
ECE 785
TOPICS IN ADVANCED COMPUTER DESIGN
SPRING 2019 FINAL EXAM SOLUTIONS

Closed book, closed notes, one 8.5”x11” page of notes allowed. Calculator allowed. You are not permitted to have a computer or
other electronic assistance. Show your work for each problem for full credit. Assume that C code is compiled for the ARM Cortex-
A8 architecture and the TI AM335x processor on the Beaglebone Black Wireles using gcc according to the ARM Architecture
procedure calling standard (AAPCS).

Question Maximum Score Points Off Score
1 5

2 10

3 20

4 20

5 20

6 25

Total 100

Please read and sign this statement: I have not received assistance from anyone nor assisted others while taking this test. I have
also notified the test proctor of any violations of the above conditions.

Signature __

Consider the following source code and corresponding object code, generated with –O3 optimization. The code encrypts input data
from din and stores it in dout. Encryption is performed by exclusive-oring the input data with a series of pseudo-random values.
These values are generated using a linear-feedback shift register which starts with the value of the seed argument.

Source Code:

void LFSR(uint16_t * din, uint16_t * dout, uint16_t seed) {
 uint16_t lfsr, n;
 uint8_t bit;

 lfsr = seed;
 for (n = 0; n<N; n++) {
 // source code from http://en.wikipedia.org/wiki/Linear_feedback_shift_register
 /* taps: 16 14 13 11; characteristic polynomial: x^16 + x^14 + x^13 + x^11 + 1 */
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;
 }
}

Object Code:

 push {r4, r5, r6, r7}
 subs r1, r1, #2
 add r7, r0, #2048
 mov r3, r2
.L38:
 lsrs r2, r3, #3
 lsrs r5, r3, #1
 eor r2, r2, r3, lsr #2
 eors r2, r2, r3
 orr r6, r5, #32768
 eor r2, r2, r3, lsr #5
 tst r2, #1
 ite eq
 moveq r3, r5
 movne r3, r6
 ldrh r4, [r0], #2
 eor r2, r3, r4
 strh r2, [r1, #2]! @ movhi
 cmp r0, r7
 bne .L38
 pop {r4, r5, r6, r7}
 bx lr

1. Circle each basic block in the object code above. Label each basic block.
BB1:
 push
 subs
 add
 mov
.L38:
 lsrs
 [all intermediate instructions]
 bne .L38
BB3:
 pop
 bx

2. Draw the control-flow graph for the object code. Label each basic block. You do not need to include the instructions in the basic
blocks.

BB1 -> .L38 -> {.L38, BB3}

3. The source code has a statement: bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1
a. Which object code instructions implement this source code? Mark them above with a 3.
b. Explain how that object code works.

lsrs r2, r3, #3
 lsrs r5, r3, #1
 eor r2, r2, r3, lsr #2
 eors r2, r2, r3

tst r2, #1
 eor r2, r2, r3, lsr #5

The register r3 holds lfsr. The code first loads r2 with lfsr>>3 and r5 with lfsr>>1.
Then r2 (lfsr>>3) is exored with lfsr>>2 and then exored with r3 (lfsr>>0).
r2 is then exored with lfsr>>5 and the result is put in r2.
The tst r2, #1 instruction sets the condition code flags based on anding r2 with 1. The Z flag is set if the result is 0.

4. The source code has a statement: if (bit) lfsr |= 0x8000
a. Which object code instructions implement this source code? Mark them above with a 4.
b. Explain how that object code works.

BB1

.L38

BB3

orr r6, r5, #32768

ite eq
moveq r3, r5
movne r3, r6

The tst r2, #1 instruction sets the Z flag to 1 if the least-significant bit is 0. If equal (Z=1, bit = 0), move r5 into r3, else move r6 into r3.
r5 holds lfsr, while r6 holds lfsr | 0x8000

5. Imagine that you profile the code using perf.

a. Which object code instruction do you expect to dominate execution time, and why?
eor r2, r3, r4 would dominate the time because it can’t execute until the load to r4 (ldrh r4, [r0], #2) completes, and this will
cause occasional data cache misses.

b. How can you change the code to minimize this problem? Explain why the change helps, and under what conditions it
completely eliminates the problem.

Move the ldrh instruction up to the top of the loop to hide the load latency of a data cache miss. If the load latency is shorter
than the time from the load to the use (the last eor instruction), then the delay will be completely eliminated.

6. We would like to make LFSR run faster by unrolling its loop and then using the Advanced SIMD instructions for vectorization.
a. Explain how to unroll the loop in the function LFSR by a factor of eight. Write pseudocode or C code to show your

approach.

This is straightforward, just modifying the loop test, copying the loop body and adjusting the variables and offsets.

void LFSR(uint16_t * din, uint16_t * dout, uint16_t seed) {
 uint16_t lfsr, n;
 uint8_t bit;
 lfsr = seed;

 for (n = 0; n<N-8; n+=8) {
 // Iteration 1
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;

 // Iteration 2
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;

 // Iterations 3-7 go here

 // Iteration 8
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;
 }

 // Clean-up loop (epilog) for remaining iterations
 for (; n<N; n++) {
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;
 }
}

b. Vectorize the unrolled loop. Sketch out a diagram showing the dataflow with Advanced SIMD registers and instructions

(please see the example below). Hint: rather than compute bit with so many shifts and exclusive-ors, you may wish to
use the VCNT instruction, which counts the number of set bits (equal to 1) in each element.
Example dataflow notation for VADDQ Q3, Q1, Q2:

Each loop iteration depends on the previous iteration’s value of lfsr; this is a loop-carried true data dependency. However,
these can be calculated ahead of time.

 Before the first iteration of the vectorized loop can execute, each lane needs its lfsr. So insert code which
precalculates the value of lfsr for unrolled iteration (0, 1, 2, 3, … 7) based on seed. lfsr_0 = seed, lfsr_1 = f(lfsr_0),
lfsr_2 = f(lfsr_1), … lfsr_7 = f(lfsr_6).

 For each subsequent vectorized loop iteration m, lane n will execute original loop iteration number (8*m) + n. Lane
n needs an lfsr value which has been advanced by 8 steps.

o One way is to sequentially compute it for each lane. Each lane does eight lfsr update steps on its previous
value, for a total of 64 update steps.

Q1 Q2

Q3

VADD

o Another way is to use lane 7’s lfsr value: lane 0 advances it by 1 step, lane 1 by two steps, etc. With this
approach there will be 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 update steps.

o There are other solutions possible.

There are other approaches possible (e.g. large look-up table).

