NC STATE UNIVERSITY

Optimizing for the Memory System

NC STATE UNIVERSITY

Overview

= Memory System
" Instruction Set Support
= Code Optimizations

= Sources:

= Cortex-A72 MPCore Technical Reference Manual (100095 0003 05 en) TRM
= Cortex-A72 Software Optimisation Guide (UAN 0016A) SOG

= ARM Cortex-A Series Programmer’s Guide (DENO00I3D) CASPG

= ARMv7 Architecture Reference Manual, (DDI0406B) v7ARM

= ARM C-Language Extensions, (IHI0053D) ACLE

Great Refresher on Cache Concepts

ARM Cortex -A Series

Version: 4.0

Programmer’s Guide

= CASPG, Chapter 8

NC STATE UNIVERSITY

™ l:l &. Caches
[:I 8.1 Why do caches help?

[:l 8.2 Cache drawbacks

8.3 Memaory hierarchy
b 8.4 Cache architecture
b 6.0 Cache policies

8.6 Write and Fetch buffers

8.7 Cache performance and hit rate

I I T I T I T I T B W

8.8 Invalidating and cleaning cache memaory
? [:I 8.9 Point of coherency and unification
2 l:l 8.10 Level 2 cache controller

[8.11 Parity and ECC in caches

NC STATE UNIVERSITY

Cortex-A72 Overview

Debug ;I':acL?t TimerEvents Interrupts il:tiss"sgt:
g
1 | Cortex-AT2 processor
’“‘i'B *‘”‘TIB A)(Id-::l‘;tream
, 4 -
" 4 cores, each with Py wj m .‘ﬁiﬁmm
= Memory Management Unit = Miscetaneous

= 48 entry fully-associative L| Instruction TLB
= 32 entry fully-associative LI Data TLB

Rename Integer execute
= 4-way set-assoc. 1024-entry L2 TLB vitualto || Dispaten

physical stages Writeback
= TRM Chapter 5 register Cryptography®

|_PMU_|

pool

= Per-core LI caches Eraner
fetch . Register
o . nd Pre System reqisters "
= 48 kB instruction cache Ind Pred

+ 32 kB dhra cache

* TRM Chapter 6
= Shared L2 cache

= Unified |+D cache

" 5 I 2 kB - 4 MB | ua:t;ﬂrati;; {2"°‘|:ave|)" |
1 3 : i
= TRM Chapter 7 ave || snoop || Master (48 "L [(siokaioame) || RaM || enome
1‘ Level 2 memory system
AE(I ACE or CHI
4 AiF'* Memory

t "]
interface Depending on the implementation, this feature might not be available

NC STATE UNIVERSITY

Cortex-A72 processor

LI Memory System

= L| Instruction Cache APB ATB TimerEvents |nterrupts AXI4 Stream Protocol
= 48 KB 3-way set-associative I I T l I
= 64 byte line length Pebug end | rrace Gﬁ;g:cm GIC CPU interface m
= |6 byte output path: 4 instructions wide = =t Miscellaneous

= Parity protection per halfword

= Physically indexed, physically tagged (PIPT)
Core 0 Core 1 Core 2 Core 3
) LRU replacement L1 L1 L1 L1 L1 L1 L1 L1
TLBs TLBs TLBs TLBs
- LI Data CaChe ICache DCiche ICache DCiche ICache DCiChe ICache DCiche
= 32 KB 2-way set associative y ' Y Y
I S
: 64 byte Ilne Iength Slave Master Cgr?tc:gl L2 Cache
= ECC per word I I ont
|
PIP-I-’ LRU ACP ACE or CHI Level 2 memory system
|

Hardware prefetcher

Normal memory load requests: out-of-order, speculative, non-blocking

Device memory load requests: non-speculative, non-blocking

NC STATE UNIVERSITY

L2 Memory System

Cortex-A72 processor

= Unified cache (instructions + data)
APB ATB TimerEvents Interrupts AXI4 Stream Protocol
=5]2 KB — 4 MB, | 6-way set- ! ! ! | !

associative De“g%a“d Trace Gﬁ:z:cm GIC CPU interface m
- 64'bYte ||ne Iength 4 —* o Miscellaneous

= Physically indexed, physically tagged

v \J Y v

. Banked P|Pe||ne StrUCtureS Core0 Core 1 Core 2 Core 3
* Programmable pseudo-LRU or
& P IC;:he DCI;Lhe TLBs ICIa-;he Dc|é1che TLBs ICaLlhe DCI:;che TLBs IC;t:I:he DCI;Lhe TLBs
pseudo-random replacement f f f f
= 20 — 28 Fill/Eviction Queues i
noo
Slave Master Contrgl L2 Cache
Unit

I I

ACP ACE or CHI Level 2 memory system

NC STATE UNIVERSITY

L2 Cache Prefetcher

= Hardware L2 prefetcher
= Load/Store unit handles prefetch generation
= On L2 instruction fetch, fetch consecutive cache lines (configurable for O, I,2 or 3 prefetches)
= On L2 table walk descriptor access, fetch next cache line
= On prefetch request, forward read data before line is allocated

Memory Access Performance

initialize(number_of_elements) ;
a72MeasureDataAccessEvents() ;

start_clock() ;
peStartCounting() ;
for (; iterations > 0 ; iterations--) {
for (CachelLine *p = TistHead ; p != NULL ;
p = p->nhextLine)
}
peStopCounting() ;

print_clock_time(stdout, get_clock_time()) ;
a72PrintDataAccessEvents(stdout) ;

= From http://sandsoftwaresound.net/arm-cortex-a/2-= Measure execution time, PMU events

tuning-memory-access/

= Use pointer-chasing loop code
= Use linked list, step through with pointer p
= Test p. If not NULL, load p with p->nextLine.

= Pseudorandom nextLine locations should eliminate
spatial & temporal locality to make cache ineffective

= Each list element is 64 bytes long (takes exactly one
cache line)

= Array size and iteration counts modified so program
always accesses same number of memory locations
= # elements * # iterations = constant = 268,435,456

NC STATE UNIVERSITY

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

NC STATE UNIVERSITY

CPU Cycles for Program Execution

CPU Cycles

60,000,000,000
50,000,000,000
40,000,000,000
30,000,000,000
20,000,000,000

10,000,000,000

Array Size

* From http://sandsoftwaresound.net/arm-cortex-a/2-tuning-memory-access/

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

Average Instruction per Cycle (IPC)

1.200

1.000

0.800

0.600

0.400

0.200

0.000

2KB

4KB

NC STATE UNIVERSITY

IPC

8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

* From http://sandsoftwaresound.net/arm-cortex-a/2-tuning-memory-access/

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

L1 D-Cache Miss Ratio

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

= 32 kB LI Data Cache
= From http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

NC STATE UNIVERSITY

L1D Miss Ratio

R

2KB

4KB

8KB

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

L2 Cache Miss Ratio

= | MB L2 cache

1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000

~-

2KB

NC STATE UNIVERSITY

L2 Miss Ratio

4KB

® ® _an
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

Array Size

= From http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

12

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/

NC STATE UNIVERSITY

Extra Cycles per Element Access

Extra Cycles per Element Access

250
200
150
100

50

2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB
Array Size

= (Total cycles for array size X — total cycles for array size 2 kB)/number of array accesses

= From http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/ and http://sandsoftwaresound.net/arm-
cortex-a/2-execution-and-load-store/

13

http://sandsoftwaresound.net/arm-cortex-a72-tuning-memory-access/
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/

Test Parameters

#Elements

ITterations
8388608
4194304
2097152
1048576

524288
262144
131072
65536
32768
16384
8192
4096

Array Size

Mem

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Instruction Set Support

Prefetch/Preload Instructions

Core

L1 L1

ICache | DCache TLBs

F'y

k4

L2 Cache

Level 2 memory system

DRAM

NC STATE UNIVERSITY

" Instructions which try to preload = ARM ISA provides prefetch

a data item or an instruction instructions for both instructions
closer in the memory system and data
= Problems with using a regular load * No target register needed — just

instruction to prefetch specify memory address

= Increases register use (register = Prefetch instructions will not
pressure), reducing effectiveness of = Cause synchronous aborts (e.g. page
compiler register allocation fault)

= With virtual memory, fetch from non- = Change memory, cache or TLB
resident page will cause page fault, differently than the equivalent load,
slowing program execution store or fetch would
(unnecessarily, if prefetch was not
needed)

= How to prefetch an instruction?

NC STATE UNIVERSITY

Data Preload: PLD, PLDW

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. For more information, see Behavior of Preload Data (PLD, PLDW) and Preload Instruction
(PLI) with caches on page B2-7.

On an architecture variant that includes both the PLD and PLDW instructions, the PLD instruction signals that
the likely memory access is a read, and the PLDW instruction signals that it is a write.

m PLD |oad PLD{W}<c><q> [<Rn> {, #+/-<imm>}]
i W If specified, selects PLDW, encoded as W = | in Thumb encodings and R = 0 in ARM
= PLDW:store encodings. If omitted, selects PLD, encoded as W = 0 in Thumb encodings and R =1 in
= Different forms based on how ARM encodings.
address is provided <C><q> E:::ui:;czorﬁﬁ:isjfembier syntax fields on page A8-7. An ARM PLD or PLDW instruction must
* Immediate
. <Rn> The base register. The SP can be used. For PC use in the PLD instruction, see PLD (literal)
= Literal on page A8-238.
. .
RegISter +/- [s + or omitted to indicate that the immediate offset is added to the base register value
= Details in vV ARM,A8.6.117-119 (add == TRUE), or — to indicate that the offset is to be subtracted (add == FALSE). Different

instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. This offset can be omitted, meaning an offset
of 0. Values are:
Encoding T1, Al any value in the range 0-4095

17 Encoding T2 any value in the range 0-255.

NC STATE UNIVERSITY

Preload Instruction signals the memory system that instruction memory accesses from a specified address
are likely in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the instruction cache. For more information, see Behavior of Preload Data (PLD, PLDW) and
Preload Instruction (PLI) with caches on page B2-7.

Instruction Preload: PLI

PLI<c><q> [<Rn>, +/-<Rm> {, <shift>}]

= Different forms based on where:
how address is provided

. <C><(> See Standard assembler syntax fields on page A8-7. An ARM PLI instruction must be
* Immediate unconditional.
= Literal :
. <Rn> Is the base register. The SP can be used.
= Register
. T +/- Is + or omitted if the optionally shifted value of <Rm> is to be added to the base register value
Details in v/ARM, (add == TRUE), or — if it is to be subtracted (permitted in ARM code only, add == FALSE).
A8.6.120-121
. <Rm> Contains the offset that is optionally shifted and applied to the value of <Rn> to form the
= Not implemented on address.
Cortex-A72
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. For encoding

T1, <shift> can only be omitted, encoded as imm?2 = 0b00, or LSL #<imm> with <imm> =1, 2,
or 3, with <imm> encoded in imm2. For encoding A1, see Shifts applied to a register on
page A8-10.

http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/

NC STATE UNIVERSITY

Data Prefetch Intrinsics

= Source: ACLE
= Generate prefetch instruction if available (else no-op)

" Prefetch data to innermost cache level for reading

= void pld(void const volatile *addr);

" Prefetch data to given cache level for given Access Kind Value Summary

access with given retention policy
= void pldx (PST 1 Fetch the addressed location for writing

PLD 0 Fetch the addressed location for reading

unsigned int /*access kind*/,
unsigned int /*cache level*/,

. . , , Cache Level Value Summary
unsigned int /*retention policy*/,

void const volatile *addr) ; L1 0 Fetch the addressed location to L1 cache
L2 1 Fetch the addressed location to L2 cache
L3 2 Fetch the addressed location to L3 cache

Retention Policy Value Summary
KEEP 0 Temporal fetch of the addressed location (i.e. allocate in cache normally)

9 STRM 1 Streaming fetch of the addressed location (i.e. memory used only once)

NC STATE UNIVERSITY

Instruction Prefetch Intrinsics

= Source: ACLE
= Generate prefetch instruction if available (else no-op)

= Prefetch data to innermost cache level for reading
= void pli(T addr);

= Prefetch data to given cache level for given access with given

retention policy
= vold @ plix(

unsigned int /*cache level*/, Cache Level Value Summary
; ; * ; ! *
un81gned int / retentlon_pollcy / ! L1 0 Fetch the addressed location to L1 cache
T addr) ; _
L2 1 Fetch the addressed location to L2 cache
L3 2 Fetch the addressed location to L3 cache

Retention Policy Value Summary

KEEP 0 Temporal fetch of the addressed location (i.e. allocate in cache normally)

STRM 1 Streaming fetch of the addressed location (i.e. memory used only once)

20

NC STATE UNIVERSITY

v [:I 17: Optimizing Code to Run on ARM Processors

Using Prefetch Instructions/Intrinsics

= Some information here ARM Cortex-

A Series Programmer’s Guide .
(DENOO | 3D) W I:l 17.2 ARM memory system optimization

b [:I 17.1 Compiler optimizations

= Other sources available on web 17.2.1 Data cache optimization

17.2.2 Loop tiling

17.2.3 Loop interchange

17.2.4 Structure alignment

17.2.5 Associativity effects

17.2.6 Optimizing instruction cache usage
17.2.7 Optimizing L2 and outer cache usage
17.2.8 Optimizing TLB usage

17.2.9 Data abort optimization

17.2.10 Prefetching a memory block access

20 21 21 21 21 21 21 21 21 21

21

NC STATE UNIVERSITY

Code Optimizations for the Memory System

Read the Cortex-A Series Programmer’s Guide

= ARM Cortex-A Series

23

Programmer’s Guide (DENO0OI3D)

vu']
> [
v [

NC STATE UNIVERSITY

7. Optimizing Code to Run on ARM Processors

17.1 Compiler optimizations

17.2 ARM memory system optimization

17.2.1 Data cache optimization

17.2.2 Loop tiling

17.2.3 Loop interchange

17.2.4 Structure alignment

17.2.5 Associativity effects

17.2.6 Optimizing instruction cache usage
17.2.7 Optimizing L2 and outer cache usage
17.2.8 Optimizing TLB usage

17.2.9 Data abort optimization

17.2.10 Prefetching a memory block access

b2 I T [N T I T (R T [N T I T [T I T [

NC STATE UNIVERSITY

17.2.2 Loop Tiling
for (io = 0; 1o < 1024; io += 8)

for (jo = 0; jo < 1024; jo += 8)
for (ko = 0; ko < 1024; ko += 8)
for (i1 = 0, rresult = &result[io][jo],

= Break loop iterations , 3
. . ra = &afio][ko]; ii < 8;
into smaller pleces _ _ _ ii++, rresult += 1024, ra += 1024)
for (i =0; 1 < 1024; 1++) for (ki = 0, rb = &f[ko][jol;
= Array elements are reused for (3 = 0; j < 1024; j++) ki < 8: ki++, rb += 1024)
more closely in time for (k=0 < 1024 kat) . for (31 = 05 31 < 8; ji++)
Y . result[i][j] = result[i][j] + a[il[k] = b[k]I[j]; rresult[31] += ra[ki] # rb[ji];
" Increases locality so
cache can help more ot —= —t>
= See the non-obvious HEHRHRHEHRHRE T 1=l T ==
implementation details I E Wbt hdh IE e]
. I]] Eat 1>
in CASPG > 1= 1=
- F = F o
T =1 ==
I ! I I ! I ! - :
1 [1 I 1 1 [- _‘-""
I] I [I 1] = A==
! I I [I ! i - -
I 1 1 I 1 L 1 — - "'__..--""
YIY]Y]Y|Y]Y]Y]Y - > = .

Figure 17-1 Effect of tiling on cache usage

24

NC STATE UNIVERSITY

More Considerations

= |7.2.3 Loop Interchange
= Often better to re-nest loops so iteration count increases with nesting depth
= Outermost loop: fewest iterations
* [Innermost loop: most iterations
= Compiler support
= GCC has —floop-interchange

= [7.2.4 Structure Alignhment
= Align data to not cross cache line boundaries
= Arrange or split data structures so most-used data type fits into single cache line

= |7.2.5 Associativity Effects
= Set-associative cache suffers if data is on boundaries of powers of 2

25

NC STATE UNIVERSITY

v [:I 17: Optimizing Code to Run on ARM Processors

And Other Good Information

= ARM Cortex-A Series
Programmer’s Guide (DENO0OI3D)

b [:I 17.1 Compiler optimizations

e [:l 17.2 ARM memory system optimization

17.2.1 Data cache optimization

17.2.2 Loop tiling

17.2.3 Loop interchange

17.2.4 Structure alignment

17.2.5 Associativity effects

17.2.6 Optimizing instruction cache usage
17.2.7 Optimizing L2 and outer cache usage
17.2.8 Optimizing TLB usage

17.2.9 Data abort optimization

17.2.10 Prefetching a memory block access

20 2] 21 21 21 21 21 21 21 21

26

