
ECE 785 Final Exam Study Guide (Spring 2021)
Open book, open notes, open computer. Assume that C code is compiled for the ARM Cortex-A72 following the ARM Architecture
procedure calling standard (AAPCS).

Building Embedded Systems
 Programming languages

o Performance implications of shell scripts, interpreted languages, compiled languages
o Treating I/O devices as files

 GPIO interfacing
o GPIO hardware peripheral concepts
o Methods: sysfs (and I/O stream), memory-mapped I/O with mmap and dev/mem, gpiod, kernel thread, other

libraries
 Concepts
 Performance

o Trade-offs
 Asynchronous inputs

o Methods to wait for inputs
 Without O/S: busy-waiting
 Using O/S: (p)select, (p)poll, epoll_wait,

o Program structure
 Single thread, threaded callback, signal handler, interrupt
 Trade-offs

 Loadable kernel modules
o Commands for basic use

 insmod, lsmod, rmmod
o Actions and behavior

 Loading and parameters
 Unloading
 IRQ Handlers
 Accessing attributes
 Threads

o Code Structures and Data Structures

Examining Object Code
 Platform

o ARMv7-A Instruction Set Architecture
 Integer instructions
 Floating point instructions
 Advanced SIMD instructions

o Cortex-A72 processor features
 Instruction processing core
 Memory hierarchy

o Raspberry Pi 4
 Given a source code listing

o Create a function call graph
 Given object code (an assembly code listing),

o Identify which machine instructions implement specific source code operations
o Identify which registers or memory locations hold specific variables
o Create a function call graph
o Create a control flow graph

Analyzing and Optimizing Speed
 Profiling with PC sampling

o Concepts
o How to use perf for profiling
o How to interpret perf’s output
o Limitations to profiling with PC sampling

 Given source code,
o Identify operations which will dominate execution time
o Propose and implement optimizations,

 Reduce control flow hazards
 Reduce impact of memory load penalty
 Parallelize code to use Neon SIMD Unit
 Apply polynomial approximations
 Apply other optimizations

o Estimate speed-up and development time costs for optimizations, rank optimizations based on estimates
 Given object code,

o Identify operations which will dominate execution time
o Propose optimizations

 Given source and object code,
o Identify which optimizations actually were performed by the compiler
o Identify code which was not optimized by the compiler. Possibly modify the source code to help the compiler

optimize it.

