
1

Optimizing for the Cortex-A72



2

▪Processor Architecture and Microarchitecture

▪Pipelines and Instruction Latencies

▪Sources:
▪ Cortex-A72 MPCoreTechnical Reference Manual 

(ARM 100095_0003_05_en)

▪ Cortex-A72 Software Optimisation Guide (UAN 

0016A)

▪ ARM Cortex-A Series Programmer’s Guide 

(DEN0013D)

Overview



3



4



5

▪ 4 cores

▪ Per-core L1 caches

▪ 48 kB instruction cache

▪ 32 kB data cache

▪ Shared L2 cache

▪ Unified I+D cache

▪ 512 kB – 4 MB

Cortex-A72 Overview



6

Pipelines and Their Consequences



7

▪ Why use a pipeline?

▪ Increase clock speed to finish a set of 

instructions sooner

▪ How? Overlap instruction execution

▪ Start executing instruction N+1 before 

finishing instruction N 

▪ Use latches to hold intermediate results 

between pipeline stages

▪ How much performance improvement?

▪ Maximum theoretical speedup is number of 

pipeline stages

Pipelined Instruction Execution

Instruction 1

Time

Instruction 2

Instruction 3

Instruction 4

Instruction 1

Time

Instruction 2

Instruction 3



8

▪ Design issues

▪ Latch latency

▪ Increasing difficulty of splitting logic into equal-

duration pipeline stages

▪ Hazards which stall pipeline

▪ Data-flow hazards – need data which hasn’t 

been calculated yet

▪ subs uses r0, which was defined by add

▪ Control-flow hazards – conditional branch 

causes flow of program to depend on a result 

which is not available yet 

▪ ble uses condition codes set by subs

▪ Which instruction executes next? Instruction after 

branch, or branch target?

Speedup Limited by…

add r0, r1, r2

Time

subs r6, r0, r4

ble target



9

Cortex-A72: Eight Instruction Execution Pipelines



10

▪ Fetch instruction(s)

▪ Decode into internal µops 

▪ µop register renaming 

▪ µop dispatch to await operands in issue queues

▪ Issue µop out-of-order to an execution pipeline

▪ Execute in pipeline

Cortex-A72 µArchitecture

Diagram: Hiroshi Goto

PC Watch



11

Cortex-A72 Instruction Timing

▪ Note from Cortex-A72 TRM 

regarding instruction timing

▪ Important instruction characteristics

▪ Latency

▪ Minimum latency seen by a dependent 

operation

▪ Throughput

▪ Maximum number of active instructions of 

this type per clock cycle 

▪ If not pipelined, will be less than 1



12



13

Instruction Type Latency Thrghpt

Branch, Br. & Link, Compare & Br. 1 1

Arithmetic, Logic w/o shift 1 2

Arithmetic, Logic w/ shift 2 1

Move, Shift 1-2 1-2

Integer Divide (blocking, early-out) 4-12 <1

Multiply, MAC, Long Multiply 3-4 ½-1

Saturating and Parallel Arithmetic 2-5 ½-1

Load (L1 hit) 4-5 1

Store 1-3 1

Misc Data Processing 1-4 1-2

AArch32 Instruction Performance for Cortex-A72

ASIMD Instruction Type Latency Thrghpt

ASIMD Integer 3-5 ½-2

ASIMD FP 3-7 ½-2

ASIMD Load 5-9 ½-1

ASIMD Store 1-4 ¼-1

ASIMD Misc. 3-8 ½-2

FP Instruction Type Latency Thrghpt

FP Multiply 4 2

FP Multiply/Accumulate 7 2

FP Divide 6-18 <1

FP Square Root 6-32 <1

FP Load 5 1

FP Store 1 1

FP Move (see 3.11) 3-8 1-2

FP Misc. Data Processing 3-6 1/6-2



14

▪ Refer to Cortex-A72 Software 

Optimisation Guide (UAN 0016A)

▪ Dispatch Constraints 

▪ Conditional Execution 

▪ Conditional ASIMD 

▪ Register Forwarding Hazards 

▪ Load/Store Throughput 

▪ Load/Store Alignment 

▪ Branch Alignment 

▪ Setting Condition Flags 

▪ Special Register Access 

▪ AES Encryption/Decryption 

▪ Fast literal generation 

▪ PC-relative address calculation 

▪ FPCR self-synchronization

Special Considerations



15

Control-Flow Hazards and Branch Prediction



16

Pipeline Comparison: Cortex-A8 vs. Cortex-A72

▪ Cortex-A8: Two 

sequential pipelines 

▪ Integer instructions 

complete at end of stage E5

▪ NEON and floating-point 

instructions

▪ Flow through integer 

pipeline

▪ Are decoded and execute in 

NEON pipeline (ASIMD)

▪ Complete at end of stage N6

▪ Cortex-A72: Integrated, 

parallel pipelines

▪ All execution pipelines start 

at same stage

▪ Integer, floating point and

ASIMD



17

Example: Impact of Deep Pipelines in Cortex-A8

▪ Which instruction executes 

after the conditional branch BNE? 

▪ Branch target (loop), or instruction after branch 

(CMP)?

▪ Pipe stages with newer instructions will stall until 

condition controlling branch is resolved, reducing 

performance

▪ Penalties (assuming L1 instruction cache hit)

▪ Integer comparison: 13 cycles

▪ Floating-point comparison: 23 cycles



18

▪ 15-cycle program flow mispredict

penalty, so try to predict correctly

▪ Predicted instructions

▪ Conditional, unconditional, and indirect 

branches

▪ Arm/Thumb interworking switch

▪ Instructions with PC as destination

▪ Unpredicted instructions

▪ Anything capable of changing privilege 

mode or security state 

▪ Details: Cortex-A72 TRM, Section 6.5

Cortex-A72 Program Flow Prediction



19

▪ Static predictor – helps out before 

dynamic predictor warms up. 

Predicts as taken: 

▪ Unconditional direct branches

▪ Unconditional direct call-type branches 

BL immediate (call). 

▪ Return address is pushed to Return 

Address stack.

▪ Unconditional return branches. 

▪ Target popped from Return Address 

stack

▪ Dynamic predictor

▪ Branch Target Buffer

▪ 2-level global history-based direction 

predictor

▪ Indirect branch predictor

▪ Stores branch address, state to predict 

target

▪ Return stack predictor

▪ Pushes address from LR on BL or BLX

▪ Pops address

▪ BX lr; MOV pc,lr; LDMIA sp!, {..pc}; 

LDR pc, [sp], #4 

▪ Exception returns not predicted

Predictors Used


