NC STATE UNIVERSITY

Getting Better Object Code

NC STATE UNIVERSITY

Using the ISA Features

NC STATE UNIVERSITY

How Can We Use These Great Instructions?

* Write C code, rely on the compiler * Write C code with inline assembly
to generate instructions code to specify key instructions
= Depends on compiler’s ability to optimize code = Provides more control
= Can turn into game of “How can | get the = Takes care of a few details

compiler to do what | want?”

" Write a separate assembly code

* Write C code with compiler module, link it with our C code
intrinsics to specify key instructions = Provides full control
= Provides some control = You must manage all the details

= Takes care of most details

NC STATE UNIVERSITY

Do Instruction Set Architectures Matter?

= Online discussion by Jack Ganssle, Bill
Gatliff, Niall Murphy, and Jim Turley at

Embedded.com = Yes!

= No! = Use “intrinsics” (inline assembly code) to

= C compiler hides differences and use fast instructions
emulates missing features with code = Code density depends on processor

= Native word size, floating point math, subroutine “ It takes time and money to come up to

call penalty, conditional branch delay speed on a new architecture, so go with
= Most compilers don’t use those great fast ~ what gets you a product sooner
instructions = More engineers available for hiring if you
= Table lookup and interpolate, 3D matrix use a common architecture

operations, etc
= As long as the processor runs fast
enough, costs dominate

= If no good tools are available, it’s not
worth using

NC STATE UNIVERSITY

How Can We Use These Great Instructions?

" Write C code, rely on the compiler to generate instructions

NC STATE UNIVERSITY

How to Help the Compiler

Cortex A-Series Programmer’s Guide, Chapter 17

= Eliminating common sub-expressions * -mfpu=crypto-neon-fp-armv8 (neon is name for
Advanced SIMD technology)

= -mfloat-abi=hard

= May need to do manually

* Loop unrolling

= Benefit reduced on A72 thanks to branch
prediction and out-of-order execution, but may
still be helpful. Depends on your code!

* Loop termination

= Integer loops counting down to zero get free test
(no CMP instruction needed)

= May increase cache pressure, reducing = Use 32-bit int loop counters (native word size)

performance = Reduce stack and heap usage
= GCC optimization options to use * Minimize live variables
= .03 = Limit function parameters to fit in four registers
= -Ofast = Variable selection
= -funroll-loops = Words are faster than bytes and halfwords due

= -mcpu=cortex-a72 to code for extension and overflow

NC STATE UNIVERSITY

More Help

Cortex A-Series Programmer’s Guide, Chapter 17

* Pointer aliasing * Inline or embedded assembler
= |n general case, pointers can alias (point to = Avoid it! First try improving algorithm, then
overlapping regions in memory), constraining compiler optimizations
some compiler optimizations = Use —S —fverbose-asm to generate annotated
= Tell compiler pointer parameters can’t alias with assembly code
restrict keyword
void foo(unsigned int =restrict ptrl, - Unaligned 2CCESS
* Division and modulo = Accesses to non-word-aligned values are slow
= Division is always slower than multiplication, so = Accesses crossing cache line boundaries are even
replace if possible slower
= Modulo is also slow, so avoid it = Turned on with —O?2 and above
" Extern data = -falign-[functions|labels|loops|jumps]

= Loading external variables requires extra
instructions, so group them in a structure to
share the base pointer

NC STATE UNIVERSITY

GCC Compiler Optimization Settings

= Get help from gcc = Target-specific help
= gcc --help=common = gcc --target-help
= gcc --help=optimizers = https://gcc.gnu.org/onlinedocs/gcc/ARM-
= gcc -dumpmachine Options.html
= Options that control optimizations = Common options
= https://gcc.gnu.org/onlinedocs/gcc/Optimize- = -O3 optimization (maximum)
Options.html#Optimize-Options = Optimize for speed, disregarding exact

standards compliance

= Many tunable parameters = -Ofast
= -ffast-math

= -funsafe-math-optimizations

= --param name=value
= --help=param -Q

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

NC STATE UNIVERSITY

Example: Switch Statement for Cosine Range Reduction

switch (quad){ 1.28 [11080. cmp r3, #3

case @: return cos_32s(x);

case 1: return -cos_32s(DP_PI-x); iiggg; ! ?word ;i;ggliigg—52+GX1l4>
cose 2: return -cor B(COP P} iiose; vord axaaoriorc
} 11098: .word ©x0001109C

= Switch can be implemented with if/elseif ladder, a jump table, or iigggf z{g: :i'z [‘[’gé ”iggg] ﬁ

computed jump... 110a4: vldr s13, [pc, #208] : 11-

= Here compiler uses two instructions and a jump table ﬁg:gi ﬁg?'mzlj?' [:z', 2204] &

= cmp r3,#3 Compare r3 with #3, setting condition flags (NZVC) 116b6: vldr se, [pc, #204] ; 11

110b4: vmul.f32 s5, s4, s4

= |drls pc, Conditionally load PC with case code address if r3 is less than or 110b8: vfma.f32 s13, S5, S12

same (<=) as #3 116bc: vfma.f32 si14, s5, si13

= Case code addresses stored in jump table starting at | 108c (cases 0, 1,2, 3) iigggf \ézma.f%rse, 5, s14
= Table location determined by adding pc and r3 left-shifted by 2 (= pc+4*r3) 1.02 110(:8;) vidr d3, [pc, #152] ; 11
= If r3 > 3, then Idrls does nothing, and b1 | 154 executes to branch past last 11@cc: vldr s8, [pc, #164] ; 1l
0.07 (110do: vidr s9, [pc, #164] ,; 11:

case 110d4: vsub.fe4 ds, die, d3
= Note how Idrls dominates execution time (>50%) ©.15 |116d8: vidr 7, [pc, #160] ; 11
0.07 |110dc: vidr s, [pc, #160] , 11:

= Floating point math executes very quickly 110e0: vcvt.f32.f64 si11, dS

110e4: vmul.f32 s15, si11, si1

= Load to PC (if executed) introduces branch delay penalty, flushing all following Ricmns s oo kG ERE o

instructions in pipeline 110ec: vfma.f32 s7, s15, s9
110f0: vfma.f32 sO, s15, s7
9 11014: vneg.f32 sO, sO

|110f8: - bx 1r

NC STATE UNIVERSITY

How Can We Use These Great Instructions?

" Write C code with compiler intrinsics to specify key instructions

ARM C Language Extensions (ACLE)

* What are intrinsics?

= Compiler keywords which specify architecture-specific
operations: special instructions, support operations

= May be implemented as functions (__x), macros
(__ARM_x), other
Where are they described?

= ARM:IHIO053D acle_2 0.pdf,
https://static.docs.arm.com/ihi0053/d/IHI0053D acle_2

_Lpdf _
Note that GCC also provides C Language

Extensions, though not ARM-specific:

= https://gcc.gnu.org/onlinedocs/gcc/C-
Extensions.htm|#C-Extensions

* How can we use them!?
= #include <arm_acle.h>

NC STATE UNIVERSITY

ARM® C Language Extensions
Release 2.1

Document number: IHI 0053D
Date of Issue: 24/03/2016

Abstract

This document specifies the ARM C Language Extensions to enable C/C++ programmers to explait the ARM
architecture with minimal restrictions on source code portability.

= What can they do?

Test for feature support

Access special registers (system and coprocessor)

Define special attributes

= Support multiprocessing with synchronization, barriers

Prefetch instructions or data

Process data

Access APSR flags, apply special instructions (rotate, count
leading zeros/sign bits, reverse bits/bytes)

Saturating math, accumulating multiplies
Floating point square root, fused multiply/add

32-bit SIMD: 8-, 1 6-bit data types and operations (add, multiply,
pack, select, sum of absolute differences, etc.)

CRC32

https://static.docs.arm.com/ihi0053/d/IHI0053D_acle_2_1.pdf
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions

NC STATE UNIVERSITY

Example

9.4.3 Accumulating multiplications

These intrinsics are available when 2rM FEATURE DsP is defined.

int3Z t smlabb (int32 t, int32 t, int3Z t);

Multiplies two 16-bit signed integers, the low halfwords of the first two operands, and adds to the third operand.
Sets the Q flag if the addition overflows. (Note that the addition is the usual 32-bit modulo addition which wraps on
overflow, not a saturating addition. The multiplication cannot overflow.)

Multiplies the low halfword of the first operand and the high halfword of the second operand, and adds to the third
operand, as for smlabb.

int32 t smlabt(int32 t, int32Z t, int32 t):;

intBE_: __sm;atb[iﬂzii_t, int32 t, intBE_:]:

Multiplies the high halfword of the first operand and the low halfword of the second operand, and adds to the third
operand, as for smlabb.

NC STATE UNIVERSITY

How Can We Use These Great Instructions?

= Write C code with inline assembly code to specify key instructions

NC STATE UNIVERSITY

INLINE ASSEMBLY CODE

NC STATE UNIVERSITY

Overview
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C
» Basic Asm: Inline assembler without operands.
= Use asm (Or _a.sm_) extension - Extended Asm: Inline assembler with operands.
ke)lwo rd « Constraints: Constraints for asm operands
- S)’n tax for EX ten de d Asm « Asm Labels: Specifying the assembler name to use for a C symbol.
) * Explicit Register Variables: Defining variables residing in specified registers.
= [optional] - . ;
* Size of an asm: How GCC calculates the size of an asm block.
= Qualifiers
= If code has side-effects, use volatile to disable asm asm-qualifiers (AssemblerTemplate
some optimizations . OutputOperands
= If code may jump to a label, use goto [: InputOperands
= Parameters [- Clobbers]])
= AssemblerTempIate is fixed text and tokens referring to asm asm_qua"ﬁers (Assemb|erTemp|ate
other parameters : OutputOperands
= OutputOperands is list of C variables which are modified : g‘lplétk?perands
) oppers

* InputOperands is list of C expressions which are read - GotoLabels)

= Clobbers is a list of registers or values which are changed
(besides OutputOperands)

= Gotolabels is list of C labels for possible jump targets

https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html#Using-Assembly-Language-with-C

NC STATE UNIVERSITY

ARM GCC Inline Assembler Cookbook

http://www.ethernut.de/en/documents/arm-inline-asm.html

C variable C variable
/* Rotating bits example */

asm('“mov %[result], %[lvalue|], ror #1"|: [result] "=r" (y)| :|[value] "r" ()&)');

= Nice walk-through with explanations on = Parts
linked webpage = Assembler Template is string literal (“format
= Take input integer variable x, string”)

= Rotate right by one,

= Write result to another integer variable y
* Input operands: [symbolic name] constraint (C

expression)
= Clobber list — none used here

http://www.ethernut.de/en/documents/arm-inline-asm.html

ARM GCC Inline Assembler Cookbook

http://www.ethernut.de/en/documents/arm-inline-asm.html

asm(|"'mov %[result], %[value]], ror #1"

:| [result]"=r" (y) /* Rotation result. */
:| [value]"r" (x) /* Rotated value. */
:[/* No clobbers %/

)3

= Alternate form, with all fields. " Parts
= Can include comments and white-space = Assembler Template is string literal (“format
string”)

= |[nput operands: [symbolic name] constraint (C
expression)

= Clobber list — none used here

http://www.ethernut.de/en/documents/arm-inline-asm.html

How Can We Use These Great Instructions?

" Write a separate assembly code module, link it with our C code

NC STATE UNIVERSITY

NC STATE UNIVERSITY

MIXING CAND ASSEMBLY
CODE MODULES

Mixing Modules

C Code C Code
ﬁﬁ-
Object Object Object
Code Code Code
Executable

File

20

NC STATE UNIVERSITY

= Some modules compiled from C to object code

* Some modules assembled from assembly code
to object code

= All linked together into executable

= Assembly code functions must be declared as
externs to be visible to C functions
= Function f defined in assembly code:
= Arguments:int * , int
= Return:int
= C code needs to know extern int f(int * a, int b);

Procedure Call Standard

= Must save and restore certain
registers if used
= ARM:r4-r8,r10-rl |

* Follow rules when passing
parameters, returning results

= Defined in ARM
IHI 0042D, part of Application
Binary Interface

21

NC STATE UNIVERSITY

Register | Synonym | Special Role in the procedure call standard
r15 PC The Program Counter.
r14 LR The Link Register.
r13 SP The Stack Pointer.
ri2 IP The Intra-Procedure-call scratch register.
r11 v8 Variable-register 8. Subroutine must restore r10-rl11 (v7-v8)
r10 v7 Variable-register 7. to original values before returning
9 ;g Platform rn_agister. _ _ _ _

R The meaning of this register is defined by the platform standard.
r8 v5 Variable-register 5. Subroutine must restore
r7 vd Variable register 4. r4-r8 (v1-v5) to original
ré v3 Variable register 3. values before returning
r5 v2 Variable register 2.
r4 v Variable register 1.
r3 a4 Argument / scratch register 4.
re a3 Argument / scratch register 3.
r1 a2 Argument / result / scratch register 2.
r0 al Argument / result / scratch register 1.

Table 2, Core registers and AAPCS usage

NC STATE UNIVERSITY

How Can We Create an Assembly File?

CXe

Object Object
Code Code

= Two options

|. Create from scratch, then add assembly code. Hard until you know how to do it.
2. Create from file with C code, compile to assembly once, remove C file, then modify assembly code

22

NC STATE UNIVERSITY

.text = text: executable code will follow

Hard Option: Create Assembly Code from Scratch

.align 2 = .align: advance location counter to next address

Tobal doi which is multiple of 22=4
@ This .191' noe a;'s a com;;rgﬁtm ‘ = .global: makes symbol visible to other modules when

.type asm_doit, %function linking. Essential for function name!

.type: specifies symbol is a function
asm_doit:
push {r4, r5, r6, r7}
movs r4, #0

Label is symbol followed by colon, marks an address

Function Prologue
= Push registers which might be modified

.L66: = ARM:r4-rl |
adds r4, r4, #1 * NEON: Q4-Q7
cmp r4d, #4000 = Function body

bne .L66 = Arguments 1,2,3,4areinr0,rl,r2,r3
Function Epilogue

pop {r4, r5, r6, r7}
bx Ir

= Place return value (if any) in r0O
= Pop any registers pushed above in prologue
= bx Ir to return from subroutine

23

NC STATE UNIVERSITY

Easier Option: Use C Compiler’s Assembly Output

= Create separate file foo.c with skeleton C function foo()
* Include at least arguments and return value
= Possibly also include function body

= Compile foo.c to assembly source (gcc -S, or make foo.s)

= Move foo.c elsewhere (e.g. into subdirectory) so Make doesn’t recompile and link it
= Edit s file as needed

= Make handles the details

24

NC STATE UNIVERSITY
Makefile

OBJFILES := $(patsubst %.c,%.0,$(wildcard *.c)) $(patsubst %.s,%.0,$(wildcard *.s))
$ (PROJ_NAME) : $(OBJIFILES)

$(cc) -o $(PROJ_NAME) $(OBIFILES) $(LIBS)
%.0: %.C

$(cc) $(CFLAGS) -c -o0 %@ $<
%.5: %.C

$(cc) $(CFLAGS) -S -0 $@ $<
%.lst: %.cC

$(cc) $(CFLAGS) -wa,-adhln $(LIBS) $< > %@
clean:
rm -f *.0 *.lst

= Makefile changes

= Add object files from asm code (.s files) to dependency list
= Add rule to compile but not assemble C source: translate .c to .s

= Implicit rules
= Translate .s to .o using as

25

