
1

Analyzing Responsiveness

for Real-Time Systems

2

Overview

▪ In these slides

▪ Examining Response Time for Shield Audio Software

▪ Periodic Task Model and Scheduling

▪ Numerical Response Time Analysis

▪ Deadlines, Priority Assignment and Schedulability Tests

▪ Next slides

▪ Estimating Task Execution Time

▪ Analyzing Priority Inversion

3

▪ Response time

▪ Delay from input (release) to output

(completion)

▪ Depends on what else is in the system

▪ Response time is important to all

programs, but more important to some

than others

▪ Antilock brakes in car, truck, aircraft

▪ Lawn irrigation system

▪ Response time is a

range of values

▪ Different paths

through program

▪ Different machine state, not architecturally

visible (pipelines, predictors, caches, etc.)

▪ Interference from rest of system

▪ Sampling asynchronous inputs

▪ If timing is critical, must understand it

▪ Average

▪ Extreme cases: best and worst cases

(minimum and maximum)

Response Time Matters to Real-Time Systems

4

▪ Want to predict timing of system

▪ Ideal:

◦ Exact response time, given inputs and state

◦ Extremes, and inputs and states which cause them

▪ Wrong (but maybe useful):

◦Measure times experimentally and note extremes

◦ Analytical bounds on extremes

▪ Bounds and tightness

▪ Tighter bounds are better,* but harder to determine
◦ * actually “not worse”. Would knowing the 0 to 20.83 ns value

from sampling with the 48 MHz system I/O clock matter for this system?

▪ Real-Time Methods make it easier to build a system with predictable timing

▪ Design methods: how to build a system

▪ Analysis methods: how to analyze a system

◦ Usually include simplifying assumptions.

◦ Some design methods are easier to analyze than others

Real-Time Methods

Exact time

for my

input data

Actual

Min.
Actual

Max.
Observed

Min.

Observed

Max.
Observed

Mean

(Average)

Observed Mode

(Most Common)

5

Task Model

When does task run?
Periodically

Everything else

How long task takes:
Execution time analysis

Analytical – safe

Experimental – unsafe

Scheduling

Preemption vs. run-to-completion

Priorities
Fixed

Dynamic

Overheads Hardware: Interrupts

OS: Context Switching, IPCResponse
Time Analysis

Basic methods

Blocking

Handling priority inversion

Deadlines

Using response time analysis

Optimal scheduling approaches

Schedulability tests

Comparing impact of preemption
and priority

Big Picture of Real-Time Systems

Concepts Basic Ideas Details and Improvements

6

EXAMPLE: REAL-TIME AUDIO

GENERATION ON THE SHIELD

7

Shield Audio System Architecture (Single Buffer)

▪ fsample = 20 kHz, Tsample = 50 µs

▪ Sample deadline every 50 µs

▪ Sound buffer (waveform)

▪ Array of 512 halfwords

▪ Holds 512 * 50 µs = 25.6 ms of data

▪ Refill buffer deadline every 25.600 ms

Sound

Manager

Refill

Sound

Buffer

DMA IRQ

Handler

DMA

Timer

DAC Speaker
Sound

Buffer

0 µs 50 100 150 200 250 300 350 400

DAC Vout

Sound Buffer

Timer Overflow

8

Questions

▪ Audio generation

▪ Can we miss any audio deadlines?

▪ If not, how close can we get to missing one?

▪ How much of CPU’s time is used on audio generation?

▪ How slowly can we run the CPU while keeping audio working?

▪ How fast of an audio sample rate can we manage with fCPU = 48 MHz?

▪ Generalized

▪ On average, how much of the CPU’s time is used, and how much is free?

▪ What is the worst-case response time for each task?

▪ If we have deadlines, can we miss any? How close can we get to missing one?

9

Assumptions and Definitions

▪ Assumptions

▪ Single CPU

▪ Context switch takes no time

▪ No data dependencies between tasks unless

explicitly specified and modeled

▪ Definitions

▪ Release Time = time at which event occurs or

when task is released (depends on context)

▪ e.g. timer overflow

▪ Completion Time = time at which task finishes

▪ Response time = completion time – release

time

▪ Deadline = time at which task must have

completed

▪ “Schedulable” = a schedule exists which allows

each task to meet its deadline

10

IRQ

Evaluating Responsiveness

▪ DMA ISR and one dependent task

▪ Assumption

▪ ISR or task signals next task after its critical work is completed

▪ Two important components in the critical path

▪ T1: From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.

▪ T2: From ISR to user task running and completing critical work. Uses OS signaling.

Time

Interrupt

T1ISR

RTOS
T2

Task_1

11

What Happens at the Last Sample (Single Buffer)?

▪ Need to load first new sample into buffer before

DMA reads it. Have <50 µs.

▪ Need to load second sample before 100 µs

▪ Sample[n] is needed before n*50 µs

Sound

Manager

Refill

Sound

Buffer

DMA IRQ

Handler

DMA

Timer

DAC Speaker

t+150 µs t+200 µs

Sound

Buffer

Sound Buffer

#0
#1

#0

#2

#2

#3

#4

#3 #4 #5

#5

#1

12

Sound

Buffer

▪ Handler needs to…

▪ Tell hardware it is handling the

DMA interrupt

▪ Tell someone to refill sound

buffer

▪ Tell the DMA hardware to play

the buffer again, starting with the

next timer trigger

DMA0_IRQHandler

Refill

Sound

Buffer

DMA IRQ

Handler

DMA

Timer

13

IRQ

Generalizing Evaluating Responsiveness

▪ May have multiple sequential dependent tasks

▪ Assumption

▪ ISR or task signals next task after its critical work is completed

▪ Three important components in the critical path

▪ T1: From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.

▪ T2: From ISR to user task running and completing critical work. Uses OS signaling.

▪ T3: From one user task to another user task running and completing critical work. Uses OS signaling.

Time

Interrupt

Task_2

T1ISR

RTOS
T2

Task_1

RTOS
T3

14

Critical Path Analysis for Sound Buffer Refill Sequence

▪ 1. Gather information

▪ Which activities are in critical path

▪ How long each activity takes

▪ 2. Calculate response time R iteratively

▪ Estimate of R assuming everything released

simultaneously (critical instant analysis)

▪ More work may have arrived during R, delaying

our thread, so update R

▪ Repeat until R stabilizes or exceeds deadline

Higher Priority

Thread(s)

Longest

IRQ Handler

Higher Priority

IRQ Handler(s)

DMA

IRQ Handler

Lower Priority

IRQ Handler(s)

Thread Refill

Sound Buffer

First sample

written to

sound buffer

Worst-Case Release:

IRQ for longest handler released

immediately before DMA IRQ

Deadline to refill

sound buffer

All other IRQs

released at same time as

DMA IRQ

DMA IRQ

Released

RTOS

Delay

IRQ

Delay

Response time R

IRQ Handlers

Threads

15

Improvement: Give Refill Sound Buffer Thread the Highest Priority

▪ Now no threads have higher priority than Thread Refill Sound Buffer

Longest

IRQ Handler

Higher Priority

IRQ Handler(s)

DMA

IRQ Handler

Lower Priority

IRQ Handler(s)

Thread Refill

Sound Buffer

First sample

written to

sound buffer

Worst-Case Release:

IRQ for longest handler released

immediately before DMA IRQ

Deadline to refill

sound buffer

All other IRQs

released at same time as

DMA IRQ

DMA IRQ

Released

IRQ Handlers

Threads

16

Big Picture of Real-Time Systems Analysis and “Optimization”

▪ Development Cycle

▪ Think

▪ Modify

▪ Test and measure

▪ Measurement is critical

▪ Expectations ≠ Reality

▪ Want to measure to find biggest problem, attack

that first

▪ Want to see if our changes help or not

▪ How to measure?

▪ Use embedded instruction trace capability –

many Cortex M MCUs have ETM or MTB

▪ Instrument program: add instructions for

visibility

▪ Send out trace information (e.g. debug signals) to

view with oscilloscope or logic analyzer

▪ Will do this in lab

17

Task Model

When does task run?
Periodically

Everything else

How long task takes:
Execution time analysis

Analytical – safe

Experimental – unsafe

Scheduling

Preemption vs. run-to-completion

Priorities
Fixed

Dynamic

Overheads Hardware: Interrupts

OS: Context Switching, IPCResponse
Time Analysis

Basic methods

Blocking

Handling priority inversion

Deadlines

Using response time analysis

Optimal scheduling approaches

Schedulability tests

Comparing impact of preemption
and priority

Big Picture of Real-Time Systems

Concepts Basic Ideas Details and Improvements

18

Basic Design Choices for Scheduler

▪ Break up design space into categories

based on choices in scheduling approach

▪ Can tasks preempt other tasks?

▪ Enabled ISRs can always preempt tasks

▪ Is task priority fixed or dynamic?

▪ Does a task have a single priority, or

can the priority change (e.g. based on time

until deadline)

▪ For a given category we want to know…

▪ How to we get the best priority assignment?

▪ How much of the processor’s time does it let us use?

▪ What is the worst-case response time for each task?

Preemptive Non-Preemptive

Fixed

Priority

Dynamic

Priority

19

Scheduling – Selecting a Ready Task to Run

▪ What if multiple tasks are ready to run?

▪ Non-prioritized

▪ Give each ready task a chance to run (round

robin, taking turns).

▪ A task’s responsiveness depends on the run

time of all other tasks in the system.

▪ Timing is unstable and fragile.

▪ Prioritized:

▪ Some ready tasks have precedence over

others. Scheduler runs them preferentially.

▪ A task’s responsiveness becomes (more)

independent of lower priority tasks.

▪ Timing is much more stable.

▪ Assign priorities to urgent tasks to

improve their responsiveness

▪ Implicit: OK to delay less urgent tasks

▪ We’ll see different approaches to Priority

Assignment

▪ Tasks may have deadlines

▪ Scheduler may or may not know about

deadlines

20

PERIODIC TASK MODEL

21

Periodic Task Model of Computational Requirements

▪ Periodic Task Model describes

characteristics for each task i

▪ Job = a specific instance of that task running

▪ Task releases job so scheduler can run it

▪ A periodic task i releases a job every Ti

time units

▪ Job may have an absolute deadline Di after

its release

▪ Job takes a constant time Ci to execute

▪ Simplifying assumptions include

▪ no time needed for scheduler, task switching, ISR

response/return

task i, job 3

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

task i, job 1 task i, job 2

CiCi

Ti

Di Di

Ti

22

2

3

2 2

3

1 1 1
1

Example Workload: What We Ask For

Task Exec.

Time Ci

Period

Ti

Deadline

Di

1 1 4 4

2 2 6 6

3 3 12 12

• Set of tasks with real-time requirements

• What gets executed when?

– Depends on scheduler and task priorities

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

23

Scheduled Workload: What We Get

Task Exec.

Time Ci

Period

Ti

Deadline

Di

Priority

1 1 4 4 High

2 2 6 6 Medium

3 3 12 12 Low

• Example: Scheduler and task fixed priorities

– Assign priorities as shown

– Use a non-preemptive scheduler

• What can delay a task?

– I: Interference caused by higher priority tasks

– B: Blocking caused by lower priority tasks

• Response time = Computation + Blocking + Interference

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

1 1 1

2
2

3

𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + 𝐼𝑖

24

Graphically Evaluating Response Times with Different Schedulers

▪ Goal: Higher priority should

result in less blocking and

interference

▪ Evaluate three schedulers

▪ Non-preemptive

▪ Non-preemptive

▪ With 3 split into two-state FSM

(Ci = 1.5 each), as is largest Ci

▪ Preemptive

▪ With original 3

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 3 7 Low

More

0

High Priority Low Priority

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

25

Non-Preemptive Scheduling

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

3

2

1

0

1 2 3

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 3 7 Low B
lo

c
k
in

g
 +

In
te

rf
e
re

n
c
e

26

Non-Preemptive Scheduling

1 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6

2 Job 1 Job 2 Job 3 Job 4

3 Job 1 Job 1 Job 1 Job 2 Job 2 Job 2 Job 3 Job 3 Job 3 Job 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

3

2

1

0

1 2 3

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 3 7 Low M
a

x
im

u
m

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

27

Non-Preemptive Scheduling with FSM for 3

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

3

2

1

0

1 2 3

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 1.5 7 Low M
a

x
im

u
m

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

28

Sidebar: Non-Preemptive Scheduling with FSM for 3 (with shorter period)

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

3

2

1

0

1 2 3

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 1.5 3.5 Low M
a

x
im

u
m

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

29

Preemptive Scheduling

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 3 7 Low

4

3

2

1

0

1 2 3

M
a

x
im

u
m

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

30

Preemptive Scheduling

1

2

3 Job 1 Job 1 Job 1 Job 2 Job 2 Job 2 Job 3 Job 3 Job 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Task Exec. Time Ci Period Ti Priority

1 1 4 High

2 1 5 Medium

3 3 7 Low

4

3

2

1

0

1 2 3

M
a

x
im

u
m

B
lo

c
k
in

g
 +

In
te

rf
e

re
n
c
e

31

Building and Using a Periodic Task Model

▪ Information per task and ISR – use spreadsheet

▪ Period

▪ Worst-case execution time,

▪ Deadline (if present)

▪ Critical sections (duration and communicating tasks)

▪ Ignore because initially we assume all tasks are independent

▪ Don’t forget overheads from OS and interrupt handling
▪ For now, leave a margin of error ε. Stay away from the edge!

▪ Can now apply scheduling policy and assign priorities

▪ Preemptive or non-preemptive?

▪ Fixed or dynamic priority?

▪ What priority assignment approach?

32

NUMERICAL RESPONSE TIME ANALYSIS

33

Response Time Analysis, Step 1

▪ How long could it take for task i to complete? What is its response time Ri?

▪ Initial estimate based on worst case:

Ri
0 = computation time for task i + computation time for other tasks.

▪ Non-prioritized scheduling: Every other task can run once

while (1) {

 for (j=0; j<NUM_TASKS; j++) {

 if (Tasks[j].RP > 0) {

 Tasks[j].RP--;

 Tasks[j].Task();

} } }

▪ Prioritized scheduling: All higher-priority tasks (+ longest lower-priority task if non-preemptive)

can run once

C0 C1 C2 C3 Ci

𝑅𝑖
0

C3

C2
Ci

C0

C1

𝑅𝑖
0

𝑅𝑖
0 = 𝐶𝑖 + ෍

𝑗≠𝑖

𝐶𝑗

𝑅𝑖
0 = 𝐶𝑖 + max𝑗∈𝑙𝑝(𝑖) 𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝐶𝑗

34

𝑅𝑖
1

Additional Timing Interference

▪ Task i is vulnerable to delays from new job releases during vulnerable time

▪ Non-preemptive: 0 to Ri
n – Ci since

task i can’t be preempted after it starts

▪ Preemptive: 0 to Ri
n since

higher-priority task can preempt task i

▪ Consider new releases to update

completion time estimate Ri
n+1

▪ Repeat until no new releases, or

any deadline (if present) is missed

C0 C1 C2 C3 Ci
𝑅𝑖

0

𝑅𝑖
2

𝑅𝑖
3

C0 C1 C2 C3 Ci
𝑅𝑖

0

35

Non-

prioritized

Prioritized

N
o

n
-

p
re

e
m

p
ti

v
e

P
re

e
m

p
ti

v
e

How Many Ti Releases Possible During Vulnerable Time?

▪ Initial estimate was one release, so task’s

time is one job: 1*Cj

▪ Remaining estimates must consider all job

releases possible during vulnerable time:

Ceiling(vulnerable time / Tj)*Cj

෍

𝑗≠𝑖

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗 ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

෍

𝑗≠𝑖

𝑅𝑖
𝑛 − 𝐶𝑖

𝑇𝑗
𝐶𝑗

෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛 − 𝐶𝑖

𝑇𝑗
𝐶𝑗

𝑅𝑖
0 = 𝐶𝑖 + ෍

𝑗≠𝑖

𝐶𝑗

𝑅𝑖
0 = 𝐶𝑖 + max𝑗∈𝑙𝑝(𝑖) 𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝐶𝑗

36

Response Time: Indep. Tasks with Task Preemption + Prioritization

▪ Preemption …

▪ Eliminates blocking of task i by lower-priority

independent tasks.

▪ Allows higher-priority tasks to preempt task i

C2 C0 C1C3Ci

𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

37

Processor Activity for Independent Tasks with Task Preemption

j Task Exec.

Time C

Period T Priority

1 Fee 1 4 High

2 Fi 2 6 Medium

3 Fo 3 12 Low

𝑅3
0 = 3 + ෍

𝑗=1

𝑖−1

𝐶𝑗 = 3 + 1 + 2 = 6

𝑅3
1 = 3 + ෍

𝑗=1

𝑖−1
6

𝑇𝑗
𝐶𝑗 = 3 +

6

4
∗ 1 +

6

6
∗ 2 = 3 + 2 + 2 = 7

𝑅3
2 = 3 + ෍

𝑗=1

𝑖−1
7

𝑇𝑗
𝐶𝑗 = 3 +

7

4
∗ 1 +

7

6
∗ 2 = 3 + 2 + 4 = 9

𝑅3
3 = 3 + ෍

𝑗=1

𝑖−1
9

𝑇𝑗
𝐶𝑗 = 3 +

9

4
∗ 1 +

9

6
∗ 2 = 3 + 3 + 4 = 10

𝑅3
4 = 3 + ෍

𝑗=1

𝑖−1
10

𝑇𝑗
𝐶𝑗 = 3 +

10

4
∗ 1 +

10

6
∗ 2 = 3 + 3 + 4 = 10

Iterate until R3 stops changing

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

Fee

Fi

Fo

Fee Fee FeeFi FiFo Fo Fo

Fee Fee

Fi

Fee Fi Fo

Fee FeeFi Fo Fo

Fee FeeFi FiFo Fo Fo

Since I started numbering tasks at 1 in this example, we start j at 1 here

38

Response Time: Dependent Tasks with Task Preempt. + Prioritization

▪ Tasks H, L share a resource k

▪ Tasks may use resource k, but not concurrently. Must
take turns using mutex.

▪ Code between getting, releasing mutex is a critical
section

▪ Scenario where L can block H

▪ L starts, gets mutex_k, starts executing critical section

▪ H is released, preempting L

▪ H runs but blocks when trying to get mutex_k

▪ L resumes running and completes critical section

▪ L releases mutex_k

▪ H gets mutex_k and starts its
critical section

Shared

Resource k

Mutex for k

Task L

2. get mutex_k

4. release mutex_k

3. critical section

(work with k)

5. do rest of work

1. do some work

Task H

2. get mutex_k

4. release mutex_k

3. critical section

(work with k)

5. do rest of work

1. do some work

CH1

CL1

CH3CH2

CL2

CH4

CL4

CH5

CL5CL3bCL3a

39

Model for Blocking

▪ Equation and terms

▪ i: task being analyzed for response time

▪ j: higher priority task

▪ k: shared resource

▪ Cj CritSect k: duration of task j’s critical section for
resource k

▪ usage(k,i): 1 if task i uses resource k, else 0

▪ Next set of slides (Advanced Responsiveness)
▪ Covers this case

▪ Covers Priority Inversion: what happens if medium-priority
task M gets caught here?

𝑅𝑖
𝑛+1 = 𝐶𝑖 + max∀𝑘 𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖) 𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

CH1

CL1

CH3CH2

CL2

CH4

CL4

CH5

CL5CL3bCL3a

40

Summary of Response Time Equations

▪ Base case: no priority

or preemption

▪ +Task prioritization

▪ Blocking,

interference

▪ +Task preemption

▪ Independent tasks

▪ Dependent tasks

𝑅𝑖
𝑛+1 = 𝐶𝑖 + 𝐵𝑖(𝑅𝑖

𝑛) + 𝐼𝑖(𝑅𝑖
𝑛)

𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗≠𝑖

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
𝑛+1 = 𝐶𝑖 + max𝑗∈𝑙𝑝(𝑖) 𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
𝑛+1 = 𝐶𝑖 + max∀𝑘 𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖) 𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

41

Task Response Time with Interrupts, no Task Priority or Preemption

▪ No task priority or task preemption

▪ All other tasks can delay this task

▪ All handlers can preempt tasks

Interrupt and

Exception

Handlers

Our Task and

Other Tasks 𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗 + ෍

𝑗∈𝑡𝑎𝑠𝑘𝑠 ∩ 𝑗≠𝑖

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
0 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝐶𝑗 + ෍

𝑗∈𝑡𝑎𝑠𝑘𝑠 ∩ 𝑗≠𝑖

𝐶𝑗

i

Higher

Priority

Maximum Response

time for task i

42

Task Response Time with Interrupts, Task Priority and Preemption

▪ All handlers can preempt tasks

▪ Tasks have priority and preemption

▪ Only higher-priority tasks can delay this task

𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

Interrupt and

Exception

Handlers

Higher Priority Tasks

Our Task

Lower Priority Tasks

𝑅𝑖
0 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝐶𝑗 + ෍

𝑗∈ℎ𝑝(𝑖)

𝐶𝑗

Higher

Priority

i

Maximum Response

time for task i

43

Our Task is Highest Priority Task

▪ All handlers can preempt tasks

▪ Tasks have priority and preemption

▪ Only higher-priority tasks can delay this task

𝑅𝑖
𝑛+1 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
0 = 𝐶𝑖 + ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝐶𝑗
Interrupt and

Exception

Handlers

Our Task

Lower Priority Tasks

Higher

Priority

i

Maximum Response

time for task i

44

Our Task is Highest Priority Task, First Sample

▪ All handlers can preempt tasks

▪ Tasks have priority and preemption

▪ Only higher-priority tasks can delay this task

𝑅𝑖
𝑛+1 =

𝐶𝑖

512
+ ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

𝑅𝑖
0 =

𝐶𝑖

512
+ ෍

𝑗∈ℎ𝑎𝑛𝑑𝑙𝑒𝑟𝑠

𝐶𝑗
Interrupt and

Exception

Handlers

Our Task

Lower Priority Tasks

Higher

Priority

i

Maximum Response time for

task i to save first sample

45

DEADLINES, PRIORITY ASSIGNMENT

AND SCHEDULABILITY TESTS

46

▪ Real-life activities

▪ Juggling, cooking, catching the bus/airplane, paying bills,

watering the plans, submitting a class project

▪ Embedded systems activities

▪ Reading touchscreen

▪ Displaying JPEG on LCD

▪ Measuring output in switch-mode power converter

control – should be synchronous (locked to phase)

▪ Types of deadlines

▪ Hard: Critical to complete job by deadline

▪ Soft: OK to miss by a little bit, but value decreases

with increased lateness

▪ M out of N: Must complete at least M out of N

successive jobs by deadline (e.g. video frame update)

▪ Others too…

Deadlines

V
a

lu
e

(o
f
c
o

m
p

le
ti
n

g
 j
o

b
)

LateEarly Deadline
0%: Useless

100%: As good

as on-time

<0%: Worse

than useless?

47

Design Space for Workload with Deadlines and Scheduler

▪ Now consider task deadlines

▪ Break up design space further

▪ Does any relationship between deadline Di

vs. period Ti hold true for all tasks (∀𝑖)?

Preemptive Non-Preemptive

Fixed

Priority

Dynamic

Priority

Fixed

Priority

Dynamic

Priority

General

Case

Di < Ti

Di > Ti

Di = Ti

General Case

𝐷𝑖 = 𝑇𝑖 ∀𝑖 𝐷𝑖 < 𝑇𝑖 ∀𝑖

𝐷𝑖 > 𝑇𝑖 ∀𝑖

48

Questions

▪ For each category, we want to know…

▪ What is the optimal priority assignment?

▪ Use to assign priorities to tasks

▪ Can we calculate the exact worst-case response

time for each task?

▪ Good for design analysis, including timing margins

▪ Can determine schedulability – prove that deadlines can

never be missed

▪ Is there an easy utilization-based schedulability test?

▪ Utilization U = fraction of CPU time used by tasks

▪ Will a given priority assignment always create a schedule

which misses no deadlines?

Preemptive Non-Preemptive

Fixed

Priority

Dynamic

Priority

Fixed

Priority

Dynamic

Priority

General

Case

Di < Ti

Di > Ti

Di = Ti

𝑈 = ෍

𝑖=1

𝑚
𝐶𝑖

𝑇𝑖
 ≤ 𝑈𝑀𝑎𝑔𝑖𝑐𝑎𝑙 𝐵𝑜𝑢𝑛𝑑

49

▪ Audsley’s priority assignment method

▪ Is optimal for all workloads (general case)

▪ No relationship needs to hold between all Di and Ti

▪ Complexity is O(n2). Number of steps depends on

square of number of tasks

▪ Audsley, N. C., (1991). “Optimal Priority Assignment And Feasibility

Of Static Priority Tasks with Arbitrary Start Times”, Technical Report

YCS 164, Dept. Computer Science, University of York, UK, Dec. 1991

▪ Rate Monotonic (RM)

▪ Priority based on release rate (1/period)

▪ Higher release rate => higher priority

▪ Complexity is O(n)

▪ Optimal for workloads where deadline is end of

period: Di = Ti ∀𝒊

▪ Has easy utilization-based schedulability test

▪ C. L. Liu and J. W. Layland, ‘‘Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment’’, Journal of the

ACM 20(1), pp. 40-61 (1973)

▪ Deadline Monotonic (DM)

▪ Priority is based on time from release to deadline

▪ Shorter deadline => higher priority

▪ Complexity is O(n)

▪ Optimal for workloads where deadline is no later

than end of period: Di ≤ Ti ∀𝒊

▪ DM includes RM

▪ Has easy utilization-based schedulability test

▪ M. Joseph, P. Pandya, “Finding response times in a real-time system”,

BCS Comp. Jour., 29(5), pp. 390-395, 1986.

General
Case

Common Fixed-Priority Assignment Approaches

𝐷𝑀 𝑂𝑝𝑡𝑖𝑚𝑎𝑙:
𝐷𝑖 ≤ 𝑇𝑖 ∀𝑖

RM Optimal:
𝐷𝑖 = 𝑇𝑖 ∀𝑖

50

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Number of Tasks

M
a
x
im

u
m

U
ti

li
z
a
ti

o
n

Utilization Bound for RM (𝐷𝑖 = 𝑇𝑖 ∀𝑖)

▪ Calculate total utilization U for the system’s m tasks

▪ Fraction of time spent running tasks

▪ Calculate utilization bound UMax for m tasks

▪ Maximum value of U for which RM is guaranteed to work

▪ Converges to → ln 2 ≈ 0.7

▪ Compare U with UMax

▪ U < UMax: always schedulable with RMS

▪ UMax < U < 1.0: inconclusive

▪ U > 1.0: Not schedulable

▪ Why is UMax so small?

▪ Conservative, simplifies math

▪ Can use for DM if Di < Ti

▪ Use Di instead of Ti . Makes estimate of U larger

▪ Gets more inconclusive (pessimistic) as Di gets

smaller than Ti

𝑈𝑀𝑎𝑥 = 𝑚 21/𝑚 − 1

Schedulable

Inconclusive, use Response Time Analysis

𝑈 = ෍

𝑖=1

𝑚
𝐶𝑖

𝑇𝑖

𝑈 = ෍

𝑖=1

𝑚
𝐶𝑖

𝐷𝑖

UMax

51

Examples of Utilization Bound Values

m U_max
1 1.000

2 0.828

3 0.780

4 0.757

5 0.743

6 0.735

7 0.729

8 0.724

9 0.721

10 0.718

15 0.709

20 0.705

52

Evaluating Schedulability with RM and UB

Task Exec. Time C Period T Priority

1
1 4 High

2
2 6 Medium

3
1 12 Low

𝑈 =
𝐶1

𝑇1
+

𝐶2

𝑇2
+

𝐶3

𝑇3
=

1

4
+

2

6
+

1

12
= 0.6667

𝑈𝑀𝑎𝑥 = 𝑚(2 ൗ1
𝑚 − 1) = 3(2 ൗ1

3 − 1) = 0.780 Utilization Bound

test shows task set

is schedulable

53

Evaluating Schedulability with RM and UB

task Exec. Time C Period T Priority

1
1 4 High

2
2 6 Medium

3
3 12 Low

𝑈𝑀𝑎𝑥 = 𝑚(2 ൗ1
𝑚 − 1) = 3(2 ൗ1

3 − 1) = 0.780 Utilization Bound

test is inconclusive!

Need a more accurate measurement:

calculate worst-case response times of all tasks

𝑈 =
𝐶1

𝑇1
+

𝐶2

𝑇2
+

𝐶3

𝑇3
=

1

4
+

2

6
+

3

12
= 0.833

54

More Examples of Using UB Test

Task Exec. Time C Period T Total U UMax Sched. w/ RMA?

1
1 4

2
2 8

3
2 12

1, 2, 3
0.667 0.780 Yes

4A
1 15 0.733 0.757 Yes

4B
2 10 0.866 0.757 Maybe

4C
3 8 1.041 0.757 No

4D
3 17 0.843 0.757 Maybe

4E
5 20 0.916 0.757 Maybe

4F
2 15 0.8 0.757 Maybe

55

Task Exec. Time Period Utilization Period Utilization

t1 4 13 0.308 10 0.400

t2 8 35 0.229 30 0.267

t3 7 60 0.117 60 0.117

t4 12 111 0.108 60 0.200

Total 0.761 0.983

Original: RM Adjusted: HRM
Harmonic Rate Monotonic

▪ Special case of RM

▪ Every task period must evenly divide every

longer task period

▪ e.g. task periods of 10, 20, 40, 120

▪ May be able to shorten task periods make them

harmonic, but monitor increase in utilization

▪ Can still use utilization-based test (easy)

▪ Utilization bound UMax HRM is now “1”

(really 1-ε)

▪ Example: Start with RM

▪ 4 tasks, so UMax RM = 0.757

▪ Utilization is 0.761 > UMax RM , so schedulability

test is inconclusive

▪ Apply HRM for this workload

▪ Shorten periods to meet HRM requirement

▪ UMax HRM = 1.000 regardless of task count

▪ Utilization is 0.983 < 1.000, so workload is

schedulable

56

DYNAMIC PRIORITY PREEMPTIVE

SYSTEMS

57

Dynamic Priority

▪ Earliest Deadline First (EDF)

▪ Priority based on amount of time currently left until deadline

▪ Closer deadline => higher priority

▪ M. Dertouzos, “Control Robotics: the procedural control of physical processors”, Proceedings of the

IFIP congress, p 807-813, 1974.

▪ Least Laxity First (LLF)

▪ Priority based on amount of laxity: absolute deadline minus current time minus remaining execution

time)

▪ A.K. Mok, “Fundamental Design Problems for the Hard Real-Time Environments”, May 1983, MIT Ph.D.

Dissertation

58

Earliest Deadline First

▪ Run the job with the earliest deadline first!

▪ First releases: 2 runs before 1

▪ Second releases: 1 runs before 2

▪ Implementation
▪ Scheduler tracks each job’s deadline, which

depends on its release time

▪ Jobs must be sorted by deadline

▪ General case sorting complexity is O(n2)

▪ Optimizations for scheduler reduce complexity

▪ Keep ready queue sorted, use bit masks for

groups of tasks

▪ Utilization-based schedulability test

depends on deadline constraints
▪ Di = Ti : Schedulable if utilization ≤ 1-ε

▪ Di > Ti : Schedulable if utilization ≤ 1-ε

▪ Di < Ti : Have to use a more complicated test


=

=
m

i i

i

T

C
U

1

Time

2

1

D1

D2

D1

D2

59

EDF Processor Activity

Task Execution Time C Period T Deadline D

1 1 4 4

2 2 6 6

3 3 12 12

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

 2

 3

 1  1  1 2  2 3  3  3

2

 1  1 1

60

Response Time Analysis for EDF

▪ “Non-trivial” to calculate for EDF and

other dynamic priority schemes

▪ Sum up impact from all possible higher priority

tasks, but priority depends on how soon the

deadlines are

▪ This depends on when tasks are released

▪ Assume all tasks are periodic

▪ Execution schedule will repeat every hyper-

period

▪ Hyper-period = least common multiple (LCM)

of all task periods

▪ LCM is smallest positive integer which is a

multiple of all inputs

▪ For tasks of periods 5, 20, 31 and 47, hyper-period

is 29140

▪ Need to analyze the response time for

each release within the hyper-period.

▪ How many releases? At least 29140/5 +

29140/20 + 29140/31 + 29140/47 = 8845

61

System Performance During Transient Overload

▪RM, DM – Each task has fixed

priority. So?

▪ This priority determines that tasks

will be scheduled consistently

▪ Task A will always preempt task B if

needed

▪ Task B will be forced to miss its deadline

to help task A meet its deadline

▪EDF – Each task has varying

priority. So?

▪ This priority depends upon when

the task’s deadline is, and hence

when the task becomes ready to

run (release time)

▪ Task B may have higher priority than A

depending on release times

▪ To determine whether task A or B will

miss its deadline we need to know their

release times

62

Comparison of RM and EDF During Overload

RMS, P2 @ 3
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
EDF, P2 @ 3

RMS, P2 @ 2
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

EDF, P2 @ 2

Task Execution Time C Period T

1
5 7

2
3 4

P1 P2 P1

P1 misses Deadline

P1 P2 P1

P1 misses Deadline

P1 P2 P1

P1 misses Deadline

P1 P2

P2 misses Deadline

63

Old

64

𝑅𝑖
1

Non-

prioritized

Prioritized

N
o

n
-

p
re

e
m

p
ti

v
e

P
re

e
m

p
ti

v
e

Response Time Analysis, Steps 2, 3, 4, 5, 6 …

▪ Task i is vulnerable to new job releases during vulnerable

time, which depends on scheduler

▪ Non-preemptive: 0 to Ri
n – Ci

since task i can’t be

preempted after it starts

▪ Preemptive: 0 to Ri
n since

higher priority task can

preempt task i

▪ Update completion time

estimate Ri
n+1

▪ Repeat until no new

releases, or deadline is

missed

C0 C1 C2 C3 Ci
𝑅𝑖

0

𝑅𝑖
2

𝑅𝑖
3

෍

𝑗≠𝑖

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗 ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛

𝑇𝑗
𝐶𝑗

෍

𝑗≠𝑖

𝑅𝑖
𝑛 − 𝐶𝑖

𝑇𝑗
𝐶𝑗

෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑛 − 𝐶𝑖

𝑇𝑗
𝐶𝑗

	Default Section
	Slide 1: Analyzing Responsiveness for Real-Time Systems
	Slide 2: Overview
	Slide 3: Response Time Matters to Real-Time Systems
	Slide 4: Real-Time Methods
	Slide 5: Big Picture of Real-Time Systems
	Slide 6: Example: Real-Time Audio Generation on the Shield
	Slide 7: Shield Audio System Architecture (Single Buffer)
	Slide 8: Questions
	Slide 9: Assumptions and Definitions
	Slide 10: Evaluating Responsiveness
	Slide 11: What Happens at the Last Sample (Single Buffer)?
	Slide 12: DMA0_IRQHandler
	Slide 13: Generalizing Evaluating Responsiveness
	Slide 14: Critical Path Analysis for Sound Buffer Refill Sequence
	Slide 15: Improvement: Give Refill Sound Buffer Thread the Highest Priority
	Slide 16: Big Picture of Real-Time Systems Analysis and “Optimization”
	Slide 17: Big Picture of Real-Time Systems
	Slide 18: Basic Design Choices for Scheduler
	Slide 19: Scheduling – Selecting a Ready Task to Run

	Untitled Section
	Slide 20: Periodic Task Model
	Slide 21: Periodic Task Model of Computational Requirements
	Slide 22: Example Workload: What We Ask For
	Slide 23: Scheduled Workload: What We Get
	Slide 24: Graphically Evaluating Response Times with Different Schedulers
	Slide 25: Non-Preemptive Scheduling
	Slide 26: Non-Preemptive Scheduling
	Slide 27: Non-Preemptive Scheduling with FSM for 3
	Slide 28: Sidebar: Non-Preemptive Scheduling with FSM for 3 (with shorter period)
	Slide 29: Preemptive Scheduling
	Slide 30: Preemptive Scheduling
	Slide 31: Building and Using a Periodic Task Model
	Slide 32: Numerical Response Time Analysis
	Slide 33: Response Time Analysis, Step 1
	Slide 34: Additional Timing Interference
	Slide 35: How Many Ti Releases Possible During Vulnerable Time?
	Slide 36: Response Time: Indep. Tasks with Task Preemption + Prioritization
	Slide 37: Processor Activity for Independent Tasks with Task Preemption
	Slide 38: Response Time: Dependent Tasks with Task Preempt. + Prioritization
	Slide 39: Model for Blocking
	Slide 40: Summary of Response Time Equations
	Slide 41: Task Response Time with Interrupts, no Task Priority or Preemption
	Slide 42: Task Response Time with Interrupts, Task Priority and Preemption
	Slide 43: Our Task is Highest Priority Task
	Slide 44: Our Task is Highest Priority Task, First Sample

	Priority Assignment & Analyses
	Slide 45: Deadlines, Priority Assignment and Schedulability Tests
	Slide 46: Deadlines
	Slide 47: Design Space for Workload with Deadlines and Scheduler
	Slide 48: Questions
	Slide 49: Common Fixed-Priority Assignment Approaches
	Slide 50: Utilization Bound for RM (cap D sub i. equals cap T sub i. , , , for all sub i.)
	Slide 51: Examples of Utilization Bound Values
	Slide 52: Evaluating Schedulability with RM and UB
	Slide 53: Evaluating Schedulability with RM and UB
	Slide 54: More Examples of Using UB Test
	Slide 55: Harmonic Rate Monotonic

	Dynamic Priority Preemptive
	Slide 56: Dynamic Priority Preemptive Systems
	Slide 57: Dynamic Priority
	Slide 58: Earliest Deadline First
	Slide 59: EDF Processor Activity
	Slide 60: Response Time Analysis for EDF
	Slide 61: System Performance During Transient Overload
	Slide 62: Comparison of RM and EDF During Overload

	Unused
	Slide 63: Old
	Slide 64: Response Time Analysis, Steps 2, 3, 4, 5, 6 …

