
1

Key Ideas in Embedded System Responsiveness:
Concurrent Processes in Software and Hardware

3/4/2025

2

Big Picture 1: Concurrent HW and SW Processes in System

Concepts of Process Synchronization and Communication

Concepts for Single Process

HW Implemementation
of Process

SW Implementation
of Process on CPU

What: Add more processes (independent and concurrent)

What: Implement single process

HW Implem.
of each Process

Multiple Dedicated
CPUs

Design hardware

Add more HW

Design software

Add CPUs Share CPU
At least one
shared CPU

What: Provide synchronization and communication between processes

Scheduling concepts
(big field, with
interconnected

topics)

HW→HW SW→HW HW→SW SW→SW

Dedicated
Interconnect

Direct
Memory
Access

Programmed I/O:
SW writes to
peripherals

Programmed I/O:
SW reads/polls

peripherals

Interrupt System:
HW event triggers

SW Handler

Variables shared
using correct
algorithms

OS Synch. & Comm.
mechanisms: Sem, mutex,

queue, socket, etc.

Start simple, then examine options as you build up the system

3

 How to access memory and peripherals?
 CPU uses memory bus (address, data, control) to

access memory and peripheral devices
 Memory bus can also be controlled by DMA

Controller (DMAC) peripheral

 DMA features
 DMAC can transfer (copy) N data items within

memory space from SrcAdx to DstAdx
 SrcAdx, DstAdx: fixed or increment per item copied
 Allows direct copy, but also accessing sequential items

in memory array (“Save the next N ADC data values in
memory starting at this address”)

 Transfer can be triggered by:
 Hardware (DMA Request from peripheral device)
 Software (CPU writing to DMA request control register)

 Configurable bus sharing with CPU: can be greedy
(burst of all transfers), round-robin, etc.

 DMAC can generate interrupt when done
 DMAC has multiple channels, each with individual

trigger source, Adx pointers and behaviors, item
count, interrupt behavior

Refresher: Direct Memory Access Controller
Allows Hardware->Hardware communication without using CPU

CPU

D
M

A
C

on
tr

ol
le

r

Control Signals
(Read,Write)

Address
Data

Memory Peripheral Peripheral

In
te

rr
up

t
C

on
tr

ol
le

r

Interrupt Requests (IRQs) DMA Requests (DRQs)

4

Sync. and Comm. Paths for HW and SW Processes

So
ft

w
ar

e
H

ar
dw

ar
e

HW
Process

HW
Process

Interrupt
Controller

SW
Process

SW
Process

Interrupt
Handler

Dedicated Interconnect

Direct Memory Access

Variables shared with correct algorithms

OS Synch & Comm primitives: Sem, etc.

Producer:
Event/Data Source

Consumer:
Event/Data User

5

Big Picture 2: Synchronization, Communication and Scheduling

Process
Implementation

Dependences
between Processes

Hardware
Processes

Software
Processes

Sched:
Share CPU

Time

Communication

Mutual
Exclusion

Both Hardware and
Software Processes

Generic

Mem-
Mapped
Periph.
Access

Embedded Systems
Design Space(s)

DMA
Ctlr

Sync. to What?
Do or Don’t?

How?

Intrpt
System

Example: 101st

Input -> Output

Notification/
Flow Ctl./

Handshaking

Data Loss &
Duplication

Buffering
Split

Receiver
Process?

Split urgent/
deferrable work

Direct or
Indirect
Comm.?

SW?

Why
use…?

HW?

+ Coop.
Sched. Tasks

Infinite
loop in
main

+ Task
Priorities

+ Task
Preemption

RTCS Run-to-
Completion
Scheduler

RTXv5
RTOS

FSMs for
Responsiveness

How?

Elevator
Example

“DIY” Code Implementations
Shared

Variables

How?

OS Mechanisms
Event Flag Semaphore

Shared
Variables

Mutex Lock

Concepts

Elevator
Example

How?

Generic
In

Order?

Cost of Precise
Timing

Buffering
Concepts

HW Periph.
Examples

Why?

Message
Queue

How?

Double
Buffer

Circular
Buffer

Req/Ack
Flags

DMA-
managed

buffer

Mailbox

How?

Cost of
Precise Timing

CPU
per

Process

Application
Characteristics

Requirements
& Constraints

Processes and Concurrency
for Embedded Systems

Processes and
Concurrency

Peri-
pherals

Dedic. HW
Interconn.

DMA
Ctlr

Ordering/
Triggering

Concepts

Synchronization

Polling
(Prog’d

I/O)

+Interrupts
: Fore/Back

ground

6

 System responsiveness depends on all activities
along a chain of processes

 Timing for hardware processes is fast, very stable
 Little hardware shared with other processes (e.g

memory buses)

 Timing for software processes is much slower and
unstable
 Time to execute a software process may vary if input

data triggers different control-flow behavior
(conditionals, loops, etc.)

 Sharing CPU among multiple software processes
delays a given process due to
 Timing interference from other processes

(preemption, blocking)
 Inherent delays and processing overhead for:
 Synchronization: deciding if process may run (is

ready) or must wait for event/condition
 Scheduling: deciding which ready software

process to run next
 Dispatching: starting that software process

running

System Responsiveness Dependence on Processes

ADC GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

VIn

7

 Behavior
 Display signal voltage on LCD, synchronized to

signal’s rising edge through threshold
 Simplify: Ignore erasing previous acquisition from

LCD. Ignore user controls
 Hardware Components

 Analog to Digital converter: Fast enough to keep up
with MCU: 48 Msamples/second. (NOT the ADC on
the KL25Z)

 Microcontroller: KL25Z
 LCD: 320x240 display with controller

 Basic flow of operations
 Wait for/detect Vin rising through Vthreshold

 Rising Edge: Vin(previous sample) < Vthreshold AND
Vin(current sample) >= Vthreshold

 Loop to Acquire N data samples and display them
 Sample ADC: acquisition[n] = ADC_data
 Scale acquisition[n], plot on LCD until reaching

end of display

Example System: Oscilloscope with Triggering

ADC GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

VIn

?

8

 Synchronize: In Process A
 Schedule: Implicit
 Dispatch: Implicit

Simple Busy-Wait Loop
Process A
…
// Detector/Synchronizer
while (ADC->Result < V_Threshold)

;
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

ADC GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e VIn

9

 Synchronize: Comparator
 Schedule: Interrupt System
 Dispatch: Interrupt System

Hardware Help: Comparator Interrupt
Process A (Interrupt Handler)
// No Detector/Synchronizer
// No Scheduler
// No Dispatcher
// Handler process
x = 0;
for (n=0; n<NS; n++) {

r = ADC->Result;
y = scale(r);
LCD_Plot(x++,y);

}

Comparator GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

VIn

ADC

Interrupt
System

10

Process B
while (1) {

osEventFlagWait(triggered);
x = 0;
for (n=0; n<NS; n++) {
y = scale(DataQ[n]);
LCD_Plot(x++,y);
}

}

 Acquire Data (Process A)
 Synchronize: Comparator, Interrupt System
 Schedule: Interrupt System
 Dispatch: Interrupt System

 Plot Data (Process B)
 Synchronize: Process A, OS
 Schedule: OS
 Dispatch: OS

Hardware & OS Help: Comparator Interrupt, Deferred Plotting

Comparator GPIO LCD

So
ft

w
ar

e
H

ar
dw

ar
e

A

VIn

ADC

Interrupt
System

B

Process A (Interrupt Handler)
for (n=0; n<NS; n++) {

r = ADC->Result;
}
osEventFlagSet(triggered);

DataQ

triggered

11

Hardware Help for Stabilizing Timing of Data Output

 Want to update DAC output every 50 us for a 20 kHz
update rate
 DAC signal amplified to drive speaker

 Timing analysis approach - Vulnerabilities?
 What kinds of events and over what time periods can

affect the output update time?

 Solutions
 Use hardware to help (or even replace) software doing

synchronization, scheduling, or work.
 Synchronization: determining when to update output
 Scheduling: selecting code to run
 Work: updating output

 Buffer data to loosen (simplify) software timing requirements

 More details in ECE 460/560 slides

12

Design Evolution Roadmap and Reasoning
A. Task software
writes to DAC

E2. Timer advances buffer data to
DAC. ISR writes batch of data

(E2) to buffer

Add N-deep DAC input
buffer with low/empty ISR

D. Timer advances buffer data to DAC,
Timer ISR writes next data to buffer

Add 1-deep
DAC input buffer

Add HW timer ISR

C. Timer ISR writes
data to DAC

Add HW timer
(tracks time much better)

B. Task software poll/blocks on
timer, then writes to DAC

Add HW timer, DMA with
ISR, software buffer

F. Timer triggers DMA data transfer,
DMA ISR writes data to buffer

G. Timer triggers DMA
with double-buffering,

DMA ISR switches
buffers

and writes data

Split into double-buffer to ease
first sample’s deadline and cuts

ISR duration in half.

H. Timer triggers DMA,
DMA ISR writes urgent

data to buffer and
triggers task to write

rest of data

Move non-urgent
work to task

Output timing bad:
Very unstable, vulnerable to other software (processes

and handlers), timing errors accumulate.
Greedy, doesn’t share CPU.

Output timing better:
Tolerates more interference,

vulnerable to processes and handlers,
errors don’t accumulate.

Greedy, doesn’t share CPU

Output timing: Even better.
Vulnerable to other ISRs and interrupt

locking fsample times per second

Interrupt overhead for each
sample wastes CPU time

1.Tight Deadline: ISR must write first new sample to buffer within TSample

2. Long DMA ISR is delays other processing too much

13

Software and Hardware Components as Design Evolves

A

B

C

D

E

H

G

F

DAC

SW

HW VOut

DAC
VOutTimer

Done?

DAC
VOutTimer

ISR: Next
Sample

NVIC

DAC
VOutTimer

ISR: Next
Sample

NVIC

E2

DAC
VOutTimer

ISR: Next
Sample

NVIC

DAC
VOutTimer

ISR: Refill
Buffer

NVIC

DAC
VOut

Timer

ISR:
Refill
Buffer

NVIC
DMA Transfer One Sample

DAC
VOut

Timer

ISR: Switch
Buffers,

Refill Other

NVIC
DMA Transfer One Sample

DAC
VOut

Timer

ISR: Start to
Refill Buffer

NVIC
DMA Transfer One Sample

Run
later

