
 Name___________________________________

1

ECE 785
TOPICS IN ADVANCED COMPUTER DESIGN
SPRING 2019 FINAL EXAM

Closed book, closed notes, one 8.5”x11” page of notes allowed. Calculator allowed. You are not permitted to have a computer or
other electronic assistance. Show your work for each problem for full credit. Assume that C code is compiled for the ARM Cortex-
A8 architecture and the TI AM335x processor on the Beaglebone Black Wireles using gcc according to the ARM Architecture
procedure calling standard (AAPCS).

Question Maximum Score Points Off Score
1 5

2 10

3 20

4 20

5 20

6 25

Total 100

Please read and sign this statement: I have not received assistance from anyone nor assisted others while taking this test. I have
also notified the test proctor of any violations of the above conditions.

Signature __

 Name___________________________________

2

Consider the following source code and corresponding object code, generated with –O3 optimization. The code encrypts input data
from din and stores it in dout. Encryption is performed by exclusive-oring the input data with a series of pseudo-random values.
These values are generated using a linear-feedback shift register which starts with the value of the seed argument.

Source Code:

void LFSR(uint16_t * din, uint16_t * dout, uint16_t seed) {
 uint16_t lfsr, n;
 uint8_t bit;

 lfsr = seed;
 for (n = 0; n<N; n++) {
 // source code from http://en.wikipedia.org/wiki/Linear_feedback_shift_register
 /* taps: 16 14 13 11; characteristic polynomial: x^16 + x^14 + x^13 + x^11 + 1 */
 bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1;
 lfsr = lfsr >> 1;
 if (bit)
 lfsr |= 0x8000;
 *dout++ = *(din++) ^ lfsr;
 }
}

Object Code:

 push {r4, r5, r6, r7}
 subs r1, r1, #2
 add r7, r0, #2048
 mov r3, r2
.L38:
 lsrs r2, r3, #3
 lsrs r5, r3, #1
 eor r2, r2, r3, lsr #2
 eors r2, r2, r3
 orr r6, r5, #32768
 eor r2, r2, r3, lsr #5
 tst r2, #1
 ite eq
 moveq r3, r5
 movne r3, r6
 ldrh r4, [r0], #2
 eor r2, r3, r4
 strh r2, [r1, #2]! @ movhi
 cmp r0, r7
 bne .L38
 pop {r4, r5, r6, r7}
 bx lr

 Name___________________________________

3

1. Circle each basic block in the object code above. Label each basic block.

2. Draw the control-flow graph for the object code. Label each basic block. You do not need to include the instructions in the basic
blocks.

3. The source code has a statement: bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1
a. Which object code instructions implement this source code? Mark them above with a 3.
b. Explain how that object code works.

 Name___________________________________

4

4. The source code has a statement: if (bit) lfsr |= 0x8000
a. Which object code instructions implement this source code? Mark them above with a 4.
b. Explain how that object code works.

5. Imagine that you profile the code using perf.

a. Which object code instruction do you expect to dominate execution time, and why?

b. How can you change the code to minimize this problem? Explain why the change helps, and under what conditions it
completely eliminates the problem.

 Name___________________________________

5

6. We would like to make LFSR run faster by unrolling its loop and then using the Advanced SIMD instructions for vectorization.
a. Explain how to unroll the loop in the function LFSR by a factor of eight. Write pseudocode or C code to show your

approach.

 Name___________________________________

6

b. Vectorize the unrolled loop. Sketch out a diagram showing the dataflow with Advanced SIMD registers and instructions
(please see the example below). Hint: rather than compute bit with so many shifts and exclusive-ors, you may wish to
use the VCNT instruction, which counts the number of set bits (equal to 1) in each element.
Example dataflow notation for VADDQ Q3, Q1, Q2:

Q1 Q2

Q3

VADD

 Name___________________________________

7

 Name___________________________________

8

Mnemonic Brief description Mnemonic Brief description
VABA, VABD Absolute difference and Accumulate, Absolute Difference VQDMULL Saturating Doubling Multiply
VABS Absolute value VQDMULH Saturating Doubling Multiply returning High half
VACGE, VACGT Absolute Compare Greater than or Equal, Greater Than VQMOV{U}N Saturating Move (register)
VACLE, VACLT Absolute Compare Less than or Equal, Less Than (pseudo-instructions) VQNEG Negate, saturate
VADD Add VQRDMULH Saturating Doubling Multiply returning High half
VADDHN Add, select High half VQRSHL Shift Left, Round, saturate (by signed variable)
VAND Bitwise AND VQRSHR{U}N Shift Right, Round, saturate (by immediate)
VBIC Bitwise Bit Clear (register, immediate) VQSHL Shift Left, saturate (by immediate, signed variable)
VBIF, VBIT, VBSL Bitwise Insert if False, Insert if True, Select VQSHR{U}N Shift Right, saturate (by immediate)
VCMPE,VCEQ,
VCMPLE,VCLE,
VCMPLT,VCLT

Compare Equal, Less than or Equal, Compare Less Than VQSUB Subtract, saturate

VCMPGE,VCGE,
VCMPGT,VCGT

Compare Greater than or Equal, Greater Than VRADDHN Add, select High half, Round

VCMPLE,VCLE,
VCMPLT,VCLT

Compare Less than or Equal, Compare Less Than (pseudo-instruction) VRECPE Reciprocal Estimate

VCLS, VCLZ, VCNT Count Leading Sign bits, Count Leading Zeros, and Count set bits VRECPS Reciprocal Step
VCVT Convert fixed-point or integer to/from floating-point VREV Reverse elements
VDUP Duplicate scalar to all lanes of vector VRHADD Halving Add, Round
VEOR Bitwise Exclusive OR VRINT Round to integer
VEXT Extract VRSHR Shift Right and Round (by immediate)
VFMA, VFMS Fused Multiply Accumulate, Fused Multiply Subtract VRSHRN Shift Right, Round, Narrow (by immediate)
VHADD, VHSUB Halving Add, Halving Subtract VRSQRTE Reciprocal Square Root Estimate
VLD Vector Load VRSQRTS Reciprocal Square Root Step
VMAX, VMIN Maximum, Minimum VRSRA Shift Right, Round, and Accumulate (by immediate)
VMAXNM, VMINNM Maximum, Minimum, consistent with IEEE 754-2008 VRSUBHN Subtract, select High half, Round
VMLA, VMLS Multiply Accumulate, Multiply Subtract (vector, by scalar) VSHL Shift Left (by immediate)
VMOV Move (immediate, register) VSHR Shift Right (by immediate)
VMOVL, VMOV{U}N Move Long, Move Narrow (register) VSHRN Shift Right, Narrow (by immediate)
VMRS, VMSR Move from/to special VSLI Shift Left and Insert
VMUL Multiply (vector, scalar) VSRA Shift Right, Accumulate (by immediate)
VMVN Move Negative (immediate) VSRI Shift Right and Insert
VNEG Negate VST Vector Store
VORN Bitwise OR NOT VSUB Subtract
VORR Bitwise OR (register, immediate) VSUBHN Subtract, select High half
VPADD, VPADAL Pairwise Add, Pairwise Add and Accumulate VSWP Swap vectors
VPMAX, VPMIN Pairwise Maximum, Pairwise Minimum VTBL, VTBX Vector table look-up
VQABS Absolute value, saturate VTRN Vector transpose
VQADD Add, saturate VTST Test bits
VQDMLAL,
VQDMLSL

Saturating Doubling Multiply Accumulate, and Multiply Subtract VUZP, VZIP Vector interleave and de-interleave

