler intrinsics to specify key instructions

▪ Write C code with inline assembly code to specify key instructions

▪ Write a separate assembly code module, link it with our C code

How Can We Use These Great Instructions?

11

ARM C Language Extensions (ACLE)

▪ What are intrinsics?

▪ Compiler keywords which specify architecture-specific

operations: special instructions, support operations

▪ May be implemented as functions (__x), macros

(__ARM_x), other

▪ Where are they described?

▪ ARM: IHI0053D_acle_2_0.pdf,

https://static.docs.arm.com/ihi0053/d/IHI0053D_acle_2

_1.pdf

▪ Note that GCC also provides C Language

Extensions, though not ARM-specific:

▪ https://gcc.gnu.org/onlinedocs/gcc/C-

Extensions.html#C-Extensions

▪ How can we use them?

▪ #include <arm_acle.h>

▪ What can they do?

▪ Test for feature support

▪ Access special registers (system and coprocessor)

▪ Define special attributes

▪ Support multiprocessing with synchronization, barriers

▪ Prefetch instructions or data

▪ Process data

▪ Access APSR flags, apply special instructions (rotate, count

leading zeros/sign bits, reverse bits/bytes)

▪ Saturating math, accumulating multiplies

▪ Floating point square root, fused multiply/add

▪ 32-bit SIMD: 8-, 16-bit data types and operations (add, multiply,

pack, select, sum of absolute differences, etc.)

▪ CRC32

https://static.docs.arm.com/ihi0053/d/IHI0053D_acle_2_1.pdf
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions

12

Example

13

▪ Write C code, rely on the compiler to generate instructions

▪ Write C code with compiler intrinsics to specify key instructions

▪ Write C code with inline assembly code to specify key instructions

▪ Write a separate assembly code module, link it with our C code

How Can We Use These Great Instructions?

14

INLINE ASSEMBLY CODE

15

▪ Use asm (or __asm__) extension

keyword

▪ Syntax for Extended Asm

▪ [optional]

▪ Qualifiers

▪ If code has side-effects, use volatile to disable

some optimizations

▪ If code may jump to a label, use goto

▪ Parameters

▪ AssemblerTemplate is fixed text and tokens referring to

other parameters

▪ OutputOperands is list of C variables which are modified

▪ InputOperands is list of C expressions which are read

▪ Clobbers is a list of registers or values which are changed

(besides OutputOperands)

▪ GotoLabels is list of C labels for possible jump targets

Overview

asm asm-qualifiers (AssemblerTemplate
: OutputOperands
[: InputOperands
[: Clobbers]])

asm asm-qualifiers (AssemblerTemplate
: OutputOperands
: InputOperands
: Clobbers
: GotoLabels)

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

16

▪ Nice walk-through with explanations on

linked webpage

▪ Take input integer variable x,

▪ Rotate right by one,

▪ Write result to another integer variable y

▪ Parts

▪ Assembler Template is string literal (“format

string”)

▪ Output operands: [symbolic name] constraint

(C expression)

▪ Input operands: [symbolic name] constraint (C

expression)

▪ Clobber list – none used here

ARM GCC Inline Assembler Cookbook
http://www.ethernut.de/en/documents/arm-inline-asm.html

C variable C variable

http://www.ethernut.de/en/documents/arm-inline-asm.html

17

▪ Alternate form, with all fields.

▪ Can include comments and white-space

▪ Parts

▪ Assembler Template is string literal (“format

string”)

▪ Output operands: [symbolic name] constraint

(C expression)

▪ Input operands: [symbolic name] constraint (C

expression)

▪ Clobber list – none used here

ARM GCC Inline Assembler Cookbook
http://www.ethernut.de/en/documents/arm-inline-asm.html

http://www.ethernut.de/en/documents/arm-inline-asm.html

18

▪ Write C code, rely on the compiler to generate instructions

▪ Write C code with compiler intrinsics to specify key instructions

▪ Write C code with inline assembly code to specify key instructions

▪ Write a separate assembly code module, link it with our C code

How Can We Use These Great Instructions?

19

MIXING C AND ASSEMBLY

CODE MODULES

20

Mixing Modules

▪ Some modules compiled from C to object code

▪ Some modules assembled from assembly code

to object code

▪ All linked together into executable

▪ Assembly code functions must be declared as

externs to be visible to C functions

▪ Function f defined in assembly code:

▪ Arguments: int * , int

▪ Return: int

▪ C code needs to know extern int f(int * a, int b);

C Code

Assembly

Code

Object

Code

Executable

File

C Code

Assembly

Code

Object

Code

Assembly

Code

Object

Code

21

Procedure Call Standard

▪ Must save and restore certain

registers if used

▪ ARM: r4-r8, r10-r11

▪ Follow rules when passing

parameters, returning results

▪ Defined in ARM

IHI 0042D, part of Application

Binary Interface

Subroutine must restore

r4-r8 (v1-v5) to original

values before returning

Subroutine must restore r10-r11 (v7-v8)

to original values before returning

22

How Can We Create an Assembly File?

▪Two options
1. Create from scratch, then add assembly code. Hard until you know how to do it.

2. Create from file with C code, compile to assembly once, remove C file, then modify assembly code

C Code

Assembly

Code

Object

Code

Assembly

Code

Object

Code

23

Hard Option: Create Assembly Code from Scratch

▪ .text: executable code will follow

▪ .align: advance location counter to next address

which is multiple of 22=4

▪ .global: makes symbol visible to other modules when

linking. Essential for function name!

▪ .type: specifies symbol is a function

▪ Label is symbol followed by colon, marks an address

▪ Function Prologue

▪ Push registers which might be modified

▪ ARM: r4-r11

▪ NEON: Q4-Q7

▪ Function body

▪ Arguments 1, 2, 3, 4 are in r0, r1, r2, r3

▪ Function Epilogue

▪ Place return value (if any) in r0

▪ Pop any registers pushed above in prologue

▪ bx lr to return from subroutine

.text

.align 2

.global asm_doit
@ This line is a commment

.type asm_doit, %function

asm_doit:
push {r4, r5, r6, r7}
movs r4, #0

.L66:
adds r4, r4, #1
cmp r4, #4000
bne .L66

pop {r4, r5, r6, r7}
bx lr

24

Easier Option: Use C Compiler’s Assembly Output

▪ Create separate file foo.c with skeleton C function foo()

▪ Include at least arguments and return value

▪ Possibly also include function body

▪ Compile foo.c to assembly source (gcc -S, or make foo.s)

▪ Move foo.c elsewhere (e.g. into subdirectory) so Make doesn’t recompile and link it

▪ Edit .s file as needed

▪ Make handles the details

25

Makefile

▪ Makefile changes

▪ Add object files from asm code (.s files) to dependency list

▪ Add rule to compile but not assemble C source: translate .c to .s

▪ Implicit rules

▪ Translate .s to .o using as

OBJFILES := $(patsubst %.c,%.o,$(wildcard *.c)) $(patsubst %.s,%.o,$(wildcard *.s))
$(PROJ_NAME): $(OBJFILES)
$(CC) -o $(PROJ_NAME) $(OBJFILES) $(LIBS)
%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<
%.s: %.c

$(CC) $(CFLAGS) -S -o $@ $<
%.lst: %.c

$(CC) $(CFLAGS) -Wa,-adhln $(LIBS) $< > $@
clean:

rm -f *.o *.lst

