NC STATE UNIVERSITY

Optimizing for the Cortex-A72

NC STATE UNIVERSITY

Overview

= Processor Architecture and Microarchitecture

Cortex®-A72 Software
Optimization Guide

" Pipelines and Instruction Latencies

= Sources:

= Cortex-A72 MPCore Technical Reference Manual
(ARM 100095_0003_05_en)

= Cortex-A72 Software Optimisation Guide (UAN
0016A)

= ARM Cortex-A Series Programmer’s Guide
(DENOO013D)

AAAAAAAAAAA

Cortex-A72: Increased Performance and Reduced Power

= Compelling single-threaded performance

= Large performance increase across all workloads including
integer,memory-intensive,crypto,floating point, etc.

= Baseline microarchitecture similar to Cortex-A57

= Significant advancements in power efficiency Sy
= Re-optimized every logical block from Cortex-A57 32b/64b CPU
= Power reduction enables sustained operation at Fmax
= Area reduction lowers costs and static power

= Feature support for enterprise and
mobile SoCs

5 Embargo until |10pm BST 23 April ARM

Cortex-A72: Next-Generation Performance ARMCORTEX

Processor Technology

Performance per cycle

(Relative)
m Cortex-A72
Analytics
M Cortex-A57
Crypto
Memory

Floating Point

Integer Compute

Performance measure on same frequency, same process and identical memory system interfaces
Workloads include: SPECint06, SPECfp06, Stream, LMbench, Geekbench, Antutu, Minebench, AES/SHA/CRC kernels,and other targetted kernels ARM

4 Embargo until I0pm BST 23 April

Cortex-A72 Overview

= 4 cores

= Per-core LI caches

= 48 kB instruction cache
= 32 kB data cache

= Shared L2 cache
= Unified |+D cache
= 5|2 kB-4MB

NC STATE UNIVERSITY

Trace Message
Debug gutput Timerevents Interrupts interrupts
F 9 F 3
| Cortex-AT2 processor|
APB ATB AXI4-Stream
|
v v v *
Debug Generic GIC
andcTl | TMACe Timer CPU Interface
b
Miscellaneous

Branch
prediction

Ind Pred

Returm
stack

Rename

Virtual to

physical

register
pool

Instruction
fetch
Instruction | Instruction
cach TLB

Processor arbitration (1% level)

System registers Register
file

Integer execute
Dispatch Adv SIMD and FP
stages Writeback
Cryplography®
Load | Data | Data
store | TLB |cache

3

v v
| L2 arbitration (2™ level) |
Fill / Evict L2 data RAM Snoop TAG | | Auto prefetch

Slave || Snoop || Master =%) gers” %] (512KB to 4MB) RAM engine

T Level 2 memory system

AXI ACE or CHI

1]

ACPt Memary

interface

* Depending on the implementation, this feature might not be available

NC STATE UNIVERSITY

Pipelines and Their Consequences

Pipelined Instruction Execution

= Why use a pipeline!?
= Increase clock speed to finish a set of
instructions sooner
= How? Overlap instruction execution

= Start executing instruction N+1| before
finishing instruction N

= Use latches to hold intermediate results
between pipeline stages
= How much performance improvement!

= Maximum theoretical speedup is number of
pipeline stages

NC STATE UNIVERSITY

Instruction |
Instruction 2
Instruction 3
Time >
Instruction |
Instruction 2
Instruction 3
Instruction 4
>

Time

NC STATE UNIVERSITY

Speedup Limited by...

= Design issues
= Latch latency
" Increa.lsmg .C|IffI.Cu|t)' of splitting logic into equal- 2dd[r0, r|. r2
duration pipeline stages
. T subg ré6, r0, r4
= Hazards which stall pipeline b
= Data-flow hazards — need data which hasn’t € target
been calculated yet
= subs uses r0, which was defined by add
= Control-flow hazards — conditional branch
causes flow of program to depend on a result
which is not available yet

= ble uses condition codes set by subs
= Which instruction executes next? Instruction after
branch, or branch target?

Time

Cortex-A72: Eight Instruction Execution Pipelines

NC STATE UNIVERSITY

Pipeline (mnemeonic)

Supported functionality

Branch (B)

Branch pops

Integer 0/1 (I)

Integer ALU pops

Multi-cycle (M)

Fetch

—P

Decode,
Rename,
Dispatch

IN ORDER

Issue

Integer shift-ALU, multiply, divide, CRC and sum-of-absolute-differences

s
—» Branch HoP
Load (L) Load and register transfer pops
—» Integer 0
Store (S) Store and special memory Lops
*|_Integer 1 FP/ASIMD-0 (F0) ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc,
FP add, FP multiply, FP divide, crypto pops
—» Integer Multi-Cycle
B FP/ASIMD 0
—> FP/ASIMD 1
> Load
P Store

OUT OF ORDER

NC STATE UNIVERSITY

Cortex-A72 pArchitecture

_ = Fetch instruction(s)
me L1 Instruction Cache Branch Prediction
45 . .
e | P seamiadate gesctpruacior | | = Decode into internal pops
Global History Buffer
133?"%” WicroBTS ieney E = Jop register renamin
Branch Target Buffer P g g
Instruction Fetch BTB) sk
Rewen ek) - ? = pop dispatch to await operands in issue queues
v @ . . .
g 3-way Instruction Decode § = |ssue pop out-of-order to an execution pipeline
g Decode | Decode | Decode E I
sl |3 oot l xecute in pipeline
T = . o | o e
{ m‘:'“ mmmh‘g’ma!’ [Commit ARM ISA ARMV7 (32-bit) ARMVS (32/64-bit)
& | Rogheor Ties: ;,ptoimmozops olspatci Decoder Width 3 ops
= = issue “:mow:wb‘u:wm = = Maximum Pipeline 19 stages 16 stages
[l = - I [Length
—l l lUp to sznlcro-ogs lssuel l r o
s L F1 Fo M 1" Integer Pipeline 14 stages
= = I“’] . . — Length
o 9 c
e a 3 r aq r g]g Branch Mispredict 15 cycles
CsadStare Uit » A 2 Penalty
| g § Integer Add 2
1 1 Integer Mul 1
(32-0niry) :YDE?K%“'?M e p '3,"‘“' = Load/Store Units 1 + 1 (Dedicated L/S)
T Byt cache ine, ECC) percy AL l s Lo S .
Engine Branch Units 1
ON & FPU
M'Mi‘ FPINEON ALUs 2x64-bit 2x128-hit
44.bit Physical Address
R s N PN I Retiroment Buffer | } L1 Cache 32KB I$ + 32KB D$ 48KB I$ + 32KB D$

PC Watch L2 Cache 512KB - 4MB 512KB - 2MB 512KB - 4MB

NC STATE UNIVERSITY

* The out-of-order design of the Cortex-A72 processor pipeline makes it impossible to provide
accurate timing information for complex instructions. The timing of an instruction can be
affected by factors such as:

m Note from Co rtex- A72 TRM — Other concurrent instructions.

— Memory system activity.
regard I ng instruction timi ng — Events outside the instruction flow. .

* Timing information has been provided in the past for some ARM processors to assist in the
hand tuning of performance critical code sequences or in the development of an instruction
scheduler within a compiler. This timing information is not required for producing optimized
mnstruction sequences on the Cortex-A72 processor. The out-of-order pipeline of the
processor can schedule and execute the instructions in an optimal fashion without any
nstruction reordering required.

Cortex-A72 Instruction Timing

* Important instruction characteristics > Branch
[Latency —» Integer O
= Minimum latency seen by a dependent | Integer 1
operation Decode —» Integer Multi-Cycle
Fetch > Hename’, — %
= Throughput Dispatch =l FP/ASIMD 0
= Maximum number of active instructions of N o ASIVD 1
this type per clock cycle
> Load
= If not pipelined, will be less than |
—» Store

1 IN ORDER OUT OF ORDER

NC STATE UNIVERSITY

Cortex®-A72 Software
Optimization Guide

Date of Issue: March 10, 2015

Copyright ARM Limited 2015. All rights reserved

Copyright © 2015 ARM. All rights reserved.
ARM UAN 0016A Page 1 of 42

Contents

1 ABOUT THIS DOCUMENT
1.1 References
1.2 Terms and abbreviations

1.3 Document Scope

2 INTRODUCTION

2.1 Pipeline Overview

3 INSTRUCTION CHARACTERISTICS

3.1 Instruction Tables

3.2 Branch Instructions

3.3 Arithmetic and Logical Instructions

3.4 Move and Shift Instructions

3.5 Divide and Multiply Instructions

3.6 Saturating and Parallel Arithmetic Instructions
3.7 Miscellaneous Data-Processing Instructions
3.8 Load Instructions

3.9 Store Instructions

3.10 FP Data Processing Instructions

3.11 FP Miscellaneous Instructions

3.12 FP Load Instructions

3.13 FP Store Instructions

3.14 ASIMD Integer Instructions

3.15 ASIMD Floating-Point Instructions

3.16 ASIMD Miscellaneous Instructions

3.17 ASIMD Load Instructions

3.18 ASIMD Store Instructions

10

1

12

15

16

18

19

20

22

26

28

30

33

NC STATE UNIVERSITY
AArch32 Instruction Performance for Cortex-A72

Instruction Type Thrghpt FP Instruction Type Thrghpt

Branch, Br. & Link, Compare & Br. | I FP Multiply
Arithmetic, Logic w/o shift I 2 FP Multiply/Accumulate 7 2
Arithmetic, Logic w/ shift 2 I FP Divide 6-18 <l
Move, Shift -2 -2 FP Square Root 6-32 <l
Integer Divide (blocking, early-out) 4-12 <l FP Load 5 I
Multiply, MAC, Long Multiply 3-4 V- FP Store I I
Saturating and Parallel Arithmetic ~ 2-5 V- | FP Move (see 3.11) 3-8 -2
Load (LI hit) 4-5 I FP Misc. Data Processing 3-6 1/6-2
Misc Data Processing | -4 |-2 ASIMD Integer 3-5)
ASIMD FP 3-7 V2-2
ASIMD Load 5-9 V2- |
ASIMD Store |-4 Va- |

, ASIMD Misc. 3-8 V2-2

Special Considerations

= Refer to Cortex-A72 Software
Optimisation Guide (UAN 0016A)

= Dispatch Constraints

= Conditional Execution

= Conditional ASIMD

= Register Forwarding Hazards
" Load/Store Throughput

= Load/Store Alighment

" Branch Alignment

= Setting Condition Flags

NC STATE UNIVERSITY

= Special Register Access

= AES Encryption/Decryption

= Fast literal generation

* PC-relative address calculation
= FPCR self-synchronization

NC STATE UNIVERSITY

Control-Flow Hazards and Branch Prediction

NC STATE UNIVERSITY

Pipeline Comparison: Cortex-A8 vs. Cortex-A72

13-Stage Integer Pipeline 10-Stage NEON Pipeline
F1 F2 DO D1 D2 D3 D4 EO0O E1 E2 E3 E4 ES MO M1 M2 M3 N1 N2 N3 N4 N5 N6
. COFteX-ASZTWO Branch mispredict penalt I =
) . . Replay penatty || Instruction Execute and|Load/$tore NEON NEON register writeback
sequential pipelines R I T T T |
= Integer instructions - B AL pipg 0 Infeger ALU gipe
complete at end of stage E5 g | vUL pipk 0 = T Infeger MUL pipe
. . 5 = NEON T T o
= NEON and floating-point nstrudtion M 1|) ciol nbtrton |, : Infeger shift gipe
. = e | o
instructions Fetchl ||| |nstrugtion Decode 2 Recoga TI[[noneette adp pipe
e = ! T =
= Flow through integer il -5 Hipe Opr 1 Non-EEE P MUL pipe
PIPellne L1 instruction cache miss IEEE FP engine
= Are decoded and execute in Ll | Ll Load queue :: L$ permute gipe
NEON pipeline (ASIMD) il | . i
" Complete at end of stage N6 I S | 1 NEON sfore data '
= Cortex-A72: Integrated, -~ |Brancn| |
. . nteger Q
parallel pipelines
. . . 1 nteger 1
= All execution pipelines start
at same stage o | |l [Sostee | | (g [y pemyes
= Integer, floating point and Pisppien B TR/ASIMD ©
ASIMD FP/ASIMD 1
Load
16 Stpre

Example: Impact of Deep Pip

elines in Cortex-A8
3-Stage Integer Pipeline

10-Stage NEON Pipeline

NC STATE UNIVERSITY

F1 F2 DO, D1, D2 D3 D4 EO, E1 E2 E3, E4 E5 MO M1 M2 M3 . N1 N2 N3 N4 N5 N6
pranch lispredictipenatt Replay penalty || Instruction Execute and|Load/$tore NEON NEON repister writeback
Integef registér writeback 1 |
4 -]
> b ALU pipd 0 Infeger ALU pipe
g "‘ MUL piok 0 R ﬁ : Integer MUL pipe
g N NEON = Integer shift gipe
Instrugtion M = 2 b ALY pipe 1 N Ingtruckon g & R
Fetch \ nstruction Dgcode z Qecode & Non-[EEE FP ADD pipe ‘
! g =
el - &
P LS Fipe 0 pr1 Non-EEE FP MUL pipe
L1 instruction cache miss |EEE FP engine ‘
L1data cache miss i L1 dai_a’ Load queue :: L§ perthute dipe
L2 data ,
| !
BIU pipeline NEON store data
had Embedded Trace Macrocell
. . . L1|2 L3 |14 |L5 L6| L7 L8
* Which instruction executes L2 Tag Array L2 Data Array TOT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13
after the conditional branch BNE? 2 1 External trace port l
L3 memory system

= Branch target (loop), or instruction after branch

(CMP)?

= Pipe stages with newer instructions will stall until
condition controlling branch is resolved, reducing

performance

= Penalties (assuming L1 instruction cache hit)

= Integer comparison: |3 cycles

= Floating-point comparison: 23 cycles

NC STATE UNIVERSITY

Cortex-A72 Program Flow Prediction

= | 5-cycle program flow mispredict " Details: Cortex-A72 TRM, Section 6.5
penalty, so try to predict correctly =~ Program flow prediction

= Predicted instructions The Cortex-A72 processor contains program flow prediction hardware, also known as branch prediction.
= Conditional. unconditional. and indirect \\.-’irh program ﬂgw Pl'edicrion disabled, all rakeln l.Jranches incur a penalty associated with ﬂushing the

’ ’ pipeline. To avoid this penalty, the branch prediction hardware operates at the front of the instruction
branches pipeline. The branch prediction hardware consists of:
* A Branch Target Buffer (BTB) to identify branches and provide targets for direct branches.

* Arm/Thumb mterworklng switch » 2-level global history-based direction predictor.

* |nstructions with PC as destination * Indirect predictor to provide targets for indirect branches.
. . . * Return stack.
= Unpredicted instructions + Static predictor.
L Anything capable of changing Privilege The combination of global history-based direction predictor and BTB are called dynamic predictor.
mode or Secur'ity state This section contains the following subsections:

* 06.5.1 Predicted and non-predicted instriictions on page 6-295.
* 6.5.2 Return stack predictions on page 6-295.

* 6.5.3 Indirect predictor on page 6-296.

* 6.5.4 Static predictor on page 6-296.

* 06.5.5 Enabling program flow prediction on page 6-296.

* 0.5.6 BTB invalidation and context switches on page 6-296.

NC STATE UNIVERSITY

Predictors Used

= Static predictor — helps out before = Dynamic predictor

Branch Prediction | dynamic predictor warms up. « Branch Target Buffer
" Bi-mode Predictor Predicts as taken: = 2-level global history-based direction
'ﬂfﬁﬁhﬁmﬂﬁ = Unconditional direct branches predictor
Global History Buffer » Unconditional direct call-type branches * Indirect branch predictor
MicroBTBE (64-entry) BL immediate (call). = Stores branch address, state to predict
Er“’iﬂ‘rﬁﬁ EiEfﬁH = Return address is pushed to Return target
e— - Addl’e.ssf stack. = Return stack predictor
= Unconditional return branches. = Pushes address from LR on BL or BLX
] = Target popped from Return Address = Pops address
stack = BX Ir; MOV pc,Ir; LDMIA sp!, {..pc};

LDR pc, [sp], #4
= Exception returns not predicted

