NC STATE UNIVERSITY

Introducing NEON Advanced SIMD Processing

NC STATE UNIVERSITY

References

= NEON Programmer’s Guide DENOOI8 Instr. Functionality: ARM Arch. Ref. Manual

(NPG) — read this first! = Load/Store: 4.11
 NEON Programmer’s Guide = Register Transfer: 4.12
® Contents = Data Processing: 4.13,4.14
“ IF preface
#F 1: introducti .
Y | = ARM C Language Extensions IHI0053
= W 2: Compiling NEON Instructions
® - 3. NEON Instruction Set Architecture (ACLE)
o

4: NEON Intrinsics

ecincioliSlioken ARM NEON Intrinsics Reference IHI0073

: NEON Code Examples with Intrinsics

: NEON Code Examples with Mixed Operations (N | R)

: NEON Code Examples with Optimizatio

¥ A: NEON Microarchitecture |
- IF B: Operating System Support

I C: NEON and VFP Instruction Summaryé

= D: NEON Intrinsics Reference

B B H

=0 5 5

~J (o] (U,
]

=
=
o0

Performance: Cortex-A72 Software
Optimization Guide UANOOI16

i

What is NEON?

NC STATE UNIVERSITY

NEON technology is the implementation of the ARM Advanced Single Instruction

= NEON is a wide SIMD data processing architecture | The NEON unit is the component of the processor that executes SIMD instructions. It is

Extension of the ARM instruction set

Multiple Data (SIMD) extension.

also called the NEON Media Processing Engine (MPE).

32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide)

= NEON Instructions perform “Packed SIMD” processing

Registers are considered as vectors of elements of the same data type
Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec. float

R Source
Registers
St
1 Operation

—] b« estination
Register

| |
» [nstructions perform the same operation in all lanes
JE
Elements T z
? iy ile
Is | ol |
“T’ : ‘T’
==1—
v oy
Lane
e

L eaoseomves ARM

NC STATE UNIVERSITY

Vectors and Scalars

= Registers hold one or more elements of the same data type
= Vn can be used to reference either a 64-bit Dn or 128-bit Qn register
= A register, data type combination describes a vector of elements

63 0 127 0

I =L I | fn |

[164 | no [F32 [¥32 [¥32 [¥32 | o
S22 T S32 |py HEHEHEEHEEEEHEE B EE SR
le 64-bit I 128-bit ”

= Some instructions can reference individual scalar elements
= Scalar elements are referenced using the array notation Vn [x]

[F32 [¥32 [¥32 [F¥32 | qo

Q0 [3] 00[2] Q0 [1] Q0 [0]

= Array ordering is always from the least significant bit

NEON Register File

SO .
51 — DO —~
(] . ” _c“ Wl
= Extension register file koo
. L Q1 -
= 32 doublewords (64 bits long) D0-D3 | 56 s
= Alternate views possible 526 | [.|
S2¢ '
= Word: S0-S31 u - a7 -
—D15~
= Quadword: Q0-QI5 S31
D16 —
- .
L D17
—D30

8-Way | 6-bit Integer Add Operation

127 112 111 96 95 80 79 64 63 48 47 32 3N 16 15

Q2 Vector

Q1

|

y
3fofole

127 112 11 96 95 80 79 64 63 48 47 32 31 16 15 0

Qo0

A U U U U U W W

lane7 Lane6 Lane5 Lane4 Lane3 Lane?2 Lane1 Lane0

= VADD.TI16 QO0, 01, 02 performs a parallel addition of eight lanes of 16-bit (8 x 16
= 128) integer (l) elements from vectors in Q| and Q?2, storing the result in QO.

NC STATE UNIVERSITY

Cortex-A72 ASIMD Instruction Execution

~» Branch
= Up to 4 processing pipelines used for o] integer 0
ASIMD instructions] Integer 1
= FP/ASIMD 0 (FO) Decode. » [T 'nteger Multi-Cycle
= ALU, integer multiply, miscellaneous S et |, FPIASIMD 0
- FPIASIMD | (Fl) :
= ALU, shift, miscellaneous N —
= Load
—» tor
= Store
IN ORDER OUT OF ORDER

= NEON floating point not fully
compliant with |EEE-754

Denormals are flushed o zero ASIMD Integer 3.5 Y]

Rounding 1s fixed (o round-to-nearest except for conversion operations ASIMD FP qu7 V)
- 2-

Single precision arithmetic (.F32) only ASIMD Load 5.9 Uy |
oa = 2=

Separate (scalar) floating-point instructions. ASIMD St | -4 Ve |
ore - /n

ASIMD Misc. 3-8 Y2-2

ARMV7a SIMD Instruction Syntax

V{i<mod>}<op>{<shape>H<cond>H.<dt>} <dest1>{, <dest2>}, <src1>{, <src2>}

Normal
L Long Condition (with IT
W Wide instruction)
N Narrow
v DataType
Modifier 8-bit 16-bit 32-bit 64-bit
Q Saturati ng Unsigned integer Us Ul16 U32 Us4
H Halving Signed integer S8 S16 $32 S64
D Doubli ng before Integer of unspecified type I8 I16 132 164
saturation Floating-point number not available F16 F32orF not available
R Roundi ng Polynomial over {0.1) P8 P16 not available not available

NC STATE UNIVERSITY

Example Instruction: Vector Add

L [[1" e[[[['fom
Syntax NN NN
= References: y NN WY
VVIOLADD S 11 A B N Pt -
= Summary and diagrams from . S PR —_ et M
V{Q}ADD{cond} .dat Dd,} Dn, D S SR, W, * S
NPG Appendix C e T (N 07 T
| | | (|
= Details and intrinsics in NPG \/ __/ Y AW
A dix D where: 1
ppendix
cond is an optional conditional code. = l | v ‘ - - Dd
= VADD (Vector Add) adds (indicates that saturation is performed if any of the results overflow. N
corresponding elements in datatyperiSOHOR
two vectors, and stores the . 18 I16. I32. I64. F32 for VADD
results in the destination * S8.516. S32 for VQADD, VADDL or VADDW
vector. * U8, U16, U32 for VQADD, VADDL or VADDW
. S64. U4 for VQADD.
= Later:-VADD has lon g wide Qd. Qn. and Om specify the destination, first operand and second operand registers for a quadword

.) operation.
and saturating variants.
Dd, Dn, and Dm specify the destination, first operand and second operand registers for a

doubleword operation.

Instruction Types by Operation

= SIMD (lane-by-lane) vector operations
= vadd, vsub, vmul, vmla, vabs, vabd, vaba

vbif, vbit, vbsl,

vc*, vac*, vtst

vsh* vneg, vrev

vevt, vcls, velz, vent

vand, vbic, veor, vorr, vorn,
VI'Cp, VICe, vrsqrte, vrsqrts,

NC STATE UNIVERSITY

Vector reduction
= vpadd, vpadd|, vpadal, vpmax, vpmin
Constructing and deconstructing vectors
= VdUP, vmoy, vmyn, vext, vmrs, vimsr,
Load, store vectors
= vyldr, vstr, vidm, vstm, element/structure
Vector rearrangement
" VSWP, Vtrn, VZip, vuzp, generic intrinsics
Table look-up
= vtbl, vtbx

Note:Arch. Ref. Manual and ACLE Organize Instructions Differently

= Instruction type (ARM ARM)

Memory

Move

Type Conversion
Logical

Math
Comparison
Miscellaneous

NC STATE UNIVERSITY

“ Nature of operation (ACLE)

= SIMD (lane-by-lane) vector operations
= Regular
= Narrowing
= Widening

= Constructing and deconstructing
vectors

= Load, store vectors

= Vector reduction

= Vector rearrangement

= Table look-up

