NC STATE UNIVERSITY

Analyzing Responsiveness
for Real-Time Systems

NC STATE UNIVERSITY

Overview

" In these slides
= Examining Response Time for Shield Audio Software
= Periodic Task Model and Scheduling
= Numerical Response Time Analysis
= Deadlines, Priority Assignment and Schedulability Tests

= Next slides

= Estimating Task Execution Time
= Analyzing Priority Inversion

NC STATE UNIVERSITY

Response Time Matters to Real-Time Systems

= Response time

= Delay from input (release) to output
(completion)

)I“Pit STINT >I3A-2 Los = T&Nz{é
- _E_e;\x;(’w; i

= Depends on what else is in the system

= Response time is important to all
programs, but more important to some
than others
= Antilock brakes in car, truck, aircraft
= Lawn irrigation system

= Response time is a |
J

range of values (

= Different paths i

through program . = —
= Different machine state, not architecturally

visible (pipelines, predictors, caches, etc.)

—

* Interference from rest of system
= Sampling asynchronous inputs

= If timing is critical, must understand it
= Average

= Extreme cases: best and worst cases
(minimum and maximum)

Real-Time Methods

= Want to predict timing of system

" |deal:
Exact response time, given inputs and state

Extremes, and inputs and states which cause them

= Wrong (but maybe useful):

Measure times experimentally and note extremes

Analytical bounds on extremes

= Bounds and tightness

= Tighter bounds are better,* but harder to determine
8
* actually “not worse”.Would knowing the 0 to 20.83 ns value

NC STATE UNIVERSITY

Observed Mode
(Most Common)

for my
input data

Actual .
Min Obsetved Obrjlerved C;L)J(al
Observed Mean ax. : ,

Min. (Average)

from sampling with the 48 MHz system I/O clock matter for this system?

* Real-Time Methods make it easier to build a system with predictable timing

= Design methods: how to build a system

= Analysis methods: how to analyze a system

Usually include simplifying assumptions.

Some design methods are easier to analyze than others

NC STATE UNIVERSITY

Concepts Basic |deas Details and Improvements

e Periodicall
When does task run? — :
— Everything else

Task Model ,
How long task takes: — Analytical — safe
Execution time analysis \
Experimental — unsafe
Preemption vs. run-to-completion
. T — [7
Scheduling _ Priorities e e

Big Picture of Real-Time Systems

Overheads \ | Hardware: Interrupts

Basic methods
Response Blockin
Time Analysis . —— .
Handling priority inversion

Using response time analysis

Optimal scheduling approaches
Schedulability tests

OS: Context Switching, IPC

Comparing impact of preemption

5 and priorit

NC STATE UNIVERSITY

EXAMPLE: REAL-TIME AUDIO
GENERATION ON THE SHIELD

NC STATE UNIVERSITY

Shield Audio System Architecture (Single Buffer)

DMA IRQ
Handler

Timer Overflow £ P A A T AN A 4 i)
Sound Buffer |
DAC V., - Jx - S —]
0 us 50 100 150 200 250 3;)0 —3—50 400
" fample = 20 kHz, T, e = 50 ps = Sound buffer (waveform)
= Sample deadline every 50 us * Array of 512 halfwords

= Holds 512 * 50 us = 25.6 ms of data
; = Refill buffer deadline every 25.600 ms

Questions

= Audio generation
= Can we miss any audio deadlines?
= If not, how close can we get to missing one!
= How much of CPU’s time is used on audio generation!?
= How slowly can we run the CPU while keeping audio working?
* How fast of an audio sample rate can we manage with f,, = 48 MHz?

= Generalized
= On average, how much of the CPU’s time is used, and how much is free?
= What is the worst-case response time for each task?
= If we have deadlines, can we miss any? How close can we get to missing one!

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Assumptions and Definitions

= Assumptions = Definitions
= Single CPU = Release Time = time at which event occurs or
= Context switch takes no time when task is released (depends on context)
" No data dependencies between tasks unless " e.g.timer overflow
explicitly specified and modeled = Completion Time = time at which task finishes

= Response time = completion time — release
time

= Deadline = time at which task must have
completed

= “Schedulable” = a schedule exists which allows
each task to meet its deadline

NC STATE UNIVERSITY

Evaluating Responsiveness

Interrupt

ISR ‘ !

1 _H,ce_ﬂ
-
Task 1 2 -

\ 4

A 4

= DMA ISR and one dependent task

= Assumption
= ISR or task signals next task after its critical work is completed

= Two important components in the critical path
= T,:From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.
= T,:From ISR to user task running and completing critical work. Uses OS signaling.

What Happens at the Last Sample (Single Buffer)?
#5

LA

#0

Y

NC STATE UNIVERSITY

—

DMA IRQ
Handler

#0
red
H#H2 #3 H4 #5
Sound Buffer
t+150 ps t+200 ps

= Need to load first new sample into buffer before = Need to load second sample before 100 ps
DMA reads it. Have <50 ps. = Sample[n] is needed before n*50 ps

DMAO_ [IRQHandler

NC STATE UNIVERSITY

—
—
—

q

= Handler needs to...

= Tell hardware it is handling the
DMA interrupt

= Tell someone to refill sound
buffer

= Tell the DMA hardware to play
the buffer again, starting with the
next timer trigger

DMA IRQ d__
Handler

void DMAO IRQHandler (void) {
DEBUG_START(DBG_IRQDM&_POS}; (

// Clear done flag
DMAO->DMA[0] .DSR_BCR |= DMA DSR BCR DONE MASK;

if (-——DMA Playback Count > 0) {
// Signal event requesting source buffer refill
osThreadFlagsSet (t_Refill Sound Buffer, EV REFILL SOUND BUFFER) ;
#1if USE DOUBLE BUFFER

read buffer num = — read buffer num;
#endif
Control RGB LEDs (0,0, read buffer num);
// Start playback again
Start DMA Playback();
t
DEBUG STOP (DBG IRQDMA POS) ;
}

NC STATE UNIVERSITY

Generalizing Evaluating Responsiveness

Interrupt

T
ISR ‘ 1%%
Task 1

Task 2 T-

Time

A 4

= May have multiple sequential dependent tasks

= Assumption
= ISR or task signals next task after its critical work is completed
= Three important components in the critical path
= T,:From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.
= T,:From ISR to user task running and completing critical work. Uses OS signaling.
= T;:From one user task to another user task running and completing critical work. Uses OS signaling.

NC STATE UNIVERSITY

Critical Path Analysis for Sound Buffer Refill Sequence

Longest -

IRQ Handler

o

Worst-Case Release:
IRQ for longest handler released

Lower Priority

IRQ
Delay

immediately before DMA IRQ IRQ Handlers IRQ Handler(s) _ First sample
All other IRQs Threads - Higher Priority written to
released at same time as Thread(s) _50“”d buffer
DMA IRQ \f Thread Refill
>~ |Sound Buffer v
*® Deadline to refill
DMA IRQ . sound buffer
Released RESPOHSG time R

= |. Gather information

= 2. Calculate response time R iteratively

= Which activities are in critical path

= How long each activity takes

= Estimate of R assuming everything released
simultaneously (critical instant analysis)

= More work may have arrived during R, delaying
our thread, so update R

= Repeat until R stabilizes or exceeds deadline

Improvement: Give Refill Sound Buffer Thread the Highest Priority

Longest -
Worst-Case Release: First sample

IRQ for longest handler released Lower Priority written to
immediately before DMA IRQ IRQ Handlers IRQ Handler(s) sound buffer
All other IRQs Threads . Thread Refil
released at same time as Sound Buffer
DMA IRQ
\4
Deadline to refill
DMA IRQ sound buffer

Released

* Now no threads have higher priority than Thread Refill Sound Buffer

NC STATE UNIVERSITY

Big Picture of Real-Time Systems Analysis and “Optimization™

= Development Cycle * How to measure!?
= Think = Use embedded instruction trace capability —
= Modify many Cortex M MCUs have ETM or MTB
= Test and measure = [nstrument program: add instructions for
visibility

= Measurement is critical = Send out trace information (e.g. debug signals) to
view with oscilloscope or logic analyzer

= Expectations # Reality = Will do this in lab

= Want to measure to find biggest problem, attack
that first

= Want to see if our changes help or not

Big Picture of Real-Time Systems

Concepts Basic Ideas

NC STATE UNIVERSITY

Details and Improvements

When does task run?
Task Model
How long task takes:
Execution time analysis
Preemption vs. run-to-completion

Scheduling T O —

Basic methods
Response Blockin
Time Analysis . —— .
Handling priority inversion
Comparing impact of preemption

7 and priorit

—= Periodicall
— Everything else

e Analytical — safe
\ Experimental — unsafe

— I 7
pd ________ Dynamic |

\ | Hardware: Interrupts |
OS: Context Switching, IPC

Using response time analysis

Optimal scheduling approaches
Schedulability tests

Basic Design Choices for Scheduler

= Break up design space into categories
based on choices in scheduling approach
= Can tasks preempt other tasks?
= Enabled ISRs can always preempt tasks

= |s task priority fixed or dynamic?

= Does a task have a single priority, or
can the priority change (e.g. based on time
until deadline)

* For a given category we want to know...
= How to we get the best priority assignment?
= How much of the processor’s time does it let us use?
= What is the worst-case response time for each task?

NC STATE UNIVERSITY

Preemptive

Non-Preemptive

Fixed
Priority

Dynamic
Priority

NC STATE UNIVERSITY

Scheduling — Selecting a Ready Task to Run

= What if multiple tasks are ready to run? = Assign priorities to urgent tasks to

= Non-prioritized improve their responsiveness
- Give each ready task a chance to run (round m Implicit: OK to delay less urgent tasks
robin, taking turns). = We'll see different approaches to Priority
" A task’s responsiveness depends on the run Assighment

time of all other tasks in the system. .
o . = Tasks may have deadlines
- Timing is unstable and fragile.

= Scheduler may or may not know about

. Prioritized:
rioritize deadlines

- Some ready tasks have precedence over
others. Scheduler runs them preferentially.

- A task’s responsiveness becomes (more)
independent of lower priority tasks.

- Timing is much more stable.

NC STATE UNIVERSITY

PERIODIC TASK MODEL

Periodic Task Model of Com

butational Requirements

NC STATE UNIVERSITY

< Ti . Ti g
< T |
ey
Di > < Di >
T L | 1
O 1 2 3 4 5 6 7 8 9 10 11 12
Time

* Periodic Task Model describes
characteristics for each task 7,

= Job = a specific instance of that task running

= Task releases job so scheduler can run it

= A periodic task i releases a job every T,

time units

21

* Job may have an absolute deadline D, after
its release

" Job takes a constant time C, to execute

= Simplifying assumptions include

= no time needed for scheduler, task switching, ISR
response/return

Example Workload: What We Ask For

o

NC STATE UNIVERSITY

{

1
O 1 2 3 4 5 6
Time

* Set of tasks with real-time requirements

* What gets executed when!

— Depends on scheduler and task priorities

22

7

9 10 11 12

8
Task | Exec. Period | Deadline
Time C, | T, D,
T I 4 4
T, 2 6 6
T3 3 12 12

NC STATE UNIVERSITY

Scheduled Workload:What We Get
A

|

| —
o 1 2 3 4 5 6 7 8 910 11 12

Time
* Example: Scheduler and task fixed priorities [T.oc | Exec. | Period | Deadline Priority
— Assign priorities as shown Time C, | T, D,
— Use a non-preemptive scheduler T, I 4 4 High
* What can delay a task? T, 2 6 6 Medium
— I: Interference caused by higher priority tasks T3 3 12 12 Low

- — B: Blocking caused by lower priority tasks

* Response time = Computation + Blocking + Interference Ry =C + B+

23

= Goal: Higher priority should
result in less blocking and
interference

= Evaluate three schedulers
* Non-preemptive
= Non-preemptive

= With 15 split into two-state FSM
(C. = 1.5 each), as is largest C,

= Preemptive
= With original 1,

24

Graphically Evaluating Response Times with Different Schedulers

More
Q
gy
=
20
O
A=l
mn <
0
High Priority Low Priority
Task Exec.Time C; | Period T, Priority
T | 4 High
Ty I 5 Medium
Ty 3 7 Low

NC STATE UNIVERSITY

Non-Preemptive Scheduling

Task Exec.Time C; | Period T, Priority o :
+ O
T, | 5 Medium 5L
T3 3 7 Low %E 0
T T2 T3
T
T2
T3
0 I 2 3 4 5 6 7 8 9 10 |11 12 I3 |14 |I5 |I6 |I7 I8 |19 |20

25

NC STATE UNIVERSITY

Non-Preemptive Scheduling

Task Exec.Time C, Period T, Priority O :
+ O

T | 4 High g @) GC) 2
c .S =

1, | 5 Medium = S |
© O O

T3 3 7 Low > E E 0

Job 3 .Job 4

Job | Job I Job | job 2 Job 2 Job 2

20

26

NC STATE UNIVERSITY

Non-Preemptive Scheduling with FSM for 1,

Task Exec.Time C; | Period T, Priority o :
+ O
T, | 4 High % =2)
T, I 5 Medium g < 2
T oW
T3 1.5 7 Low =mc 0
T T2 T3
T
T2
T3
0 I 2 3 4 5 6 7 8 9 10 |11 12 I3 |14 |I5 |I6 |I7 I8 |19 |20

27

Sidebar: Non-Preemptive Scheduling with FSM for 1, (with shorter period!

Task Exec.Time C; | Period T, Priority o :
+ O
T, | 4 High % =2)
T, I 5 Medium g < 2
T oW
T3 l.5 3.5 Low =meo
T T2 T3
T
T2
T3
0 I 2 3 4 5 6 7 8 9 10 |11 12 I3 |14 |I5 |I6 |I7 I8 |19 |20

28

NC STATE UNIVERSITY

Preemptive Scheduling

Task Exec.Time C; | Period T, Priority o :
+ O
T, | 4 High g =2)
T, I 5 Medium g < 2
T oW
T3 3 7 Low =meo
T T2 T3
T
T2
T3
0 I 2 3 4 5 6 7 8 9 10 |11 12 I3 |14 |I5 |I6 |I7 I8 |19 |20

29

NC STATE UNIVERSITY

Preemptive Scheduling

Task Exec.Time C; | Period T, Priority T ;
+ O
T | 4 High g @) GC) 2
e . =
T, I 5 Medium =<2
T oW
Ty 3 7 Low =m¢co
T T2 T3
Job | Job 2.Job 2.Job 2 Job 3 Job 3
6 7 8 9 10 |l 12 |13 |14 |I5 |I6 |I7 |18 |19 |20

30

NC STATE UNIVERSITY

Building and Using a Periodic Task Model

* Information per task and ISR — use spreadsheet
= Period
= Worst-case execution time,
= Deadline (if present)

= Critical sections (duration and communicating tasks)
= |gnore because initially we assume all tasks are independent CS Wt

= Don’t forget overheads from OS and interrupt handling ///////A }

= For now, leave a margin of error €. Stay away from the edge!

= Can now apply scheduling policy and assign priorities
= Preemptive or non-preemptive!
= Fixed or dynamic priority?
= What priority assignment approach!?

31

NC STATE UNIVERSITY

NUMERICAL RESPONSE TIME ANALYSIS

NC STATE UNIVERSITY

" How long could it take for task i to complete! What is its response time R

Response Time Analysis, Step |

= Initial estimate based on worst case:
R? = computation time for task i + computation time for other tasks.
= Non-prioritized scheduling: Every other task can run once
while (1) {
for (j=0; j<NUM_TASKS; j++) { 130
if (Tasks[j].RP > 0) {
Tasks[j].RP--;

R? =|C;|+ Z C;
Tasks[j].Task(Q); l l —d g
! J=

= Prioritized scheduling: (+ longest lower-priority task if non-preemptive)

can run once
R? =+‘manelp(i)(Cj)‘+ z C]

j€hp(i)

33

NC STATE UNIVERSITY

Additional Timing Interference

= Task i is vulnerable to delays from new job releases during vulnerable time

= Non-preemptive: 0 to R"— C;since @rrrrrnnnnnnp
task i can’t be preempted after it starts .,

= Preemptive: 0 to R" since
higher-priority task can preempt task i

= Consider new releases to update
completion time estimate R"*/

= Repeat until no new releases, or
any deadline (if present) is missed

T e

34

NC STATE UNIVERSITY
How Many T. Releases Possible During Vulnerable Time!?

= Initial estimate was one release, so task’s = Remaining estimates must consider all job
time is one job: 1*C, releases possible during vulnerable time:
Ceiling(vulnerable time / T)*C,

Non- Prioritized
prioritized

R?=+ZCJ-

25 2
T.
Jehp(l) J

preemptive

J# 5 ¢ Ik
Z
>
Rlo =+‘maxjelp(i)(Cj)‘+ Z Cj g— z[_lcj [R‘
jehp(i) O j=i jERP(D)
o.

35

NC STATE UNIVERSITY

Response Time: Indep. Tasks with Task Preemption + Prioritization

* Preemption ...

= Eliminates blocking of task i by lower-priority \ i G
independent tasks.

n
re =fale Y [
. . : i i Ji
= Allows higher-priority tasks to preempt task i , T
J€hp (D)

36

NC STATE UNIVERSITY

Processor Activity for Independent Tasks with Task Preemption
/Since | started numbering tasks at 1 in this example, we start j at 1 here

J

i—1

j/ | Task | Exec. Period T | Priority 0 _ z o

—
| [Fee |1 4 High !

-1 .
2 | Fi 2 6 Medium | l 6 6 6

R3=3+Z — Cj=3+[—‘*1+[—}*2=3+2+2=7

3 |Fo 3 12 Low e~ T; 4 6

—1

l -

- 7 7 7
R§=3+Z—Cj=3+H*1+H*2=3+2+4=9
e 7 6
B P

- ool 9 9 9
— — R§=3+Z—cj=3+—*1+—*2=3+3+4=10
O 1 2 3 4 5 6 7 8 910 11 12 7} 4 6

Time J=1
Fee FHee Hee -1 -
gt it R =3+ EC-—3+[El*1+[2}*2—3+3+4—10
> |7 4 61 = -

. Iterate until R; stops changing

NC STATE UNIVERSITY

Response Time: Dependent Tasks with Task Preempt. + Prioritization

= Tasks H, L share a resource k

= Tasks may use resource k, but not concurrently. Must Task L
take turns using mutex. 1. do some work

= Code between getting, releasing mutex is a critical
section

= Scenario where L can block H
= L starts, gets mutex_k, starts executing critical section
H is released, preempting L
H runs but blocks when trying to get mutex_k
L resumes running and completes critical section

2. get mutex_k

3. critical section
(work with k)

4. release mutex_k

5. do rest of work

L releases mutex_k

H gets mutex_k and starts its
critical section

CLl CLZ CL3a

38

2. get mutex_k

3. critical section
(work with k)

4. release mutex k

5. do rest of work
L

NC STATE UNIVERSITY

Model for Blocking

n
R?“ =|C;|HmaXyg (usage(k: i) Cj critsect k)“l' z [R_l‘ C;
T
jerp(i)' "/
= Equation and terms = Next set of slides (Advanced Responsiveness)
= j: task being analyzed for response time = Covers this case
= j: higher priority task = Covers Priority Inversion: what happens if medium-priority

task M gets caught here?
= k: shared resource & &

" G critsect k- duration of task j’s critical section for

resource k
= usage(k,i): 1 if task i uses resource k, else O

39

NC STATE UNIVERSITY

Summary of Response Time Equations

S E— 0
. R;
= Base case: no priority ‘ ‘ ‘ - R : z [‘

or preemption
[O— R"\}:l +|B(R")‘+I(R" 2 -
N el masen G Y. H c

J€hp (D)
R
JEhP(l)
= Dependent tasks I -I R+ l+

= +Task prioritization
= Blocking,

= +Task preemption
* Independent tasks

R}
maXVR(usage(k L) C] CritSect k)‘ z T, Cj
Jehp(i)

J

40

NC STATE UNIVERSITY

Task Response Time with Interrupts, no Task Priority or Preemption

Higher Maximum Response
Priorit time for task i

jehandlers jEtasks N j+i

Gj

Our Task and - R R
1 _ E : i E : i
Other Tasks R{H_ =Gyt [T- ‘ CJ + ‘
]

| T
JEtasks N j#i

J

jehandlers

* No task priority or task preemption
= All other tasks can delay this task

= All handlers can preempt tasks

41

Task Response Time with Interrupts, Task Priority and Preemption

Higher Maximum Response
Priority time for task i
M
0 _
=Bl) aw) 6
jEhandlers JjEhP(I)
Higher Priority Tasks
n n
Our Task R; R;
Lower Priority Task R =[G+ Z [?llcf-l_ Z [TLNCJ
OWET FHOTLy 1asks JEhandlers J JERD(i) J

= All handlers can preempt tasks

= Tasks have priority and preemption
= Only higher-priority tasks can delay this task

42

NC STATE UNIVERSITY

Our Task is Highest Priority Task

Higher Maximum Response
Priority time for task i
M
0 _
wfl Y o
jEhandlers
ourTask | (R
n
Lower Priority Tasks R;
y RE+ =[c,|+ Z [?“Cj
jEhandlers J

= All handlers can preempt tasks

= Tasks have priority and preemption
= Only higher-priority tasks can delay this task

43

NC STATE UNIVERSITY

Our Task is Highest Priority Task, First Sample

Higher Maximum Response time for
Priority task i to save first sample
g C
RLO — i + z C]
512
jehandlers
ourTask | (D
n
Lower Priority Tasks RN+l C; + Z R_l C.
l 512 T |
jeEhandlers

= All handlers can preempt tasks

= Tasks have priority and preemption
= Only higher-priority tasks can delay this task

44

NC STATE UNIVERSITY

DEADLINES, PRIORITY ASSIGNMENT
AND SCHEDULABILITYTESTS

NC STATE UNIVERSITY

Deadlines
_. 100%:Asgood o {
o as on-time 4 2 ¥
= .
(- | 11
q) = I 11
- O I 11
('_5 _Q , \\ \\
> £ ,' VA
@) : \\\\
&) ,' W
S ! N
—~ 0%: Useless : = e ——
Early Deadline Late
= Real-life activities = Types of deadlines
= Juggling, cooking, catching the bus/airplane, paying bills, = Hard: Critical to complete job by deadline
watering the plans, submitting a class project = Soft: OK to miss by a little bit, but value decreases
= Embedded systems activities with increased lateness
= Reading touchscreen = M out of N: Must complete at least M out of N
= Displaying JPEG on LCD successive jobs by deadline (e.g. video frame update)
= Measuring output in switch-mode power converter = Others too...

control — should be synchronous (locked to phase)

46

Design Space for Workload with Deadlines and Scheduler

= Now consider task deadlines

= Break up design space further

= Does any relationship between deadline D,
vs. period T; hold true for all tasks (V;)?

General Case

NC STATE UNIVERSITY

Preemptive

Non-Preemptive

Fixed Dynamic | Fixed Dynamic
Priority | Priority Priority Priority
General
Case
Di < Ti
Di > Ti

D,=T,

NC STATE UNIVERSITY

Questions
* For each category, we want to know... . .
Preemptive Non-Preemptive
. Fixed Dynamic | Fixed Dynamic
= What is the optimal priority assignment? Priority | Priority | Priority | Priority
= Use to assign priorities to tasks General
Case
D.<T,
= Can we calculate the exact worst-case response P
time for each task? D;>T,
= Good for design analysis, including timing margins D,=T,

= Can determine schedulability — prove that deadlines can
never be missed

= |s there an easy utilization-based schedulability test? =) [J = E < Uwmagical Bound
_ T
= Utilization U = fraction of CPU time used by tasks

= Will a given priority assignment always create a schedule
which misses no deadlines!?

48

NC STATE UNIVERSITY

Common Fixed-Priority Assignment Approaches

= Audsley’s priority assighment method

= |s optimal for all workloads (general case)
= No relationship needs to hold between all D; and T,

General
Case

RM Optimal:

DM Optimal: D; =T, ¥

= Complexity is O(n?). Number of steps depends on D;=T; Vv;
square of number of tasks

= Audsley, N.C., (1991).“Optimal Priority Assighment And Feasibility
Of Static Priority Tasks with Arbitrary Start Times”, Technical Report
YCS 164, Dept. Computer Science, University of York, UK, Dec. 1991

= Rate Monotonic (RM)

= Priority based on release rate (l/period)

= Deadline Monotonic (DM)

= Priority is based on time from release to deadline

| 1 => 4 . .

Higher release rate higher priority . Shorter deadline => higher priority
= Complexity is O(n) o
: o = Complexity is O(n)
= Optimal for workloads where deadline is end of

period: D, =T, V;

Optimal for workloads where deadline is no later

than end of period: D,<T,V;
= Has easy utilization-based schedulability test

DM includes RM
= C.L.Liu and J.W. Layland, “Scheduling Algorithms for L .
Multiprogramming in a Hard Real-Time Environment”, Journal of the * Has easy utilization-based SChedUIablllty test
ACM 20(1), pp-40-61 (1973) M. Joseph, P. Pandya, “Finding response times in a real-time system”,
49 BCS Comp. Jour,, 29(5), pp. 390-395, 1986.

NC STATE UNIVERSITY

Utilization Bound for RM (D; = T; V;)

= Calculate total utilization U for the system’s m tasks S
= Fraction of time spent running tasks U= 2
= Calculate utilization bound U,, , for m tasks
= Maximum value of U for which RM is guaranteed to work
= Convergesto — In2=0.7

= Compare U with U,,, 1 >o Pl e
k
= U < Uy, always schedulable with RMS E 0.8 1 i a 7“ =
= Up., < U < 1.0:inconclusive © 00 _ ax
. S 04+ chedufabl
= U > 1.0: Not schedulable = /
: D 0.2 -
* Why is Uy, so small? 0
= Conservative, simplifies math 0 40
= Can use for DM if D; <T, Number of Tasks

= Use D, instead of T,. Makes estimate of U larger m C

= Gets more inconclusive (pessimistic) as D, gets U = E _t

smaller than T, D;
=1

50

NC STATE UNIVERSITY

Examples of Utilization Bound Values

3

U_max
1.000
0.828
0.780
0.757
0.743
0.735
0.729
0.724
0.721
0.718
0.709
0.705

O 00 N O U1 A WN B

N =
o U O

51

Evaluating Schedulability with RM and UB

NC STATE UNIVERSITY

Task Exec.Time C Period T Priority
T, I 4 High
T, 2 6 Medium
T, I 12 Low

gy lz G 1 2 1667
T, T, T, 4 6 12

Uniare = m(27/m — 1) = 3(2'/3 — 1) = 0.780

52

Utilization Bound
test shows task set
IS schedulable

Evaluating Schedulability with RM and UB

NC STATE UNIVERSITY

task Exec.Time C Period T Priority
T, I 4 High
T, 2 6 Medium
T, 3 12 Low

gl b 12,3 oe33
T, T, T, 4 6 12

Uniare = m(27/m — 1) = 3(2'/3 — 1) = 0.780

Utilization Bound
test is inconclusive!
Need a more accurate measurement:

53 calculate worst-case response times of all tasks

More Examples of Using UB Test

54

NC STATE UNIVERSITY

Task Exec.Time C |Period T |Total U |U,,, |[Sched.w/ RMA!?
T, | 4
T, 2 8
1 2 12
T, Ty T 0.667 0.780 | Yes
. I 15 0.733 0.757 | Yes
4A
. 2 10 0.866 0.757 | Maybe
4B
. 3 8 1.041 0.757 | No
4C
T 3 17 0.843 0.757 | Maybe
4D
. 5 20 0.916 0.757 | Maybe
4E

2 15 0.8 0.757 | Maybe

NC STATE UNIVERSITY

Harmonic Rate Monotonic

Original: RM Adjusted: HRM
Task Exec.Time Period Utilization Period Utilization
= Special case of RM t
= Every task period must evenly divide every ! 4 13 0-308 10 0400
longer task period L5} 8 35 0.229 30 0.267
= e.g. task periods of 10, 20, 40, 120
= May be able to shorten task periods make them t3 7 60 0.117 60 0.117
harmonic, but monitor increase in utilization t
. e L 4 12 111 0.108 60 0.200
= Can still use utilization-based test (easy)
= Utilization bound Uy, rm is now “I” Total 0.761 0.983
(really I-€)
" Example: Start with RM = Apply HRM for this workload
* 4 tasks, s0 Uy, gy = 0.757 = Shorten periods to meet HRM requirement
= Utilization is 0.76 1 > Uy, rm» SO schedulability * Uy urm = 1.000 regardless of task count
test is inconclusive = Utilization is 0.983 < 1.000, so workload is

schedulable

55

NC STATE UNIVERSITY

DYNAMIC PRIORITY PREEMPTIVE
SYSTEMS

NC STATE UNIVERSITY

Dynamic Priority

= Earliest Deadline First (EDF)

= Priority based on amount of time currently left until deadline
= Closer deadline => higher priority

= M. Dertouzos,“Control Robotics: the procedural control of physical processors”, Proceedings of the
IFIP congress, p 807-813, 1974.

" Least Laxity First (LLF)

= Priority based on amount of laxity: absolute deadline minus current time minus remaining execution
time)

= A.K. Mok, “Fundamental Design Problems for the Hard Real-Time Environments”, May 1983, MIT Ph.D.
Dissertation

57

Earliest Deadline First

A D,

11

<

D
T, ? 2

<

<

A D,

Time
= Run the job with the earliest deadline first!

= First releases: 1, runs before T,
= Second releases: T, runs before 1,

* Implementation

= Scheduler tracks each job’s deadline, which
depends on its release time
= Jobs must be sorted by deadline
= General case sorting complexity is O(n?)

= Optimizations for scheduler reduce complexity

= Keep ready queue sorted, use bit masks for
58 groups of tasks

= Utilization-based schedulability test

depends on deadline constraints
= D, =T, :Schedulable if utilization < |-¢
= D, >T, :Schedulable if utilization = |-€

= D, <T.:Have to use a more complicated test

m Ci
U:ZT—

=1 '

NC STATE UNIVERSITY

NC STATE UNIVERSITY

EDF Processor Activity

Task Execution Time C |Period T | Deadline D

Tl I 4 4
T2 2 6 6
T3 3 |2 |2

tl T2 -rl- T2 tl
o 1 2 3 4 5 6 7 8 910 11 12
Time

59

NC STATE UNIVERSITY

Response Time Analysis for EDF

= “Non-trivial” to calculate for EDF and * Need to analyze the response time for
other dynamic priority schemes each release within the hyper-period.
= Sum up impact from all possible higher priority = How many releases? At least 29140/5 +
tasks, but priority depends on how soon the 29140/20 + 29140/31 + 29140/47 = 8845

deadlines are
= This depends on when tasks are released

= Assume all tasks are periodic

= Execution schedule will repeat every hyper-
period

= Hyper-period = least common multiple (LCM)
of all task periods

= LCM is smallest positive integer which is a
multiple of all inputs

= For tasks of periods 5, 20, 3| and 47, hyper-period
is 29140

60

NC STATE UNIVERSITY

System Performance During Transient Overload

*RM, DM — Each task has fixed " EDF — Each task has varying

priority. So? priority. So?
= This priority determines that tasks = This priority depends upon when
will be scheduled consistently the task’s deadline is, and hence
= Task A will always preempt task B if when the task becomes ready to
needed run (release time)

= Task B will be forced to miss its deadline

= Task B may have higher priority than A
to help task A meet its deadline

depending on release times

= To determine whether task A or B wiill
miss its deadline we need to know their
release times

6l

Comparison of RM and EDF During Overload

Task Execution Time C

Period T

T

5

7

1,

3

4

RMS, P2 @ 2

EDF, P2 @ 2

RMS, P2 @ 3

EDF, P2 @ 3

NC STATE UNIVERSITY

P1 misses Deadline

P1 P2 SN
O 1 2 3 4 5 o6 7 8

P1 P2 PL 77/
O 1 2 3 4 5

P1 misses Deadline

P1 misses Deadline

P1 P2 7
O 1 2 3 4 5 o6 7 8

P2 misses Deadllne

123

63

Old

NC STATE UNIVERSITY

Response Time Analysis, Steps 2, 3,4,5,6 ...

= Task i is vulnerable to new job releases during vulnerable

NC STATE UNIVERSITY

time, which depends on scheduler , Al
vae n - - : : RO (O\ﬂf y
&= p " Non-preemptive:0 to R -, i)
since task i can’t be 7 = R!' - C; R —C;
preempted after it starts I | s 8 Nl (=
= Preemptive: 0 to R since)" < :
higher priority task can ’T) — 1 —
preempt task i Z A @C-
: : N &
= Update completion time I Rl I _,_}’1%}@ T -
estimate R/ pe o o . 2o | gl VJI}

u eP 2 _ Y p
@\-%:\élea es, or deadline is Ri 1., R ’ Tﬁ’k&
\ misse LRE R.> y .;..__b_:;)‘k_ 2 J

sl U b {-s—f
A Ry —L" 7]
[e A4 85 /

	Default Section
	Slide 1: Analyzing Responsiveness for Real-Time Systems
	Slide 2: Overview
	Slide 3: Response Time Matters to Real-Time Systems
	Slide 4: Real-Time Methods
	Slide 5: Big Picture of Real-Time Systems
	Slide 6: Example: Real-Time Audio Generation on the Shield
	Slide 7: Shield Audio System Architecture (Single Buffer)
	Slide 8: Questions
	Slide 9: Assumptions and Definitions
	Slide 10: Evaluating Responsiveness
	Slide 11: What Happens at the Last Sample (Single Buffer)?
	Slide 12: DMA0_IRQHandler
	Slide 13: Generalizing Evaluating Responsiveness
	Slide 14: Critical Path Analysis for Sound Buffer Refill Sequence
	Slide 15: Improvement: Give Refill Sound Buffer Thread the Highest Priority
	Slide 16: Big Picture of Real-Time Systems Analysis and “Optimization”
	Slide 17: Big Picture of Real-Time Systems
	Slide 18: Basic Design Choices for Scheduler
	Slide 19: Scheduling – Selecting a Ready Task to Run

	Untitled Section
	Slide 20: Periodic Task Model
	Slide 21: Periodic Task Model of Computational Requirements
	Slide 22: Example Workload: What We Ask For
	Slide 23: Scheduled Workload: What We Get
	Slide 24: Graphically Evaluating Response Times with Different Schedulers
	Slide 25: Non-Preemptive Scheduling
	Slide 26: Non-Preemptive Scheduling
	Slide 27: Non-Preemptive Scheduling with FSM for 3
	Slide 28: Sidebar: Non-Preemptive Scheduling with FSM for 3 (with shorter period)
	Slide 29: Preemptive Scheduling
	Slide 30: Preemptive Scheduling
	Slide 31: Building and Using a Periodic Task Model
	Slide 32: Numerical Response Time Analysis
	Slide 33: Response Time Analysis, Step 1
	Slide 34: Additional Timing Interference
	Slide 35: How Many Ti Releases Possible During Vulnerable Time?
	Slide 36: Response Time: Indep. Tasks with Task Preemption + Prioritization
	Slide 37: Processor Activity for Independent Tasks with Task Preemption
	Slide 38: Response Time: Dependent Tasks with Task Preempt. + Prioritization
	Slide 39: Model for Blocking
	Slide 40: Summary of Response Time Equations
	Slide 41: Task Response Time with Interrupts, no Task Priority or Preemption
	Slide 42: Task Response Time with Interrupts, Task Priority and Preemption
	Slide 43: Our Task is Highest Priority Task
	Slide 44: Our Task is Highest Priority Task, First Sample

	Priority Assignment & Analyses
	Slide 45: Deadlines, Priority Assignment and Schedulability Tests
	Slide 46: Deadlines
	Slide 47: Design Space for Workload with Deadlines and Scheduler
	Slide 48: Questions
	Slide 49: Common Fixed-Priority Assignment Approaches
	Slide 50: Utilization Bound for RM (cap D sub i. equals cap T sub i. , , , for all sub i.)
	Slide 51: Examples of Utilization Bound Values
	Slide 52: Evaluating Schedulability with RM and UB
	Slide 53: Evaluating Schedulability with RM and UB
	Slide 54: More Examples of Using UB Test
	Slide 55: Harmonic Rate Monotonic

	Dynamic Priority Preemptive
	Slide 56: Dynamic Priority Preemptive Systems
	Slide 57: Dynamic Priority
	Slide 58: Earliest Deadline First
	Slide 59: EDF Processor Activity
	Slide 60: Response Time Analysis for EDF
	Slide 61: System Performance During Transient Overload
	Slide 62: Comparison of RM and EDF During Overload

	Unused
	Slide 63: Old
	Slide 64: Response Time Analysis, Steps 2, 3, 4, 5, 6 …

