ECE 460/560

Complete the steps highlighted in yellow. Number your screenshots

Practical Homework #1 |and put them into a report. Submit a PDF of the report through Moodle.

NXP Kinetis L Series: Cortex-M0O+ Lab
a rm KE”_ Using the Freedom KL25Z rfeaturing MTB: Micro Trace Buffer

Arm Keil MDK 5 Toolkit Fall 2017 Vv 3.2 Robert Boys bob.boys@arm.com

The latest version of this document is here: www.keil.com/appnotes/docs/apnt 232.asp

Introduction:

The purpose of this lab is to introduce you to the NXP Kinetis Cortex®-MO0+ processor using the Arm® Keil® MDK toolkit
featuring the IDE pVision®. We will demonstrate all debugging features available on this processer including Micro Trace
Buffer (MTB). At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK.

We recommend you obtain the new Getting Started MDK 5: from here: www.keil.com/gsg.

Keil MDK supports and has examples for most NXP Arm processors. Check the www.keil.com/NXP for the complete list.
i.MX: For i.MX support see DS-MDK. www.keil.com/ds-mdk Also: www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn it into a commercial version.

Why Use Keil MDK ?
MDK provides these features particularly suited for NXP Cortex-M users:

1. uVision IDE with Integrated Debugger, Flash programmer and the
Arm® Compiler toolchain. MDK is turn-key "out-of-the-box".

Arm Compiler 5 and Arm Compiler 6 (LLVVM) are included.
Compiler Safety Certification Kit: www.keil.com/safety/
TUV certified. SIL3 (IEC 61508) and ASILD (ISO 26262).
Dynamic Syntax checking on C/C++ source lines.

MISRA C/C++ support using PC-Lint. www.gimpel.com

Keil Middleware: Network, USB, Flash File, Graphics and CAN
for many NXP processors. Contact Keil Sales for assistance.

Event Recorder for Middleware, RTX and User programs. [The Freedom KL25Z board connected to]

N o g~ wbd

1o

9. RTXisincluded. RTX hasa BSD or Apache 2.0 license with run OpenSDA (CMSIS-DAP) and MDK.
source code. FreeRTOS is now supported. www.keil.com/RTX
and https://github.com/ARM-software/CMSIS 5

10. Not on KL25: CoreSight™ Serial Wire Viewer (SWV). ETM instruction trace capability on appropriately equipped
NXP processors. Provides Instruction Debugging, Code Coverage and Performance Analysis.

11. Debug Adapters: OpenSDA (CMSIS-DAP or P&E mode), Keil ULINK™2, ULINK-ME, ULINKpro and J-Link.
12. Affordable perpetual and term licensing with support. Contact Keil sales for pricing options. Inside-Sales@arm.com
13. Keil Technical Support is included for one year and is renewable. This helps you get your project completed faster.
14. ULINKGplus power analysis: www.keil.com/mdk5/ulink/ulinkplus/ Available Nov 2018. Contact Keil sales.
15. Micrium pC/Probe compatible. www.micrium.com/ucprobe Displays/changes variables in graphical formats.

This document includes details on these features plus more:

Micro Trace Buffer (MTB). Instruction trace. A history where your program has been: the executed instructions.

Real-time Read and Write to memory locations for the Watch, Memory and peripheral windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

Two Hardware Breakpoints (can be set/unset on-the-fly) and two Watchpoints (also known as Access Breaks).
RTX System & Threads window: a kernel awareness program for RT X that updates while your program is running.
A DSP example program using Arm CMSIS-DSP libraries.

. How to create your own pVision projects and an extensive list of document resources available.

Micro Trace Buffer (MTB):

MDK supports MTB with OpenSDA (in CMSIS-DAP mode), ULINK2/ME or ULINKpro. MTB provides instruction trace
which is essential for solving program flow and other related problems. How to use MTB is described in this document.

1 Copyright © 2017 Arm Ltd. All rights reserved 1/6/2025

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

A

IS I

http://www.keil.com/appnotes/docs/apnt_232.asp
http://www.keil.com/gsg
http://www.keil.com/NXP
http://www.keil.com/ds-mdk
http://www.arm.com/ds5
http://www.keil.com/safety/
http://www.gimpel.com/
http://www.keil.com/RTX
https://github.com/ARM-software/CMSIS_5
mailto:mInside-Sales@arm.com
http://www.keil.com/mdk5/ulink/ulinkplus/
http://www.micrium.com/ucprobe
Alex
Text Box
1/6/2025

Textbox
ECE 460/560

Practical Homework #1

Textbox
Complete the steps highlighted in yellow. Number your screenshots and put them into a report. Submit a PDF of the report through Moodle.

General Information:

1. NXP Evaluation Boards & Keil Evaluation Software: 3
2. MDK 5 Keil Software Download and Installation: 3
3. OpenSDA: An NXP Debug Adapter 3
4. Install Keil MDK Software: 3
5. Install Software Packs and Examples: 4
Using the OpenSDA CMSIS-DAP Debug Adapter:
6. Programming the KL25Z Board with OpenSDA (CMSIS-DAP) 5
7. Testing the OpenSDA Installation: 5

Blinky Example and Debugging Features:
8. Blinky example using the Freedom KL25Z and OpenSDA: 6
9. Hardware Breakpoints: 6
10. Call Stack & Locals window: 7
11. Watch and Memory windows and how to use them: 8
12. System Viewer (SV): 9

13. Watchpoints: Conditional Breakpoints: 10
14. RTX Kernel Awareness with System and Threads Viewer: 11
MTB: Micro Trace Buffer with Blinky:
15. MTB: Micro Trace Buffer: 12
16. Cod Coverage: 13
17. Exploring the MTB Instruction Trace: 14
18. Trace Buffer Configuration and Control: 15
19. Trace Search: 16
20. Trace Data Wrap Around: 16
21. More MTB Exploration: 17
22. Trace “In the Weeds” Example: 18
DSP Sine Example:
23. DSP Sine using Arm CMSIS-DSP Libraries: 19
Creating Your Own MDK Project With and Without RTOS:
24. Creating Your Own MDK 5 Project from Scratch: 20
25. Adding RTX: 23
26. Adding a Thread: 24
27. Event Recorder 25
General Information:
28. Interesting Bits & Pieces: 26
29. Kinetis KL25 Trace Summary: 27
30. CoreSight Definitions: 28
31. Document Resources: 29
32. Keil Products and Contact Information: 30
2 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Alex
Highlight

Alex
Highlight

Highlight

1) NXP Evaluation Boards & Keil Evaluation Software:

Keil provides board support for Kinetis Cortex-M0+ and Cortex-M4 processors. They include Tower K20, K40, K53, K60,
K70 and KL25Z (both Tower and Freedom boards), S32K and many more. See www.keil.com/NXP for the complete list.

This lab was written using a KL25Z Freedom board with OpenSDA in CMSIS-DAP mode. This lab will also work for the
TWR-KL28Z72M board. It has a slightly different example program.

For the i.MX series see www.keil.com/mdk5/ds-mdk/

On the last page of this document is an extensive list of resources that will help you successfully create your projects. This list
includes application notes, books and labs and tutorials for other NXP boards.

We recommend you obtain the latest Getting Started Guide for MDKS5: It is available on www.keil.com/gsg/.
Arm forums: https://developer.arm.com Keil Forums: www.keil.com/forum/

2) MDK 5 Keil Software Information: This document used MDK

MDK 5 Core is the heart of the MDK toolchain. This initially will be in the form of MDK Lite which is the evaluation version.
The addition of a Keil license will turn it into one of the commercial versions. Contact Keil Sales for more information.

Device and board support are distributed via Software Packs. These Packs are downloaded from the web with the "Pack
Installer”, the version(s) selected with "Select Software Packs" and your project configured with the "Run Time Environment"
(RTE) utilities. These are components of puVision. You can distribute and install your own Pack for confidentiality.

A Software Pack is an ordinary .zip file with the extension changed to .pack. It contains various header, Flash programming
and example files and more. Contents of a Pack is described by a .pdsc file in XML format.

See www.keil.com/dd2/pack for the current list of available Software Packs. More Packs are being added.
Example Project Files: This document uses the RTX5_Blinky example project contained in the S32K Software Pack.

3) OpenSDA: OpenSDA is NXP’s on-board debug adapter used extensively in the Kinetis and other families. It has a
P&E and a CMSIS-DAP mode. CMSIS-DAP is an Arm standard. This lab will use the KL25Z board in CMSIS-DAP mode.
LPC-Link2 is also CMSIS-DAP compliant. LPC-Link2 has a J-Link mode which is also supported by pVision.

You are able to incorporate CMSIS-DAP debugger on your own board. See https://github.com/ARM-software/CMSIS 5. You
do not need an external debugger such as a ULINK2 to do this lab. If you use an external debugger, you must populate SWD
J6 connector with a 10 pin CoreSight connector made by Samtec or equivalent FTSH-105-01-L-D-K.

4) Install Keil MDK Software:

Download MDK Core or later from the Keil website.
Install MDK into the default folder. You can install into any folder, but this lab uses the default C:\Keil v5
We recommend you use the default folders for this tutorial. We will use C:\0OMDK\ for the examples.

If you install MDK into a different folder, you will have to adjust for the folder location differences.

You do not need an external debug adapter: just the KL25Z board, a USB cable and MDK installed on your PC.
You do not need a Keil MDK license for this tutorial. All examples will compile within the 32 K limit.

http://iwww2_.keil.com/mdk5/install

o 0ok wDdhPE

3 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/NXP
http://www.keil.com/mdk5/ds-mdk/
http://www.keil.com/gsg/
https://developer.arm.com/
http://www.keil.com/forum/
http://www.keil.com/dd2/pack
https://github.com/ARM-software/CMSIS_5
http://www2.keil.com/mdk5/install
Alex
Highlight

Alex
Highlight

Alex
Highlight

Alex
Highlight

Alex
Highlight

Textbox
5.41

Textbox
5.41

Textbox
http://www2.keil.com/mdk5/install

5) Install pVision Software Packs and Examples:

1) Start puVision and open Pack Installer:
1. Connect your computer to the internet. This is needed to download the Software Packs.

N
2. Start pVision by clicking on its desktop icon. wu-ma

2

3. Open the Pack Installer by clicking on its icon:
4. This window opens up: Select the Packs tab:

A Pack Installer Welcome screen will open. Read and close it.

5. Note “ONLINE” is displayed at the bottom JRI=IEY
I’Ight If “OFFLINE” 1S dlSplayed, connect e" Board: FRDM-KLZSZ (Rev. B]
to the Internet before continuing. Py = 2114 7 pacs | eamples | L]
seau@ - X Pack Action Description
6. If there are no entries shown because you Bova == T i o BRI o e i e o
Were nOt ConneCted to the InternEt When) % E“-"::’:M[MS]S ‘ Up to date CMSIS [Cortex Microcontroller Software I
Pack Installer opened, select Packs/Check for e e S
'.h . 3 Devices ARM;;CMS[SVRTOS)/EHG..‘ &% Install CMSIS-RTOS Validation -
Updates or " to refresh once you have | "
connected to the Internet.
Ready [lonume

2) Install The KL25 Software Pack:

The KL25Z is supported in older Keil Packs (4. Click on CMSIS Pack ©MsIsPack

which are not available directly through Pack Kinetis_KLxx_DFP. Kinetis_KLxx_DFP

Installer. 5. Click on Download | o @ o ended Pa

1. Go to https://www.keil.com/dd2/pack/ Recommended Pack. —)

2. Type KL25 in the search box 6. Use Pack Installer program to import that file
and press enter. Q K25 using the File->Import... commands.

3. Click on MKL25Z128xxx4. 7. On the left pane, select "Boards" and All Boards

MKL257128x0¢4 |->FRDM-KL25Z.

3) Install the RTX_Blinky Example:

The code for steps 3) and 4) is out of date. There is up-fo-date code (Blinky and Blinky_BM) in the
class Github repository in PHW/PHW1 (for ECE 460/560) or HW/HWO (for ECE 461/561).
\When you use git to clone or pull updates from the repository, these will be copied to your PC.

4) Install the RTX5_Blinky and DSP5 Examples from Keil.com:

Skip this step, as the PHW1 repository provides the code.

4 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/appnotes/docs/apnt_232.asp
Alex
Highlight

Alex
Text Box
The KL25Z is supported in older Keil Packs which are not available directly through Pack Installer.

1. Go to https://www.keil.com/dd2/pack/

2. Type KL25 in the search box

 and press enter.

3. Click on MKL25Z128xxx4.

Alex
Text Box
Several folders will be created: Blinky_BM, DSP, and RTX5_Blinky

Textbox
The code for steps 3) and 4) is out of date. There is up-to-date code (Blinky and Blinky_BM) in the class Github repository in PHW/PHW1 (for ECE 460/560) or HW/HW0 (for ECE 461/561).

When you use git to clone or pull updates from the repository, these will be copied to your PC.

Textbox
Skip this step, as the PHW1 repository provides the code.

Highlight

Placed Image

http://www.keil.com
http://www.keil.com/appnotes/docs/apnt_232.asp

Placed Image

Alex
Text Box
4. Click on CMSIS Pack

 Kinetis_KLxx_DFP.

5. Click on Download

 Recommended Pack.

6. Use Pack Installer program to import that file using the File->Import... commands.

7. On the left pane, select "Boards" and All Boards->FRDM-KL25Z.

Placed Image

Placed Image

Alex
Textbox

Skip Step 6) unless you are using your personal FRDM-KL25Z.
6) Programming the KL25Z with OpenSDA: an on-board Debug Adapter:
This document will use OpenSDA as a SWD Debug Adapter. Target connection by pVision will be via a standard USB cable
connected to SDA J7. The on-board Kinetis K20 acts as the debug adapter. Micro Trace Buffer frames can be displayed.
This Step MUST be done ! at least once...
Program the K20 with the CMSIS-DAP application file CMSIS-DAP.S19:
1) Locate the file CMSIS-DAP.S19:

1. CMSIS-DAP.S19 is located in the OpenSDA directory in MDK KL25 projects. Using Windows Explorer navigate to

|BIinky BM\OpenSDA or Blinky\OpenSDA. | CMSIS-DAP.S19 is located here. The other projects also
contam this file. You will copy this file into the Freedom board USB device as described below.

2) Put the Freedom Board into Bootloader: Mode:
2. Hold RESET button SW1 on the Freedom board down and connect a USB cable to J7 SDA as shown here:
3. When you hear the USB dual-tone, release RESET.

4. The green led D4 will blink about once per second. The Freedom is now ready
to be programmed with the CMSIS-DAP application.

5. The Freedom will act as a USB mass storage device called BOOTLOADER
connected to your PC. Open this USB device with Windows Explorer.

3) Copy CMSIS-DAP.S19 into the Freedom Board:
6. Copy and paste or drag and drop CMSIS-DAP.S19 into this Bootloader USB device.
4) Exit Bootloader Mode:

7. Cycle the power to the Freedom board while not holding RESET button down. The green led will blink once and then
stay off.

8. The Freedom board is now ready to be used with the pVision debugger and Flash programmer.

TIP: The green led will indicate when pVision is in Debug mode and connected to the OpenSDA debug port SWD.
Remember, JTAG is not used. The Kinetis Cortex-MO0+ has only the SWD port. You can do everything with the SWD port as
you can with a JTAG port. SWD is referenced as SW in the pVision configuration menu.

TIP: This application will remain in the U6 K20 Flash each time the board power is cycled with RESET off. The next time
board is powered with RESET held on, it will be erased. CMSIS-DAP.S19 is the CMSIS DAP application in the Motorola S
record format that loads and runs on the K20 OpenSDA processor.

7) Testing The OpenSDA Connection: (Optional Exercise)

. Start pVision u%m if it is not already running. Select Project/Open Project.
2. Select the|Blinky or Blinky BM project.
Select “CMSIS-DAP” in the Select Target menu. If you do not have this entry — select anything.

CMSIS-DAP =
Select Target Options EAN or ALT-F7 and select the Debug tab: | Linker Debug | Utiies |
Select CMSIS-DAP Debugger as shown here: w— | © s [OUSISDAP Debugger —v] _Setngs |

Click on Settings: and the window below opens up: If an IDCODE and Device name is displayed, OpenSDA is
working. You can continue with the tutorial. Click on OK twice to return to the pVision main menu.
7. If nothing or an error is displayed in this SW Device box, this must be corrected before you can continue.
TIP: You can use this test to confirm the operation of any debug =
adapter selected in the Debug tab as shown above right. Pexs |Fsh Do | |

CMSIS-DAP - JTAG/SW Adapter SW Device

TIP: Torefresh the SW Device box, in the Port: box select [orenSDACHSISDAP] IDCODE | Devie Hame Screenshot #1
. R SWDIO | @ (<0BC11477 ARM CoreSight SW-DP

JTAG and then select SW again. You can also exit then re-enter i must show

this window. CMSIS-DAP will not work with JTAG selected, e [0 IDCODE

only SW. But this is a useful way to refresh the SW setting. R e R

1 Manual Corfiguration) Deviee Name:

MaxClock [1MHz ~ | | R o | | |

5 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Alex
Highlight

Alex
Text Box
Screenshot #1 must show IDCODE

Textbox
Blinky_BM\OpenSDA or Blinky\OpenSDA.

Textbox
Blinky or Blinky_BM project.

Textbox
Skip Step 6) unless you are using your personal FRDM-KL25Z.

Highlight

Rectangle

8) Blinky example program using the NXP Freedom KL25Z and OpenSDA:

Now we will connect a Keil MDK development system using the Freedom board and OpenSDA in CMSIS-DAP mode. Your
board must have the application CMSIS-DAP.S19 programmed into the OpenSDA processor before you can continue.

1. Connect a USB cable between your PC and Freedom SDA J7 as shown here:
2. Start pVision by clicking on its desktop icon. 5

3. Select Project/Open Project.

4. Open the Blinky file:

IPHW1\Blinky\Blinky.uvprojx |
Create Target Options for OpenSDA (in CMSIS-DAP mode):

1. Select Project/Manage/Project Items... or select: dh

In the Project Targets area, select NEW = or press your keyboard INSERT key.

Enter CMSIS-DAP and press Enter. Click OK to close this window.

In the Target Selector menu, select the CMSIS-DAP selection you just made: wesssss) = CMSIS-DAP T
Select Options for Target &% or ALT-F7. Click on the Debug tab to select a debug adapter.

Select CMSIS-DAP Debugger... as shown here: <an important step> mm—) ke 0= | wites |
| i« |Jsa: ICMS\S-DAP Debugger d Settings |

No o bk~ oD

This is where you create and select different target configurations such as to
execute a program in RAM or Flash and many other settings.

TIP: If you click Settings:, you can test the debug connection as described on the previous page.

8. Click on OK to return to the pVision main menu. Click OK twice if you clicked Settings:. Select File/Save All ﬂ
Compile and RUN the Blinky Project:

1. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it. Screenshot #2

with Build Output
window showing
3. Click on the RUN icon. Note: you can stop the program with the STOP icon. L) compiler version

2. Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.

The three colour LED D3 on the Freedom board will now blink in sequence.
Now you know how to compile a program, program it into the KL25Z processor Flash, run it and stop it !
Note: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash until reprogrammed.

9) Hardware Breakpoints:
The KL25Z has two hardware breakpoints that can be set or unset on the fly while the program is running.

1. With Blinky running, in the Blinky.c window, click on a darker grey block on the left on a suitable part of the source
code. This means assembly instructions are present at these points. Inside the while loop inside the thread
Thread_LED which itself starts near line 36. You can also click in the Disassembly window to set a breakpoint.

2. Ared circle will appear and the program will presently stop. e — e

3. Note the breakpoint is displayed in both the Disassembly and source window: xososaaoc o 7 : Evbonasan tan ore

4. Set a second breakpoint in the while() loop as before. dey s R

5. Every time you click on the RUN icon =* the program will run until the ‘_ ox0002E04 cubelay

breakpoint is again encountered. -

6. Remove the breakpoints by clicking on them. S Swye, D) e compenensn | T 1RO 255 =x
TIP: If you set too many breakpoints, uVision will warn you. M
TIP: Arm hardware breakpoints do not execute the instruction they are set to and land gj Lo et men
on. CoreSight hardware breakpoints are no-skid. This is an important feature. & led nom = 0:

6 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Alex
Highlight

Alex
Highlight

Alex
Highlight

Alex
Text Box
Screenshot #2 with Build Output window showing compiler version

Textbox
PHW1\Blinky\Blinky.uvprojx

Placed Image

10) Call Stack + Locals Window:
Local Variables:

The Call Stack and Locals windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables located in the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The Call
+ Stack window presence or visibility can be toggled by selecting View/Call Stack Window in the main pVision window when

in Debug mode.

Click on RUN .

o

34 |

Set a breakpoint in Blinky.c in main() on the [0sDelay statement near line 34. h’

It will soon stop on this breakpoint.

o ok~ wDNd e

variables in scope, they will be displayed.

. . ™
7. Click on the Step In icon

or F11 a few times:

Click on the Call Stack + Locals tab to open it.
Shown is this Call Stack + Locals window: It is stopped in [Thread LED(}
The functions as they were called are displayed. If functions have local

Call Stack + Locals

osDel ay (500) ;

Name Location/Value
- SRR 0000055
=% Thread_LED 0x00000A0C
[¥-*¥ argument 0x 00000000

Screenshot #3 | |
with Call Stack
& Locals

¥ led_max

¥ led_num

0x 00000003

% osRbxTimerThread : 0x2000... |0x000015E9

=% osRtxldleThread : 0x200001... | 0x00000D3SD
=¥ osRtxldleThread

[E-%¥ argument

0x00000DA2

Type

Task

void f(void *)
param - void *
auto - uint
auto - uint
Task

Task

void flveid *)

0x00000D3D osRixldle... | param - void *

TIP: You can use the Call Stack & Locals window for debugging. Use MTB instruction trace in case the stack is corrupted.

8. You can see functions listed with any variables displayed.)

9. As you step in and out of functions, they are added and then

removed.

10| (deleted)

[A

sample Call Stack window Is shown below:

11. Note Thread LED stays listed. Ordinary functions and interrupt

handlers come and go but Threads stay listed.

12. Right click on a function entry and select Show Callee or Caller

Code to display the associated code. mmp

13. When you ready to continue, remove the
hardware breakpoint by clicking on its red

Show Caller Code
Show Callee Code

¥ | Hexadecimal Display

circle! You can also type Ctrl-B, select
Kill All and then Close.

TIP: You can modify a variable value in the Call Stack & Locals window

when the program is stopped.

TIP: You can set two hardware breakpoints with the NXP Cortex-M0+
processor. If you set more than two, or you have two set and the debugger
needs one for an operation, pVision will warn you to delete the excessive
breakpoints. The Kinetis Cortex-M4 family of processors has 6 hardware

breakpoints available.

If Run to Main is selected in the Target Debug tab, at RESET, uVision will

set one temporarily at the beginning main(). If you already have two
breakpoints set, you will get an error message at runtime.

Do not forget to remove any hardware breakpoints before continuing.
TIP: To locate the definition of a variable, structure, function or define,

right click on it and select Go To Definition...

Call Stack = Locals L x |
Name Location/Value Type
2 [iteaoiEDRBRIFFFRISaI ox000009ER Task -
@ SVC_Handler 0x000001E4 wvoid ()
=% osDelay 0x00000B54 enum (int) f(uint)
Y ticks Cx000001F4 param - uint
¥ status Ox 1FFFFFFF auto - enum (int)
=% Thread_LED 0x00000A0C wvoid f(void *)
= #¥ argument 0x00000000 param - void *
v [0] 0x 00000000 wvoid
¥ led_max (000000003 auto - uint
¥ led_num 0x 00000000 auto - uint
=% osRtxTimerThread : 0x2000... | 0x0D0015E9 Task
=% _svcMessageQueueGet | Ox00000C3C enum (int) f(void *voi...
+-* al 0x2000014C &.bss.0s.... | param - void *
[a2 0x20000350 param - void *
[a3 0x00000000 param - uchar *
e a4 OxFFFFFFFF param - uint
v 3 OxFFFFFFFF auto - uint
v _rn 0x 00000000 auto - uint
v _rl 0x 20000550 auto - uint
v _r0 0x2000014C auto - uint
v _if 0x000018BD auto - uint
= % osRtxTimerThread 0x000015F8 woid f(void *)
[=-#¥ argument 0x2000014C &.bss.0s.... | param - void *
v [0] 0x00000000 wvoid
= ¥ finfo auto - struct <untagg...
- func 0x000015E9 osRxTime... woid * *
#-% arg 0x01000000 wvoid *
E- % mg <not in scope> auto - void *
v [0] 0x00000000 wvoid
¥ status OxFFFFFFFE osErrorTi... | auto - enum (int)
=¥ osRixldleThread : (x200001... |0x00000DSD Task
=% osRixldleThread 0x00000DA2 void f(void)
= ¥ argument 0%00000D3D osRtxldle... | param - void * i
¥ [0] 0x00000000 wvoid
=
ijCaII Stack + Locals ﬁﬂace Exceptions QE ent Counters | (& Memory 1
CMSIS-DAP Debugger t1: 0.00000000 sec L78 C:1

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit

Copyright © 2017 Arm Ltd. All rights reserved

www.keil.com

Alex
Highlight

Alex
Text Box
Screenshot #3 with Call Stack & Locals

Textbox
osDelay statement near line 34.

Placed Image

Placed Image

Textbox
Thread_LED()

Placed Image

Textbox
(deleted)

11) Watch and Memory Windows and how to use them:

The Watch and Memory windows will display updated variable values in real-time. It does this using the CoreSight DAP
debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values into the Memory
window in real-time. It is possible to “drag and drop” variable names into windows or enter them manually. You can also
right click on a variable and select Add varname to.. and select the appropriate window.

Watch or Memory windows are unable to display local variables. Use global, static, peripheral or a structure: anything
that is always in scope. If a local variable is in scope when the program is stopped, its value will be displayed.

Watch window:
Add a global variable: Call Stack, Watch and Memory windows can’t see local variables unless stopped in their function.

9.

open. counter Will be displayed as shown here: Watch 1 7 x
counter Will update in real time. Name Value Type
TIP: You can modify a variable in a Watch window if it is ;@ counter |0x00000003 unsigned int
“-« Enter expression>

stopped or changing very slowly.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the {1 Call Stack + Locals | Wateh1 | B Memory 1
variable and hold it over the tab you want to open; when it

Stop the processor L) and exit Debug mode. @
Declare a global variable (I called it counter) near Iinein Blinky.c:

unsigned int counter = 0;)] Blinkyc [] RTE Componentsh = °T LED FRDM-KL25Zc || RTX Config.c] RTX.Cc

Add the statements near Linejust after osDelay(500): 315 while (1) {
32 LED On(led num) ;

counter++; = Py 33 osDelay (500) ;

. 34 counter++;

if (Counter>0XF) counter =0; 35 if (counter > 0x0F) counter = 0;:

'j 36 LED Off(led num);

Select File/Save All or 37 osDelay (500) ;

Click on Rebuild . There will be no errors. If there are, please fix them.

Enter Debug mode. Q Click on RUN . You can configure a Watch window while the program is running. You
can also do this with a Memory window.

Select View/Periodic Window Update if windows update only when the program stops.: |v| reriodic window Update

In Blinky.c, right click on counter and select Add counter to ... and select Watch 1. Watch 1 will automatically

opens, move your mouse into the window and release the variable.
TIP: Want to know the speed of the CPU ? Enter SystemCoreClock into a Watch window.
Memory window:

1.
2.

o g &~ w

Right click on counter and select Add counter to ... and select the Memory 1 window.

Note the value of counter is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing to but this not what we want to see at this time.

Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown: Ox1FFF_F000.

Right click in the Memory window and select Unsigned/Int. memary1 2 6
The data contents of counter is displayed as shown here: Address: [scourter D |
Both the Watch and Memory windows are updated b e oo oooa0000 ponooe o
periodically in real-time. Ox1FFFF130:

. Ox1FFFF144:
Right-click with the mouse cursor over the desired data field | oxirrrriss:

H Ox1FFFFleC: 0
and_ select Modify Memory. You can phaqge amemory or PSP
variable on-the-fly while the program is still running. /| ox1FFFF194:

Ov I FEFERILE - 3¢

4

| .;}-‘l] Call 5tack + Locals

TIP: No CPU cycles are used to perform these operations. No code stubs are added to your sources.

8 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Textbox
25

Textbox
33

Placed Image

Placed Image

12) System Viewer (SV):

The System Viewer provides the ability to view registers in the CPU core and in peripherals. In most cases, these Views are
updated in real-time while your program is running. These Views are available only while in Debug mode. There are two ways
to access these Views: a) View/System Viewer and b) Peripherals/System Viewer. In the Peripheral/Viewer menu, the Core

Peripherals are also available: Note the various peripherals available. —) [Peripherals
System Viewer L4 ADCD
1. Click on RUN . You can open SV windows when the program is running. Core Peripherals + ;:‘;
DMA
GPIO Port B: crios > [N
2. Select Peripherals/System Viewer and then GPIO and select GPIOB. : — :;Q : p—
3. This window opens up. Expand PDO: J 0x000C0000 e * |4 ceos
WU GPIOC
4. You can now see PDOR and PDO update: — LPTHED ¥ Gpiop
MCG GFIOE
5. You can also open Port D as one LED is connected to this port. Mcw
TIP: Two LEDs are on Port B and the other (blue) is connected to Port D. -
TIP: If you click on a register in the properties column, a description about :j“’
this register will appear at the bottom of the window as shown: o
rBIi}gl;l..O] RW (@ 0x400FF040) :Z: ’
SysTick Timer: RTX uses the SysTick timer for its switching. Fort beta Output Register Rom
1. [Select Peripherals/Core Peripherals and then select System Tick Timer.| P08 | 6rioo | i
2. The SysTick window shown below opens: o
3. Note it also updates in real-time while your program runs. These windows use L '
the same CoreSight DAP technology as the Watch and Memory windows. .
4. Note the SysTick->Load and RELOAD hoxes. This is the timer reload register useo

value. This is set in the RTX configuration file RTX_Conf CM.c.

5. Note that it is set to Ox51EA. The CPU frequency is 20,971,520 MHz. You can check this by putting
SystemCoreClock in a Watch window.

6. This is the same value hex value of 20,971,520/1000-1= 20,970 or OX51EA. This is where this value comes from.
Changing the variable passed to this function is how you change how often the SysTick timer creates its interrupt 15.

In the RELOAD register in the SysTick window, while the program is running, type in 0x1000 and press Enter !
The blinking LEDs will speed up. This will convince you of the power of Arm CoreSight debugging.

9. Replace RELOAD with OX51EA. You might have to click RESET and then RUN.

10. You can look at other Peripherals contained in the System View windows.

11. When you are done, stop the program 1% and close all the System Viewer windows that are open.

TIP: Itis true: you can modify values in the SV while the program is —Control & Status
running. This is very useful for making slight timing value changes instead SCTRL [Eamm |, ENABLE ¥ CLKSOURCE
g Very L g slig g g SysTick>CTRL: [IIIIg ¥ TICKINT [¥ COUNTFLAG
of the usual modify, compile, program, run cycle.
 Relggddele =T

You must make sure a given peripheral register allows and will properly
react to such a change. Changing such values indiscriminately is a good
way to cause serious and difficult to find problems.

'I'id(->LOAD:|[b(DDDI}5‘IEA RELOAD: |(x0051EA
SysTick->VAL: : | (x00306F

r Calibration

SysTick->CALIB: I{kDDDDDDDD TENMS: I{RDDDDDD

[~ SKEW [~ NOREF

9 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Textbox
Select Peripherals/Core Peripherals and then select System Tick Timer.

Textbox
You might have to click RESET and then RUN.

13) Watchpoints: Conditional Breakpoints

The KL25 Cortex-MO0+ processor has two Watchpoints. Watchpoints can be thought of as conditional breakpoints.
Watchpoints are also referred to as Access Breaks in Keil documents. Cortex-M0+ Watchpoints are intrusive with a data test.
When the Watchpoint is hit, pVision must test the memory location. Cortex-M3/M4 Watchpoints are not intrusive for address
only equality test. This can be useful for testing to see if a Stack or Heap passed a certain point.

1. Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in Debug mode.
2. We will use the global variable counter you created in Blinky.c to explore Watchpoints.
3. Select Debug in the main pVision window and then select Breakpoints or press Ctrl-B.
4. Select Access to Read. Breakpoints X
5. In the Expression box enter: “counter == 0x5” (et L e ks
without the quotes. This window will display:
6. Click on Define or press Enter and the expression will
be accepted as shown below in the bottom Breakpoints
window:
Click on Close. 4 >
Elnterd thfhvariable counter in Watch 1 if it is not O e e m
alrea ere. = ize
y Count; |1 = 51 ™ Btes
9. Clickon RUN. EV. Cormand | ~ W Ot
10. counter might not update in the Watch window pefne_| | e | [oee] Hop |
depending on how fast the variable is changed. This
feature is turned off in pVision for speed considerations. You will also notice the program slows down. Thisis
because pVision must test the condition when the write or read occurs to counter. Minimize this by selecting only
Read or Write Access.
11. When counter equals 0x5, the Watchpoint will stop the program. See Watch 1 shown below:
12. Watch expressions you can enter are detailed in the Help button in the Breakpoints window. Triggering on a data read
or write is most common. You can leave out the value and trigger on just a Read and/or Write as you select.
13. To repeat this exercise, change counter to something other than 0x05 in the Watch window and click on RUN.
14. Stop the CPU. o . .
ame vpe
15. Select Debug/Breakpoints (or Ctrl-B) and delete the Watchpoint with 4 %Dj -
Kill All and select Close. center sxpressions S
16. Exit Debug mode. Q o o
QﬂCaII Stack + Locals | Watch 1 | il Memory 1
TIP: To edit a Watchpoint, double-click on it in the Breakpoints [t X
window and its information will be dropped down into the Cunert Breskpoints:
configuration area. Clicking on Define will create another 00: (A read 0x20000000 len=4), counter—0x5",
Watchpoint. You should delete the old one by highlighting it
and click on Kill Selected or try the next TIP:
TIP: The checkbox beside the expression allows you to
temporarily unselect or disable a Watchpoint without deleting it. = =
ACCESE
TIP: Raw addresses can be used with a Watchpoint. An e | ez s
example is: *((unsigned long *)0x20000004) Cont [T =] Sl—_, _) o
Command: | = r
| Kl Oose | Help
10 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

14) RTX Kernel Awareness using [RTX RTOS Watch Window

Users often want to know the number of the current operating task and the status of the other tasks. This information is usually
stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Keil supports FreeRTOS
with a kernel awareness window. See www.keil.com/pr/article/1280.htm.

1. Run by clicking on the Run icon.

2. |Open View/Watch Windows and select RTX RTOS. |

The window below opens up. Note these values are updating in real-time using the same CoreSight DAP read & write
technology as used in the Watch and Memory windows.

Select View and select Periodic Window Update if these values do not change; |V Periedic\Window Update

5. You will not have to stop the program to view this data. No CPU cycles are used. Your program runs at full speed.
No instrumentation code needs to be inserted into your source. Most of the time the CPU is executing the
losRtxldleThread.|[The processor spends relatively little time in each task. You can change this to suit your needs.

There areftwo threads plus the idle thread. | You can easily add threads.
RTXRTOS o 3
Property Value
@ -7% System
=% Threads

@ “T% id: 0x200001D8 "osRixIdleThread" osThreadRunning, osPricrityldle, Stack Used: unknown
@ ‘1% id: 0x2000021C "osRixTimerThread” | osThreadBlocked, osPriorityHigh, Stack Used: 18%
= “% id: Ox1FFFF160 "Thread_LED" osThreadBlocked, osPricrityNormal, Stack Used: 18%
¥ State osThreadBlocked
¥ Priority osPriorityNormal
¥ Attributes osThreadDetached
7% Stack Used: 18% [96]
¥ Flags 0x00000000
B ‘%% Message Queues
@ id: 0x20000154 Messages: 0, Max: 4

Demonstrating States: Note: Keil uses the term Threads instead of Tasks for consistency.
Blinky.c contains one thread that blink the LEDs. Thread LED is shown below:
1. The gray areas opposite the line numbers indicate there is valid assembly code located here.

2. Set a breakpoint on one of these in Thread_LED as shown: Oy |0 o RN N N S
28 u13c32_c 1ed_ntax = LED_GecCrJum:();

3. ' (deleted) | §§ uint32_t led num = 0;
31 [while (1) {

A E 32 LEDTO.‘A (lfd‘_‘n"‘m) ;
Click on RUN .'L. B oo
- - - - . 35 if (counter > 0xOF) counter = 0;
5. When the program stops, this information will be updated in @ = o ceries s

the|RTX RTOS watch window.[The Task running when
the program stopped will be indicated with losThreadRunning. |The window above shows the program stopped and
losRtxIdleThread|running. The states of the other tasks are displayed as well as other useful information.

6. Click on RUN .|The program will run until reaching a breakpoint or being stopped. |

7. Remove the breakpoints and close the RTX Tasks window. Exit Debug mode. Q
More Information of using RTX:

It is very beneficial to use an RTOS. RTX is a good choice. It issmall, efficient and easy to use yet it is full featured. All
source code and documentation is provided with RTX. www.keil.com/RTX Getting Started Guide: www.keil.com/gsg

RTX has a BSD license and comes with all source code. The new RTX v5 has an Apache 2.0 license and is available inside
MDK or on GitHub: https://github.com/ARM-software/CMSIS 5 Event Viewer is another RTX viewer. This is not supported
in Cortex-MO0 because it has no SWV.

11 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/pr/article/1280.htm
http://www.keil.com/RTX
http://www.keil.com/gsg
https://github.com/ARM-software/CMSIS_5

Textbox
Open View/Watch Windows and select RTX RTOS.

Textbox
RTX RTOS Watch Window

Textbox
Blinky

Textbox
osRtxIdleThread.

Textbox
two threads plus the idle thread.

Placed Image

Placed Image

Textbox
(deleted)

Textbox
RTX RTOS watch window.

Textbox
osThreadRunning.

Textbox
osRtxIdleThread

Textbox
The program will run until reaching a breakpoint or being stopped.

Highlight

15) MTB: Micro Trace Buffer:

The Kinetis KL25 processor contains an instruction trace called MTB. The trace buffer is a portion of the KL25 internal RAM
which your program must not use. The trace frames are stored here. The size of this buffer is set in the file DBG_MTB.ini.

Since there is not an unlimited amount of RAM available for MTB, the trace will be small and wraps around. Judicious use of
hardware breakpoints and other techniques such as stopping with a Watchpoint will help in this regard. Code Coverage is
available with MTB as it is with ETM trace found in other Cortex-M processors.

Instruction trace is very valuable in finding program flow bugs and other issues such as, but not limited to: race conditions and
program crashes. Trace is useful to examine the program flow such as when branches occurred (or not) and interrupt calls.

TIP: The source code and Disassembly windows show the code as it was written. The MTB Trace displays the order the
instructions were executed. The Trace Data window shows the last instruction executed. The Disassembly and source
windows point to the next instruction or source line to be executed.

Trace Buffer: When the trace data window (buffer) fills up, the oldest frames are over written. How many trace frames are
saved and displayed depends on the size of the buffer you selected and the number of program flow changes.

Open Blinky_BM to see MTB Operation:
1. In pVision, select Project/Open project.
2. Open the project Blinky from [Blinky_BM\BIinky.uvprojx. |
3 (deleted) |
4. Blinky_BM is a simple bare metal (no RTOS) example to make the initial understanding of MTB trace easier.
5. Itis pre-configured for MTB with a DBG_MTB.ini file and OpenSDA in CMSIS-DAP mode.
Compile, RUN the program and observe MTB Instruction Trace:

1. Compile the source files by clicking on the Rebuild icon i)

. -l @]
2. Enter Debug mode. @ The Flash will be programmed. W-|®
.) ¥ | Trace Data

3. The program runs to main(). Do not click RUN. Trace Navigation
4. Open the Trace Data window by clicking on the small arrow beside this icon: e EIEareRt T
5. You can also select View/Trace/Trace Data. Event Counters
6. A window similar to the one below will be visible: Size accordingly. This is a record of the last number of

instructions executed by the processor limited by the size of the microcontroller’s internal RAM allocated to MTB.
7. Right click on any frame and select Show Functions. The name of the function will be displayed.
8. Note the last instruction executed was a BL.W to main() at frame 199 (in this example).

In this example, this BL.W is located at address 0X014E a shown below.
10. You can see the order the instructions were executed.

11. Look in the Disassembly window and you can see the next instruction to be executed is another BL.W. In this case it
is the call to the SystemCoreClockUpdate function as shown below left: The yellow arrow is the Program Counter.
The BL.W instruction found at the beginning of this function has not been executed yet. This is easy to see.

Trace Data o x
Disassembly Display: Execution EOE - ™ e~ e S - in oAl -
0x00000230 BD10 POPkU cmee) Index | Address Opcode | Instruction Src Code Function |
133: SystemCoreClockUpdate
= svs 185X : 0x0000059A | C5C0 STM 15,4617} __user setup stackheap |
h0x00000232 FOOOF855 BL.W Sys_1
134: LED Initialize(): 186X : 0x0000059C | C5C0 STM r5L{G-r7} __user_setup_stackheap
las. ~ SysTick Comfig (100 187|X: 0x0000059E | C5€0 STM 15,{6-17} _user_setup_stackheap
o _|L|_I 188X : 0x00000540 | C5C0 STM 15L{6-17} _user_setup_stackheap
189X : 0x000005A2 | C5€0 STM 15,{6-17} _user_setup_stackheap
190(X: 0x00000584 | C5C0 STM 15L{6-17} _user_setup_stackheap
191X : 0x00000545 |3D40 SUBS r5,15,%0x40
Note: You[yi[] see slightly icosomse e e nan Screenshot #4 at step ™1
different addresses depending on] DGO i Mt showing lrace Data window
your compiler and other settings. 195(X:0x00000148 | 4611 MOV L2 (W|th last executed instruction
196)X:0x0000014A |F7FFFFF7 | BLW _rt_lib_init [0:0000013C) (: : :
197|X: 0x0000013C | BS1F PUSH {04, \BLW) hlgh“ghted n blue) _and
196/ 0x0000013E | BDLF POP {0-14,00 Disassem b|y window (W|th
199X:0x0000014E |FOOOFE70 | BLW main (0x00000232) <€ next instruction to execute
(PUSH) highlighted in yellow).

12 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Textbox
Blinky_BM\Blinky.uvprojx.

Textbox
(deleted)

Placed Image

Arrow

Text Box
Screenshot #4 at step 11 showing Trace Data window (with last executed instruction (BL.W) highlighted in blue) and Disassembly window (with next instruction to execute (PUSH) highlighted in yellow).

Textbox
will

Tracking between Trace Data and Disassembly and Source Windows:
In the example above, the last instruction executed was a BL.W to 0x0232. This put the PC to the start of main().
1. In the Registers window, the Program Counter (PC) (R15) indeed points to 0x0232.

Cyan [* is a marker from a source window to the Disassembly where it becomes a yellow highlight block.

2
3. The Yellow arrow [=> and Yellow triangle b points to the current PC value.
4. Double-click in the Trace Data window on a frame and it is highlighted in the Disassembly and source windows.

TIP: The source and Disassembly windows display the code as it was written and the Trace Data window shows the code as it
was executed. The Disassembly window displays all assembled instructions. Trace Data shows only executed instructions.

Single-Stepping:

1. Put the Disassembly window in focus by clicking inside it.
The Trace Data window will display the BL.W from the previous page.

2
3. Click on Step (F11) once. €% £l
4

The BL.W instruction at 0x232 will be executed and added to the J”BIST R ';
bottom of the Trace Data window. 277 vora sysventorecionipance (reig T i
5. Note the C code is listed in the Src code column. 275 | uincis t Divider; i
Note: You might see slightly different addresses depending on your 2811 ir ((MCG->C1 & MGG_C1_CLES MRSK) — 02000
compiler and other settings. m— _>l'I

void SystemCoreClockUpdate (void) {

27 uint1l6_t Divider;

t MCGOUTClock; /% Va

[l

e
£20x000002E0 B510 PUSH {r4,1r}
e il G oL —ge=TTXE MASK) == 0x00U) v
»

Examine the Disassembly and Blinky.c windows and see how the trace position is tracked in these windows.

7. The next instruction to be executed is a PUSH instruction at memory 0x02EOQ as shown in the Disassembly window.
You can confirm the PC is equal to 0X02EQ in the Registers window.

8. Click on Step a number of times to see the effects of the executed instructions. Pay particular attention to branch and
stack operations such as POP and PUSH as they are faithfully recorded. Scroll down to see the last frames.

9. You can step through the initialization calls and eventually to where the LEDs are blinked on and off.

TIP: If you end up in the Delay() function, click Step Out {rp, or Ctrl-F11 to quickly run to its end and exit. This program
spends most of its time in the Delay() function.

Display: Execution S ™ B R - in Al -
Index | Address Opecode Instruction Src Code Function

192 ¥ : 000000543 0049 L5LS rirl#1 __user_setup_stackheap ;I
193 | X : OxD00005AL (468D MOV sp,rl __user_setup_stackheap

194 | X : 0x000005AC (4770 BX Ir __user_setup_stackheap

195| ¥ : 0x00000143 4611 MOV rlr2 Y

196 | X : 0x00000144 |F7FFFFF7 BELW __rt_lib_init (0x0000013C) 7

197 | ¥: 0x0000013C |B51F PUSH {rD-rd Ir} 25

198 | ¥ : 0x0000013E ED1F POP {-rd,pc} m

199| ¥ : 0x0000014E FODOFE70 ELW main [0x00000232) e ey
200 | ¥ : 0x00000232 FOOOFE55 ELW SystemCoreClockUpdate (0x00...| SystemCoreClockUpdate(); main LI

TIP: The trace frames can be saved to a file = and the Trace Data window can be cleared. L |

16) Code Coverage:

Code Coverage states "was this instruction executed". Unexecuted instructions have obviously never been tested. They can
cause problems if they unexpectedly execute because of some situation. It is excellent development practice to insure all
instructions have been executed and tested. Instruction trace such as MTB, ETB or ETM is an easy way to collect the data.

It is possible to provide Code Coverage from the MTB. It will be limited because of the small trace buffer size.
See www.keil.com/support/man/docs/uv4/uv4_db trace imp codecover.htm%20

13 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/support/man/docs/uv4/uv4_db_trace_imp_codecover.htm
Alex
Highlight

17) Exploring the MTB Instruction Trace:

Note: You might see different addresses as shown here depending on compiler settings. These are using MDK 5.23.

TIP: Itis possible to debug serious problems by skillfully examining the system stack. But using the trace, as you can see, is
much easier and faster. If the stack is destroyed or corrupted by a program crash, the trace will still be available.

Examine the Start of the Blinky Program:

1. Scroll to the top of Trace Data. We want to look at the very first instruction executed after RESET.

2. In the window below, Frame Index O displays the Reset_Handler. This is noted in the Function column which shows
the functions the instructions belong to. The first occurrence is blocked in orange to help you locate these.

3. The very first instruction executed after RESET is CPSID located at 0x0298. Note the next instruction is at 0X29A

and is an LDR instruction.

TIP: If you do not see this Reset_Handler line, it is possible the MTB buffer has been overrun. Restart Blinky. One way is to

click RESET RSt and in the command window entry box ">" type g,main.

Trace Data o X
Display: Execution - & = B = R + in Al =

Index | Address Opcode Instruction Src Code Function
0| X : 0x00000295 B&72 CPSID I CPSID 1 : Mask interrupts Reset_Handler ﬂ
1(X:0x00000294 |4809 LDR D, [pc#36] ; @0:x000002C0 LDR RO, =SystemlInit Reset_Handler
2|¥:0x0000029C |4730 BLX D BLX RO Reset_Handler
3| X¥:0x00000208 4942 LDR 1, [pc#264] ; @0x000003E4 5IM-> COPC = (uint32_t)j0x00u; SystemlInit
4|X:0x0000020DA | 2000 MOVS r0,#0x00 SystemlInit
5| X 0w000002DC | 6008 STR D, [rl,#0w00] SystemlInit
6|X:0x000002DE 4770 BX Ir H SystemlInit
7| X : 0x0000029E Bb662 CPSIE I CPSIE i ; Unmask interrupts | Reset_Handler
3| X :0x00000240 4808 LDR i, [pc#32] ; @0:000002C4 LDR RO, =__main Reset_Handler
9|X:0x000002A2 4700 BX Uil BX RO Reset_Handler
10| : 0x000000CD | FOOOF302 ELW __scatterload (0x000000C3) __main
11| X: 0x000000C8 | ADDC ADR) pc+0x34 ; @0x000000FC __scatterload_rt2
12| : 0w000000CA | CE30 LDM Dl {r4-r5} __scatterload_rt2
13| X : 0x000000CC | 3808 SUBS r0,m,=#0x08

4

__scatte rload_rtz_lll
| 3

4. Open Memory 1 window and enter address 0x0. Right click and select Unsigned Long. This is the beginning of Flash

memory. See the Memory window here:

5. In the Memory window, memory 0x00 is the Initial Stack Pointer
(0x2000_0168) which obviously is located in RAM.

6. Location 0x4 is the initial PC and in this case it 0x299.

Bit 0 indicates Thumb®2 instruction so subtract 1 and you get 0x298.
This is the address of the first instruction in the Trace which is the first

instruction executed after RESET. It is CPSID.
Show CPSID Instruction in Disassembly and Source window:

It is easy to quickly find the location of an instruction displayed the
Trace data window.

1. Inthe Trace Data window, double-click on the CPSID
instruction.

2. This instruction will be displayed in both the Disassembly and
startup_MKL25Z4.s windows as shown here:

Address: ID

0x00000000:
0x0000000C:
0x00000018:
0x00000024:

1 Call Stack = Locals ||

20000164 000002395 ?0000235
00000287 00000000
Q0000000 00000000 00000000
Q00000000 00000000 000002RAS

[

Memory 1

0x00000290
0x00000292
0x00000294

E000
E00D
EDO4

DCW
DCW
DCW

0xE0Q00Q
0xE000
0xEDO4

Screenshot #5 at step
2 showing CPSID
instruction in Trace
Data, Disassembly

TIP: If Run to main() is not set in the Target Config window under the
Debug tab, no instructions will be executed when Debug mode is
entered. The PC will be at the first instruction. You can Step (F11) or
RUN from this point and the Trace Data window will update as each
instructions are executed.

This is useful to test initialization code after RESET.

0)(.0232?296 E000 bW oxEcoo and Source
OKOES??QQB 8672 ' (Startup_MKL25Z4S)
0x0000029% 4809 LDR 0, [pg windows.
_] startup MKL25745 |] Blinky.c |] system MKLZSZ4.c | s x
IMEORT SystemInit -]

IMPORT

BLX
CPSIE

Lll R0, =SystemInit -

main

i ; O

Text Editor f Canfigurstion Wizard /.

14
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit

Copyright © 2017 Arm Ltd. All rights reserved

www.keil.com

Alex
Highlight

Alex
Text Box
Screenshot #5 at step 2 showing CPSID instruction in Trace Data, Disassembly and Source (startup_MKL25Z4.s) windows.

18) Trace Buffer Configuration and Control:
NXP’s Cortex-MO+ has two methods of controlling the trace buffer and/or the program. They are:

a) Stop the trace collection when the trace buffer is full and b) Stop the program execution when the trace buffer is full.
DBG_MTB.ini file and MTB Configuration:
MTB trace is activated and controlled by the ASCII file DBG_MTB.ini. It is executed when Debug mode is entered or RESET
is clicked RaT. To activate MTB to any project, just add this file as shown here.

1.

N o g ks~

8.
a)
1.
2.

1.

o 0o~ w

b)

Set Buffer Size and Position in RAM:

Exit Debug mode. Q

¥ Load Application at Starbup

¥ Run ta main()

Initialization File:

Select the Target Options icon A Select the Debug tab.
Note DBG_MTB.ini is entered in the Initialization File: box as shown: se)

|.\DBG_MTB.ini

Select Edit... to open it in pVision along with the other source files.

[pBG MTB.ni* | [4] startup MKL2574s | (] Blinky.c | =

LAl (I3

Click on OK to return to the main pVision menu. Epand A1

Colapse Al |

Hep | T~ ShowGnd

Option

‘Va\ue

In the DBG_MTB.ini window: click the Configuration Wizard tab.
An asterisk in the \DBG_MTB.ini tab indicates this file is not saved.
It must be saved by selecting File/Save All or .

--Buffer Size
E--Euffer Pasition

=] Trace: MTB (Micro Trace Buffer) =

E---Stop Trace when buffer is full r
Stop Target when buffer is full r

kB
0x1FFF FOOO

Click on Expand All. This is where MTB is configured.

|| Trace: MTB (Micro Trace Buffer)
4

e

“\ Text Editck,_j\, Configuration Wizaru

You must allocate the size and location of the internal RAM between your program and the trace buffer.
You must not list the RAM used for MTB in the Trace Options windows under the Target tab. This will cause

memory access conflicts causing strange problems in your program and the MTB Trace data window.
Stop Trace when buffer is full:

In DBG_MTB.ini, Select “Stop Trace when buffer is full”. Select File/Save All or ;

Enter Debug mode. @ The program runs to the start of main() as before.

Click on RUN . After a second or so, click on STOP 0 Scroll to the end of the Tr:

Note for a)

The project's DBG_MTB.ini file allocates 4 kB
(Ox1FFF_FO000 to Ox1FFF_FFFF) to the MTB.
The Options for Target -> Target tab has been
changed to limit the build tools to using the
remaining 12 kB of RAM (0x2000_0000 to
0x2000_3000). The Linker tab has "Use

Memory Layout from Target Dialog" checked.

ace Data window.

Stop The Target when buffer is full:

A Trace Gap frame is displayed at Index 2,305. 2,304 instructions are saved in the trace buffer in this case.
Scroll to the top of the Trace Data and confirm the first instruction CPSID located at 0x0298 is still recorded.

You can use the Search to locate the start of main(). Search for main or SystemCoreClock. It is near Index 200.
Eﬂ systemcoreclock -

Exit Debug mode. @
In DGB_MTB.ini, Unselect “Stop Trace when buffer is full”. Select “Stop Target when buffer is full”.

Select File/Save All or & Enter Debug mode. @ Click on RUN .

The program will stop when the trace is full. The trace contains all the executed instructions from the first (0x298) at
Index 0 to the last which is SUBS at Index 2,306. You may get slightly different numbers depending on your compiler
optimizations. In these two cases, we prevented the trace buffer being overrun. Overrun happens on long runs.

When Finished:

1.
2.

3.

STOP the program 9 Exit Debug mode. Q
In DGB_MTB.ini, Unselect “Stop Trace when buffer is full”” and unselect “‘Stop Target when buffer is full”.

Select File/Save All or Ei.

What are these features useful for ?

The MTB trace will be overwritten as your program runs. It is possible, even probable, that the trace frames you want to
examine will disappear. Using one of these two features can help you keep instructions in your field of interest.

TIP: Set a breakpoint on an exception vector (i.e. the Hard Fault if you end up here). If a fault occurs in your program, this
will stop the program and also the trace collection. Otherwise the trace buffer will be full with only the Hard Fault instruction.

Read/Wite Memory Areas

defaut offchip

K3 Options for Target Target 1 X Copyright © 2017 Arm Ltd. All rights reserved

Start Nolnit

Size

For [[r Device] Terget Joutput | Listing | User | C/C++ (ACE) | Asm Iunkul Debug | Unities | www.keil.com
/
I~ RAM2 @ Use: [CMSIS-DAP Debugger v| Setlings

——

[¥ Use Memory Layout from Target Didlog

-

on<hip
W IRAMI: [©x20000000 [x3000 r
I IRAM2 r

T Make fons Postion Indepent
I™ Make RO Sections Posttion Independent
I™ Dont Search Standard Libraries

¥ Report might fai’ Conditions as Emors

¥ Load Application at Startup
Intialization Fie:

\DBG_MTBini J Edt

¥ Runto main()

Alex
Highlight

Textbox
The project's DBG_MTB.ini file allocates 4 kB (0x1FFF_F000 to 0x1FFF_FFFF) to the MTB. The Options for Target -> Target tab has been changed to limit the build tools to using the remaining 12 kB of RAM (0x2000_0000 to 0x2000_3000). The Linker tab has "Use Memory Layout from Target Dialog" checked.

Textbox
Note for a)

Placed Image

Polyline

19) Trace Search:

With all the trace frames collected it can be difficult to find the frames you want. The Trace Data window includes two useful
search tools.

Pull-Down Menu:

Enter Debug mode. @- The Trace Data window will display some trace frames.

1.
2. Click in the Trace Search window and enter a term such as push as shown here; ~ Push T
3. Press Enter and the PUSH instruction or any other occurrence of the word push will be highlighted.
4. Press Enter and each time this will advance to the next occurrence and be highlighted.
5. F3 will advance to the next highest occurrence and Shift-F3 advances to the preceding one.
TIP: If “The text as specified below was not found:” is displayed, try clicking on any trace frame to bring them into focus.
Find Trace: X
= Find What: |ﬁ =l
6. Click on the Find a trace record icon: & This window opens up: You tn Column: [l =
can enter search terms in the usual manner. Wrere: [Avaiable boto =i
TIP: You can also select the Find Trace window by clicking on one of the trace Find Options ——— Find Direction
frames and press Ctrl-F. Make sure the Find Trace window opens. ™" Match whole word only ; Up
[~ Match case Down
20) Trace Data Wrap Around: s | o |

The MTB trace buffer is limited in size. In our case, it is set to 4 KB. We have seen so far approximately 2,000 trace frames
that can be stored. The actual number depends on the instruction size and other factors such as number of branches. The trace
frames coming from CoreSight are highly compressed and pVision reconstructs the trace data as you see it displayed.

As your program runs, old trace frames are over written and discarded by new ones. When you stop the program, any trace
frames present are saved/appended to a file. The next run of trace frames is collected and when the program is stopped again,
they are appended to the older frames and they are then all displayed in the Trace Data window. We will demonstrate this:
Clear the Trace Data window. £ Click on RUN . After a second or so, click on STOP 0

There will be approximately 2,000 trace frames displayed in the Trace Data window. Remember this number.

S iy

Click on RUN . After a second or so, click on STOP @ Compare this Index to your last Index number.

Now there will be more trace frames: more than there is processor internal RAM to store them...maybe 4,000.
Search the trace buffer for “gap”: without the quotes using a method described above.

After the first “end of trace” (in my case it was 2,037) there will be a Trace Gap note as shown here:

Repeat a few runs and see that the number of trace frames increases. Search for gap and note this appending method.
Each new set of trace frames is appended to the older set of preceding frames and are all displayed in the Trace Data.

TIP: You must always remember that a Trace Gap represents an undeterminable number of instructions that are not recorded
and hence lost. You are not able to assume any executed instructions are linked over any Trace Gap. This is because they were

© N o ok~ w

overwritten during a long
execution run. Display: Evecution - 3 & ow - in AN @2l 3| =
Index Address Opcode Instruction 5rc Code Function
2,033 | X : 0x00000296 D3FB BCC 0x00000290 Delay ;I
2,034 | X : 0x00000290 6346 LDR r3,[rl,#0x04] while [[msTicks - curTicks) < dlyTicks); Delay
2,035 X : 000000292 1A9B SUBS 13,1312 Delay
2,036 | X : 0x00000294 4253 CMP 13,10 Delay
2,037 0.0:00000296 | D3FB BCC Ow00000290 Delay
Z 2,038 TRACE GAP D i
LT, | D3FB BCC 0x00000290 Delay
2,040 X : 000000290 B84B LDR r3,[rl,#0x04] while [[msTicks - curTicks) < dlyTicks); Delay
2,041 | X : 000000292 1A9B SUBS r3,r3,r2 Delay
2,042 ¥ 0x00000294 4253 CMP 13,10 Delay
2,043 | X : 0x00000296 D3FB BCC 0x00000290 Delay -
| | _>IJ
16 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

21) More MTB Exploration: Note: Note: Your numbers might be different than the ones shown:

1. Exit and enter Dubug mode to provide a clean start for this demonstration.
2. In the function LEDRed_On, set a breakpoint near line 67: FPTD->PSOR = led mask[LED_GREEN] ;
|§ - 65 |-|void LEDRed OCmn (woid) {
3. Clear the Trace . Click on RUN] ce FPTB_>PSOR = led mask[LED BLUE];
4. The program will run to the breakpoint. L &7 FPTD->PSOR = led mask[LED_GREEN];
68 FFIE->»FCCR = led mask[LED RED]:
5. Clickon RUN 2, This to go past the initializations. s= !

6. You will get a Trace Data window similar to the one below:
Function Column:
1. The executed instructions are displayed. The functions they are located in are noted by the Function column.
2. The beginning of a function run is highlighted in orange.
Interrupt Subroutine Calls:
1. The SysTick timer creates Interrupt 15. The SysTick_Handler in Blinky.c near line 48 to 50 increments msTicks.
2. Note the instructions executed a result of this interrupt are displayed at Index 2,013 through 2,017.
3. You can see these instructions reside from 0x196 to 0x19E. Double-click on a line to show it in the source windows.
Delay Function Interrupted:
1. You can see the Delay function was interrupted by the SysTick interrupt 15 at Index 2,257 and it continued at 2,262.
2. This can be very useful information in locating tricky bugs.
Continuation of a Function:

1. Located at Index 2,267 is the POP instruction that is the end of the phaseD function. Double-click this line to
highlight it in the Disassembly window. Where is the rest of this function in the trace buffer ?

2. If you search for phaseD, you will not find any other occurrence. It was not recorded. What happened is the Delay
function, which is called by phaseD near line 127 in Blinky.c, swamps the trace buffer. The other instructions in
phaseD were over written. You can confirm this by looking backwards in the trace until the next Trace Gap. If you
need to record phaseD, you will have to set a breakpoint at a thoughtful spot in your program.

3. Set a breakpoint on the first instruction in the line Delay(): —) ([127 | Delay (0x500) ; |
Run the program. It will stop at the breakpoint.

5. You will see all executed instructions of phaseD (there are not many) except for the Delay function and the POP at the
4,302 | X: 0200000262 |FFFFFFDE | BLW phaseD (0:00000222) phaseD(; J/all LEDs OFF main Very
4,303 | X : 0x00000222 | B510 PUSH {rd.Ir} void phaseD [void) { phaseD end

of phaseD at address 0x230. This is because these are after a long run of the Delay() function.

6. Remove all breakpoints. Click on them or you can enter Ctrl-B and select Kill All and then Close.

Display: Execution - & = 5t = @ - in Al -
Index Address Opcode Instruction Src Code Function
2,255 | X : 000000270 4283 CMP 13,10 Delay 4|
2,256 | X: 0x00000272 | D3FB BCC 0x0000026C Delay
2,257 | ¥ : 0x00000192 | 433D LDR D, [pc#244] ; @0x00000255 msTicks+=; /* increment counter ne... | SysTick_Handler
2,258 |X: 000000194 |6301 LDR r1,[r0,20x00] SysTick_Handler
2,259 | X: 0x00000196 |1C49 ADDS rlr#1 SysTick_Handler
2,260 | X : 000000198 |6001 STR rl,[r0,#0x00] SysTick_Handler
2,261 | X: 0x0000019A | 4770 BX Ir 1 SysTick_Handler
2,262 |X: 0x0000026C |6B0B LDR r3,[rl,#0x00] while [[msTicks - curTicks) < dlyTicks); Delay
2,263 | X: 0x0000026E |1A9E SUBS r3,13,r2 Delay
2,264 | X: 0x00000270 | 4283 CMP 3.0 Delay
2,265 | X: 0x00000272 |D3FB BCC Ox0000026C Delay
2,266 | X: 0x00000274 |4770 BX Ir 1 Delay
2,267 | X: 0x00000230 |BD10 POP {rd,pd i phasel
2,268 | X : 0x00000266 |ETFE B 0x00000256 while(1){ main
2,269 | X: 0x00000256 |F7FFFFCC | BLW phaseA (0x000001F2) phaseAf; //Red LED on main
2,270 | ¥ : Ox000001F2 |B510 PUSH {rd Ir} void phaseA [void] { phasei
2,271|X%: 0x000001F4 |F7FFFFD2 | BLW LEDRed_On [0x0000019C) LEDRed_On(}: phaseA
2,272 % 0x0000019C | 4939 LDR rl[pc#228] ; @0x00000254 FPTD-=PSOR = led_mask[LED_BLUE]; /*Blue LE... |LEDRed_On
2,273 | X: 0x0000019E | 2002 MOVS 0, #0x02 LEDRed_On
2,274 | X2 0x000001A0 |3180 ADDS rl,rl,#0xB0 LEDRed_On
2,275 | % : 0x000001A2 60453 STR 0, [rl, #0x04] LEDRed_On =
Ll | 3
17 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

22) Trace “In the Weeds” Example

Perhaps the most useful use of trace is to show how your program got to an unexpected place. This can happen when normal
program flow is disturbed by some error and it goes “into the weeds”. Finding these errors can be extremely challenging. A
record of all instructions executed prior to this usually catastrophic error is recorded to the limits of the trace buffer size.

A good way to crash your program is to make register LR =0. When a BX Ir is executed, the program will surely crash. There
is a suitable section of code in the Blinky.c Delay function: while ((msTicks - curTicks) < dlyTicks); .

Enter Debug mode. @ Click on RUN . Click on STOP '9
Delay will probably be visible in the Call Stack window.

The program will probably be in the Blinky.c line (near 59): while ((msTicks - curTicks) < dlyTicks);
If not, try the RUN and Stop sequence again.

ISANE S R

Note in the Disassembly window near memory location 0x284, the last instruction of the Delay function is BX Ir.

-~ R14(LR) 00000000
6. In the Register window, change R14 (LR) to 0x0 as shown here: [F15FS 00000032

7. Click on RUN . The LEDS will not blink indicating a problem. Click on STOP e The program will be at the
Hard Fault vector as shown here: s —)

This happened when the function Delay tried to return. 292: SE e [WE2

0x000002R6 ETFE B HardFault_Handler (0x000C
T

The Trace Buffer will be mostly full of B instructions.

10. We want to stop the program when a hard fault occurs. Otherwise, a HardFault_handler which is by default a branch
to itself, will fill up the trace buffer and overwrite the trace frames that can really help us.

11. The PC in Blinky.c will be on the Hard Fault Handler. It is usually around address 0x02A6 as shown above.
12. Set a breakpoint on this B instruction as shown above.

O
13. Click RESET. R=T Click on RUN . Then, click on STOP 0 The program will be on the while in step 3.

14. Clear the trace buffer. =t This is to make things look clearer.
15. Set R14 (LR) in the Registers window to zero as before.

16. Click on RUN .
17. The program will immediately go to the Hard Fault state and the breakpoint will stop execution at the Branch.
18. The Call Stack window (shown below left) will not show much useful information as the Stack was destroyed.

19. The Trace Data now shows the last number of instructions executed plus the BX instruction. Nearly always the last
one listed is the one that caused the crash. But not always. Clearly, in this case, you can see the sequence of
instructions that caused the fault.

20. Note you can see the execution of the SysTick Handler. This type of event is very hard to detect without trace.
21. Click on Step (F11) a few times and the B at the

: . — 3 3 socreenshot #6
HardFault_Handler will be executed and displayed as 224 T SN AR i -
— Index | Address Opcode | Instruction sre Cod at Step 19
shown below 2,028|X: 000000198 | 5001 STR 1L, [10,50:00] _
; 2,029 (X : 0x0000019A |4770 BX Ir 1 ShoW“’]g Trace
22. Remove the breakpomt 2,030|x: 0:0000026C | 6a0B DR 13,rL,50400] while i
2,031|X: 0x0000026E | 198 SUBS 13,3,12 Data W|ndOW
@ 2,032|X: 0:00000270 |4283 CMP 13,10

- 2,033|X: 0100000272 | D3FB BCC__0xD000026C [Delay

23 EX|t Debug mode. 2,034 X: 0x00000274 477<:_ BY Ir > } | Delay _'Zi
/| B
Call Stack + Locals
Mame Location/Value Type Trace Data 2 x
-~ % HardFault_Handler |[0x00000246 void () i’ Display: Execution - 8 d B R phased - nal
e % main Q00000000 int f[) Index | Address Opcode Instruction Src Code Function

LI 2,032 : 0x00000270 |4283 CMP 13,10 Delay -]

< Call Stack + Locals L — | 2,033|X: 0x00000272 | D3FB BCC 0x0000026C Delay

., - . 2,034| % : 0x00000274 |4770 BYX I b Delay

2,035 ¥ : 0x000002A6 |E7FE B HardFault_Handler (... B . HardFault_Handler

TIP Remember, a COI‘GSIght hardware breaprInt does not 4I2,036 X : 0x00000245 |E7FE B HardFault_Handler (... B . HardFauIt_Handlir _»lj

execute the instruction it is set to.
TIP: MTB can be used to solve many program flow problems that often require much effort to solve.

18 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Alex
Text Box
Screenshot #6 at step 19 showing Trace Data window

23) DSP SINE example using Arm CMSIS-DSP Libraries:

Arm CMSIS-DSP libraries are offered for Cortex-M processors. DSP libraries are provided in MDK and are selected with the
MRTE utility. This example incorporates Keil RTX RTOS

This example creates a sine wave to which noise is added, and then the noise is filtered out leaving the original sine wave.

To obtain this example file, go to www.keil.com/appnotes/docs/apnt 232.asp and copy the DSP folder into
C:\OOMDK\Boards\NXP\FRDM-KL25Z. A \DSP directory will be created. You should have already done this on page 4.

1. Stop the program and exit Debug mode if necessary.
2. Open the project file sine: C:\00MDK\Boards\NXP\FRDM-KL25Z\DSP\sine.uvprojx.

3. Select CMSIS-DAP in the Target Selector: | SM5-DAP z

4. Build the files. There will be no errors or warnings.

Enter Debug mode by clicking on the Debug icon.@ Select OK if the Evaluation Mode box appears.

Click on the RUN icon.
Open Watch 1 by selecting View/Watch/Watch 1 if necessary.

Four global variables will be displayed in Watch 1 as shown here:
If these variables are changing the program is likely working »—
properly. - <Enter expression>
Other Things You can do:

1. MTB: Select CMSIS-DAP MTB and you can see the MTB trace working.

2. System and Threads Viewer: Select Debug/OS Support/ Threads and System Viewer.

© N o a

Serial Wire Viewer (SWV) and ETM Instruction Trace: (only for reference)

The Kinetis Cortex-M4 processors have Serial Wire Viewer (SWV). The four waveforms of the global variables shown above
will be displayed in the Logic Analyzer as shown below. The Kinetis KL25Z does not have SWV so this screen is shown for
reference only.

If you use a Kinetis Cortex-M4 and with any Keil ULINK or a J-Link, you can use this Logic Analyzer windows plus many
other Serial Wire Viewer (SWV) features. Many Kinetis Cortex-M4 processors also have ETM trace.

See www.keil.com/appnotes/docs/apnt_243.asp

| Logic Analyzer

mw Min Time Maze Time: Grid Zoom Min/Max |Update Screen| Transtion Jump to ¥ Signalinfo [~ Ampltude
Save... 0s £9.1403s | 05s [n J[Out] Ar] Undo] |[Stop |[Clear] |[Prev][Nest]| [Code |[Trace]| I~ Show Cycles W Cursor
32767 : 5 5 5 5 5 : : : :
sine i /ﬁ\:\ i /ﬁ‘:\ LN, i N i N Vi N I N
S N AN : DS DN Do :
st . S T
32767 : . . :
I'IOiSE \Jﬂ\Jn‘:Jn\J’\\Jh\JA\J’\‘JA\JA\JHUA\J’\‘JH\J’\\JH\JA\J’\ JAUA\JP\\JA\JAU’\UA\JH\JH\J ‘J wr \J L ‘J wr \J our
-32768 |m7g) ! : : : : : : : : : : : :
32767 E i E i i i i i i i i i E
FRPSVH AW S A W D A AR DS A AN PYA W FEA S p YA . p A
32768 |{z7sy] aVad Y aVad AV Vet VY M
32767 i i i i i i | i
fittered \‘:-’//E"\\\h‘:d//r‘\\\\i//":"‘\\ /T\\\E‘//TH\\L//T\\\V/
-32768 | 75gm3] : : : : : : : : : : : :
81.711[61 7113 5| 652113 6921138
| 111l
@Disassenmly | QLogic Analyzer

19 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/appnotes/docs/apnt_232.asp
http://www.keil.com/appnotes/docs/apnt_243.asp

24) Creating your own MDK 5 project from scratch:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
Once you have your new project configured; you can build, load and run a bare Blinky example. It will have an empty main()
function so it does not do much. However, the processor startup sequences are present and you can easily add your own source
code and/or files. You can use this process to create any new project, including one using an RTOS.

MCUXpresso SDK Builder: A file containing files and examples is available for this board on https://mcuxpresso.nxp.com/
Install the Kinetis Software Pack for your processor:

1. Start pVision and leave in Edit mode. Do not be in Debug mode.

2. Pack Installer: The Pack for the KL25Z processor must be installed. This has already been done on page 4.

3. You do not need to copy any examples over. E
A } "\J’\J’ [Kei_vs\armiBosrds Fresscale\FROM- 252BilkynEw x| (23] | Search siinkynew ﬂ
Create a new Directory and a New Project: PR - ®
1. Inthe main pVision menu, click on Project/New X Favoites 2] ame - | pate modifed [%
pVision Project... — No tems match your search.
2. In the window that opens, shown below, go to the e
folder C:\0OMDK\Boards\NXP\FRDM-KL25Z\ g
3. Rightclick in this window and select New and create a R
new folder. | called it BlinkyNEW. By Locaiosk () _
4. Highlight BlinkyNew and select Open. S - —— ! j
File name: | Blinky S
5. In the File name: box, enter Blinky. Click on Save. Save as type: [Frofect Fles (*uvorcl; =avarai) =
6. This creates the project Blinky.uvproj. (is MDK 4) S hieries —
VA
7. Assoon as you click on Save, the next window opens:
Select the Device you are using: cru |
1. Expand NXP then KLxx Series, then KL2x and then select MKL25Z2128xxx4 as shown: Verre TomeeSersrrim
Make sure you go to the lowest level processor or this will not work. Device: MKL25Z128ca4
Toolset: ARM
2. Click OK and the Manage Run Time window shown below bottom right opens. e
Select the CMSIS (System and Startup) files you want: BN el Semonduco =
H . E15 Ko Series |
1. Expand all the items and select CORE and Startup as shown below. They will be w2 Ko
highlighted in Green indicating there are no other files needed. Click OK. b

MKL24Z3 Zrood
MEKL24Z6 4004
MEKL25Z1 2830004
MKL25Z3 oo
MKL25Z6 4004

2. Click on File/Save All or select the Save All icon: 'j
The project Blinky.uvproj. will now be changed to Blinky.uvprojx.

You now have a new project list as shown on the bottom left below: The appropriate I R
CMSIS files you selected have been automatically entered and configured. Jd_ | =

5. Note the Target Selector says Target 1. Highlight Target 1 in the Project window.
6. Click once on it and change its name to CMSIS-DAP and press Enter. The Target selector name will also change.

What has happened to this point: x
1c1 H H Software Component Sel. | Variant Version Description
You ha.Ve Created a blank HVISIOn projeCt USIng . =] & CMSIS Cortex Microcontroller Software Interfa:
MDK 5 Software Packs. All you need to do now is . @ CORE [3.200 | CMSIS-CORE for Cortex-M. 5C000. and €
T DsP r 141 CMSIS-DSP Library for Cortex-M. SC000
add your own source flles' @ RTOS [AP]) 10 CMSIS-RTOS API for Cortex-M. SC000, ar
" =] @ Device Startup. System Setup
Project a4 x] Startup cd 1.0.0 System Startup for Freescale KLt Series
E-a Target 1
{7 Source Group 1 4] | |
Ly CMSIS
E@ Device Validation Qutput Description
startup_MKL26Z4.5 (Startup)
system_MKL26Z4.c (Startup)
Resolve | Details Cancel | Help |
M@Boaks | {} Funct.‘.l [].,Temp...l
20 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

https://mcuxpresso.nxp.com/

Create a blank C Source File:

Add New Item to Group 'Source Files'...

1. Rightclick on Source Group 1 in the Project window and select
2. This window opens up: X
3. Highlight the upper left icon: C file (.c): . cjcﬂ.e(_c, TG ey S
4. Inthe Name: field, enter Blinky. @wﬁ'mnw
5. Click on Add to close this window. DELE
\ﬂ Header File (h)
6. Click on File/Save All or 'ﬂ \%Tﬁﬁleiw
7. Expand Source Group 1 in the Project window ‘E\'g e
and Blinky.c will now display.] v ot e
8. It will also open in the Source window. e =
Add Some Code to Blinky.c: Name: EZBD)
1. Inthe blank Blinky.c, right click and select Insert ‘et [¢enhipmciesderion asepnes =]
"# include file'. Select # include <MKL2524.h> Close Hel
2. Add the rest of the code as shown in the box below: Step 3.5: Open "Options for Target” (Alt-F7). Target
3. Click on File/Save All or = tab should be selected already. In Code Generation
- section, for ARM Compiler select "Use default compiler

4. Build the files. == There will be no errors or warnings if all was entered correctly.

#include <MKL25Z4.h>

unsigned int counter = 0;

/* ___

MAIN function
K e */

TIP: You can also add existing source files:

int main (void) {
SystemCoreClockUpdate () ;
while (1) {
counter++;
if (counter > 0xOF) counter = 0;
}
}

Add Existing Files to Group 'Source Files ...

Configure the Target CMSIS-DAP Debug Adapter:

a b~ w NP

4

Select the Target Options icon m. Select the Target tab.

Select Use MicroLIB to optimize for smaller code size.

Click on the Debug tab. Select CMSIS-DAP Debugger in the Use: box; U CHSISDAP Debugger] _setwngs |
Select Settings: icon beside Use: CMSIS-DAP.

Select SWJ and SW as shown here; ® 5% Pe=[sw =] A JTAG selection here will return an RDDI error. If your KL25Z
is connected to your PC, you should now see a valid IDCODE and Device Name in the SW Device box.

Confirm Flash Programming Algorithm is Configured:

1.
2.

5.

Click on OK once to go back to the Target Configuration window.

Click on the Utilities tab. Select Settings and confirm the correct Flash algorithm is present: Shown is the correct one
for the Freedom KL25Z board: —) "ngmmming Agorithm

H : H Description | Device Size I Device Type | Address Range |
CIICk on OK twice to return to the main men. MKXCK 48Mhz 128kB Prog Flash 128k On-chip Flash 00000000H - 0001FFFFH

Click on File/Save All or 'j

Build the files. == There will be no errors or warnings if all was entered correctly. If there are, please fix them !

The Next Step ? Let us run your program and see what happens ! Please turn the page....

21 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Text Box
Step 3.5: Open "Options for Target" (Alt-F7). Target tab should be selected already. In Code Generation section, for ARM Compiler select "Use default compiler version 5"

Running Your Program:
1. Enter Debug mode by clicking on the Debug icon @- The Flash will be programmed.
Click on the RUN icon. Note: you stop the program with the STOP icon. U

2
3. Right click on counter in Blinky.c and select Add counter to ... and select Watch 1.
4. counter will be updating as shown here: T o
5. You can also set a breakpoint in Blinky.c and the program should stop at | Name Value__ Type
this point if it is running properly. I you do this, remove the breakpoint. | =~ 2 C joseees 5 wmssnesmt 2|
6. You should now be able to add your own source code to create a al | _,ﬁ'
meaningful project. Samples are provided on the NXP SDK Builder & al Stack = Locals | Waten1 | B Memory 1 |

found on https://mcuxpresso.nxp.com/

TIP: The Watch 1 is updated periodically, not when a variable value changes. Since Blinky is running very fast without any
time delays inserted, the values in Watch 1 will appear to jump and skip sequential values you know must exist.

Configuring MTB Instruction Trace:

Stop the program. @ Remove any breakpoints (Ctrl-B, Kill All, Close). Exit Debug mode. @

1

2. Select Project/Manage/Project Items... or select: é and this window opens up:

3. Select the Insert icon A or press Insert key on the PC. =
4. Enter CMSIS-DAP MTB and press Enter. Click OK to exit, o sl]

5. Open the Target Selector and you will now find CMSIS-DAP [Proec Togee:]| 4| & | Growws 0K] [ESEA

MTB visible: WW Blinkey
CMSIS-DAP -

MTB

CMSIS-DAP

What this means: We now have two targets: CMSIS-DAP and CMSIS-DAP MTB. Each one points to its own Target Options
configuration. At this point they are the same. We will modify CMSIS-DAP MTB to activate the MTB trace.

4

7. Select the Target Options icon *‘ﬁq. Select the Debug tab. Note the Initialization File: box is empty.
8. Using the Browse icon, go to the directory C:\0OOMDK\Boards\NXP\FRDM-KL252\ BIiNkY {nd insert

DBG_MTB.ini as shown here: Intialzation Fie:
9. Select the Target tab. In IRAM1, change RAM to these values: | Biry 08T i L] = |
10. Click OK to exit this window. MTB is now activated with the dm B

F IRAMT: IMDDDDDDD IDxBDDD
TIP: In real life you are probably better to copy this .ini file into your own project.

11. Click on File/Save All or to save all your work so far.

12. Enter Debug mode. @- The program will Run to main() automatically. V| Trace Data
13. Open the Trace Data window: View/Trace/Trace Data or the small arrow beside the icon: s | Trace Navigation
14. The Trace Data window will be full of trace frames. Right click inside it and select Show Functions.

What this means: A collection of Target Options is saved in the Target Setting CMSIS-DAP. Another one, with the MTB
activated, is saved with CMSIS-DAP MTB. You can modify any other Target Options window and it will be saved. You can
select them at will. You usually need a rebuild after changing targets.

22 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Text Box
Blinky

25) Adding RTX to your Project:
The MDK Software Packs makes it easy to configure an RTX project. This example uses RTX 4.
Configuring RTX is easy. These steps use the same configuration as in the preceding Blinky example.

1. Using the same example from the preceding pages, Stop the program D and Exit Debug mode. Q
Select CMSIS-DAP; | SHSIS04° -
3. At the top of Blinky.c, right click and select Insert "# include file'. Select # Software Component Sel. |V
include <cmsis_os.h> ——— -4 CMSIS
~
4. Open the Manage Run-Time Environment window: & r
5. Expand all the elements as shown here: —— n
6. Select Keil RTX as shown and click OK.
7. Appropriate RTX files will be added to your project. See the Project window. : v
[-4# RTOS2 [AP])
8. Click on File/Save All or ﬂ E“ CMSIS Driver
Configure RTX:
1. Inthe Project window, expand the CMSIS group. Ml
2. Double click on RTX_Conf_CM.c to open it. T | B T
Option Value
3. Select the Configuration Wizard tab: Select Expand All. Thread Configuration
H H H . Ié_|---RT)(Kerr1eITirnerTickConfi uration
4' The WIndOW 1S dlsplayed here' — --Use Cortex-M SysTick tirier as RTX Kernel Timer
5. Set Timer clock value: to 41943040 as shown: (419 MHz) | FTostemeiTme ot dockreuenc
6. Use defaults for the other settings. é---s_ystem Configuration
- ---Round-Robin Thread switching |7
Build and Run Your RTX Program: - User Timers ~
‘;] - ISR FIFQ Queue size 16 entries
1. Build the files. == No errors or warning. F Thread Confiquration
Text Editer }, Configuration Wizard |
2. Enter Debug mode: @ Click on the RUN icon.
3. Select Debug/OS Support/System and Thread Viewer. The window below opens up.

You can see two threads plus the idle demon. As you add more threads to create a real RTX program, these will
automatically be added to this window.

What you have to do now:

1.

You must add the RTX framework into your code and create your threads to make this into a real RTX project
configured to your needs.

See the DSP and RTX_Blinky examples to use as templates and hints.

Getting Started MDK 5: Obtain this useful book here: www.keil.com/mdk5/. It has useful information on
implementing RTX.

System and Thread Viewer

Property Value
[=]-System =

Tick Timer: 1.000 mSec
Round Robin Timeout: 5.000 mSec
Default Thread Stack Size: 200
Thread Stack Overflow Check: Yes
Thread Usage: Ayailable: 7, Used: 2 = o...

é--Threads ame Prio ate Dela a
1 osTimerThread High Wait_MBX 36%
2 main l Marmal Running 0%
255 os_idle_demon/ Mone Ready 32%

23 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www2.keil.com/mdk5/

26) Adding a Thread to your RTX_Blinky:
We will create and activate a thread. We will add another global variable counter2 to give it something to do.

Stop the program LX) and Exit Debug mode. @

1.
. L . . . 4 unsigned int counter2 = 0;
2. In Blinky.c, add this line near line 4 before the main() function:
he Th jobl: . .
Create_t ¢ Thread job . . 6 void jobl (void const *argument) {
Add this code to be the thread jobl1 before main(): 7 for () {
. 8 counter2++;
TIP: osDelay(1000) delays the program by1000 clock ticks 9 if (counter2 > OxOF) counter2=0;
to slow it down so we can see the values of counter and 10 osDelay(1000);
counter2 increment by 1. 11 }
12 }

Add osDelay to main():

4. Add this line just after the if statement near line 22: 22 osDelay(1000);
Define and Create the Thread:

5. Define jobl near line 14 just before main(): 14 osThreadDef(job1, osPriorityNormal, 1, 0);

6. Create the thread jobl near line 20 just

before the while(1) loop in main(): 20 osThreadCreate(osThread(jobl), NULL);
7. Click on File/Save All or 'j
{-:ﬁ-
8. Build the files. == There will be no errors or warnings. If there are, please fix them before continuing.

Run the Program and configure Watch 1 and see job1 running:

Enter Debug mode: @ Click on the RUN icon.
Right click on counter2 in Blinky.c and select Add counter2 to ... and select Watch 1.

Both counter and counter2 will increment but slower than before:

Watch 1 a X

The two osDelay(1000) function calls each slow the program down by Name Vaine Iype
1000 msec. This makes it easier to watch these two global variables - ¥ counter 0x00000005 | unsigned int
increment. OsDelay() is a function provided by RTX. o 'E ctw"te'z B 000000005 | nsineriink
< ENLEr EXpression>
4. Open the System and Thread Viewer by selecting Debug/OS Support.
- -;-'jCaII Stack + Locals | Watch 1 | (] Memory 1 \
5. Note that jobl has now been added as a thread as shown below:
6. Note os_idle_demon is always labelled as Running. This is because the program spends most of its time here.
7. Set a breakpoint in jobl and the program will stop there and job1l is displayed as "Running" in the Viewer.
8. Set another breakpoint in the while(1) loop in main() and each time you click RUN, the program will change threads.
9. There are many attributes of RTX you can add. See the RTX documentation and the MDK 5 Getting Started Guide.
10. You can easily add more threads — ERSUEMRNEENET
as needed. Property | Value
[=)-System =
11. RTX has many more features that Tick Timer: 1.000 mSec
you can utilize. RTX is a full Round Robin Timeout:_ 5.000 mSec
fea.ture Vary Capable RTOS : Default Thread Stack Size: 200
Thread Stack Overflow Check: Yes
Thread Usage: Available: 7, Used: 3 + o...
Ié:Threads Priority State Delay Event Value Event Mask Stack Usage
1 osTimerThread High wait MBX | | 36%
2 main Mormal Wait_DLY 36% I
3 jobD Mormal Wait_DLY 36%
255 |os_idle_demaon Maone Running -
J | o
| =
24 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

27) Event Recorder:

Event Recorder is a new pVision feature. Code annotations can be inserted into your code to send out messages to pVision and
be displayed as shown below. Keil Middleware and RTX5 have these annotations already inserted. You can add Event
Recorder annotations to your own source code. SWV is not used. CoreSight DAP Reads and Writes are used.

Documentation for Event Recorder is found here: www.keil.com/pack/doc/compiler/EventRecorder/html/

Enable Recorder: v (3¢ | W Mark ~ Al Operations ~ | Stopped
Event Time [sec) Component | Event Property Value ‘
0 Init Event Restart Count=0x00000001 -
1 0.00000010 RTX Kernel Kernellnitialize
2 0.00000020 RTX Kernel Kernellnitialize Completed
3 0.00000030 RT¥ Thread ThreadMew func=jobl, argument=0x00000000, attr=0x00000000
4 0.00000040 RT¥ Memory |Memomilloc mem=0x20000000, size=80, type=1, block=0x20000010
5 0.00000050 RTX Memory |MemoryAlloc mem=0x20000000, size=_208, type=0, block=0x20000060
[0.00000060 RT¥ Thread ThreadCreated thread_id=0x20000010
7 0.00000070 RTX Thread ThreadMew func=job2, argument=0x00000000, attr=0x00000000
3 0.00000030 RT¥ Memory |Memomyilloc mem=0x20000000, size=380, type=1, block=0x20000130
9 0.00000090 RTX Memory |MemoryAlloc mem=0x20000000, size=208, type=0, block=0x20000180
10 0.00000100 RTX Thread ThreadCreated thread_id=0x20000130
11 0.00000110 RTX Kernel KernelStart
12 0.00000120 RTX Thread ThreadCreated thread_id=0x20001264
13 0.00000130 RTX Thread ThreadSwitch thread_id=0x20000010
14 0.00000140 RTX Kernel Kernelstarted LI

Demonstrating Event Recorder with RTX5_Blinky:
1. Open Blinky. uvprolx in C:\00MDK\Boards\NXP\FRDM-KL25Z\RTX5_Blinky\

2. Click on Rebuild. . Enter Debug mode. @Q Click on RUN .l o - - W e '|
3. Open Event Recorder by selecting View/Analysis/Event Recorder or ~s—) | 8 Logic Analyzer
4

Since Event Recorder is activated in RTX v5, the window above will display. IS SR e

Code Coverage

5. Various RTX events will display as they happen. You can do this for your own code.

Event Recorder Features: Event Recorder

1. Stop and start Event Recorder while the program is running; Enable Recorder: ¥
Clear the window when the program is stopped: "

2
3. Stop the program. o
4

In the Mark: box, enter ThreadSwitch and these frames will be highlighted as shown here: This is useful to find events
that do not occur frequently.

[l event Recorder 2 x

5. If you click on a frame in the Event Property Enable Recorder. [| [d | 7 Mark ThreadSwitch | B 5
column, you will be taken to Help for this event. Event [Time(seq | component | event Property vaiue
i 5t [000000510 RTXThread | ThreadDelay ticks=200 -l
6_ Hover your mouse over an event In the Value 52 0.00000520 RTXThread |ThreadBlocked thread_id=0x20000130, timeout=200
. 53 |000000530 RTXThread | ThreadSwitch thread_id=0x20001284
COIumn and a hlnt WIII dlsplay such as thls One' 54 0.00000540 RTX Thread ThreadDelayCompleted
55 0.00000550 RTX Thread ThreadUnblocked thread_id=0x20000010, ret_val=0s0K
| osThreadFlagsSet function was called. | 5 |0.00000560 |RTXThread | ThreadDelayCompleted
57 0.00000570 RTX Thread ThreadUnblocked thread_id=0x20000130, ret_val=0sOK
7 StOp the program 0 Close any Event Recorder 58 |0.00000580 RTXThread | ThreadsSwitch thread_id=0x20000010
' . 3 5 |000000590 RTXThread | ThreadDelay ticks=200 =
and Threads and Event (RTX RTOS) windows. = | _,,J

8. Exit Debug mode. Q This is the end of the exercises.

25 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

28) Some Interesting Bits & Pieces:

Processor Clock Speed:

The clock speed is determined in the file system_MKL25Z4.c. This is where the processor PLL and other clock attributes are
configured.

SystemCoreClock:

The file system_MKL25Z4.c contains a global variable SystemCoreClock near line 103. You can view this in the Watch
window to determine the processor clock frequency. Its value is determined from DEFAULT_SYSTEM_CLOCK which is
defined in|system MKL2574.h. |like this: #define DEFAULT_SYSTEM_CLOCK

Which one is used depends on [what CLOCK _SETUP is. | By setting CLOCK_SETUP to 0, 1 or 2 changes the
clock frequency to 41.94, 48 or 8 MHz respectively. This is easily seen in lines 81 through 95. This is not actually measuring
the CPU speed, rather just indicating which of the choices is selected. This means that a bug in the CMSIS System file could
give erroneous results.

Configure SystemCoreClockUpdate:
1. Near the top of main() in Blinky.c, add this line: {SystemCoreClockUpdate(); |
2. This will initialize the clocks in system_MKL25Z4.c.

Display SystemCoreClock:
1. With pVision in Debug mode and running, enter SystemCoreClock into Watch 1.

2. Rightclick on the Value field for SystemCoreClock and unselect Display Hexadecimal to get a base 10 value.
3. Note the clock is about 41.9 MHz. We thought it was 48 MHz ! T e
4. |There are two ways to define the value of CLOCK_SETUP: in || name Value Type
system_MKL25Z4.h or in the compiler command line options. ;@ counter unsigned int
- W SystemCoreClock | 41943040 unsigned int
5. Stop the program. @ Enter Debug mode: Q o Emerepression>
LoAD 4 | |

6. Build the files. Program the Flash: ## . 1 Call Stack + Locals || R (0 Memory 1 |

o>

Enter Debug mode: Q Click on the RUN icon. Method 1: Add #define CLOCK SETUP 1
8. SystemCoreClock will now display 48 MHz. to system_MKL25Z4.h before the #ifdef CLOCK_SETUP.
Method 2: In Project->Options for Target -> C/C++/Preprocessor

“ Symbols "Define" box, enter CLOCK_SETUP=1 and click OK.

Single-Stepping:

1. With Blinky.c or any C source file in focus (Blinky.c tab is underlined), the program counter jumps a C line at a time.
The yellow arrow indicates the next C line to be executed.

2. When the Disassembly window is in focus indicated by the top bar turning dark gray or a darker colour. Clicking Step
Into now jumps the program counter one assembly instruction at a time.

3.
Updating CMSIS Files:

Sometimes a file will be older than the one provided by the latest Software Pack for your processor.
In this example, in the project window, you can see the small red marks indicating this file is not 245 Ulink2 MTB T
the latest. a...s_?u;; e
Both the file and its header (Device in this case) are marked. 0 Docomerie
Abstract.tt
1. Rightclick on the file name and select Update #X_ Options for Campanent Class Device ATLE 7% Board support
Config File as shown below: ;Jsidptmcgf?F:rv 250> 250] L3 gia_mnm.mz.qmm
. /%] RTX_CMO.lib (RTOS:Keil RTX)
2. The latest version will be inserted in your project & Manage Project tems. L) T Conf_Ch.c (RTOSKeil RTG
and the red marks will be gone. Open system MKL2SZ4.h £ Device
_] startup_MEKL25Z4 .5 (Startup)
. . é QOpen Build Log . atup)
3. Click on File/Save All or [Rebuild all target files _
ILI Build Target F7 a | | ﬂLI
¥ | show Include File Dependencies =] Project | € Books | {} Functio..| Oy Tempia...|
26 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

Alex
Text Box
Method 1: Add #define CLOCK_SETUP 1
to system_MKL25Z4.h before the #ifdef CLOCK_SETUP.
Method 2: In Project->Options for Target -> C/C++/Preprocessor Symbols "Define" box, enter CLOCK_SETUP=1 and click OK.

Alex
Text Box
SystemCoreClockUpdate();

Alex
Text Box
what CLOCK_SETUP is.

Alex
Text Box
system_MKL25Z4.h.

Alex
Text Box
There are two ways to define the value of CLOCK_SETUP: in system_MKL25Z4.h or in the compiler command line options.

Alex
Line

29) Kinetis KL25 Cortex-M0+ Trace Summary:

Watch and Memory windows can see:
= Global variables.
= Static variables.
= Structures.
= Peripheral registers — just read or write to them.
= Can’t see local variables. (just make them global or static).
= Can’t see DMA transfers — DMA bypasses CPU and CoreSight and CPU by definition.

Instruction Trace (MTB) is good for:
= Trace adds significant power to debugging efforts. Tells where the program has been.
= Arecorded history of the program execution in the order it happened.
= Trace can often find nasty problems very quickly.
= Weeks or months can be replaced by minutes.
= Especially where the bug occurs a long time before the consequences are seen.
= Or where the state of the system disappears with a change in scope(s).

These are the types of problems that can be found with a quality trace:
= Pointer problems.
= lllegal instructions and data aborts (such as misaligned writes).

= Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did | get here ?

= Qut of bounds data. Uninitialized variables and arrays.
= Stack overflows. What causes the stack to grow bigger than it should ?

»= Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

= Communication protocol and timing issues. System timing problems.

27 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

Alex
Highlight

30) CoreSight Definitions: Itis useful to have a basic understanding of these terms:

Note: The KL25Z Cortex-MO0+ options are highlighted in red below: Kinetis Cortex-M4 processors have all features except
MTB. To use SWV, any Keil ULINK or Segger J-ink debug adapter is needed and to use ETM trace, a ULINKpro is needed.

1. JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

2. SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except Boundary Scan
is not possible. SWD is referenced as SW in the pVision Cortex-M Target Driver Setup.
The SWJ box must be selected in ULINK2/ME or ULINKpro. Serial Wire Viewer (SWV) must use SWD because the
JTAG signal TDO shares the same pin as SWO. The SWV data normally comes out the SWO pin or Trace Port.

JTAG and SWD are functionally equivalent. The signals and protocols are not directly compatible.

4. DAP: Debug Access Port. This is a component of the Arm CoreSight debugging module that is accessed via the
JTAG or SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-fly
memory accesses without the need for processor core intervention. pVision uses the DAP to update Memory, Watch,
Peripheral and RTOS kernel awareness windows while the processor is running. You can also modify variable values
on the fly. No CPU cycles are used, the program can be running and no code stubs are needed.

You do not need to configure or activate DAP. puVision configures DAP when you select a function that uses it.
Do not confuse this with CMSIS_DAP which is an Arm on-board debug adapter standard.

SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.
SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDO.
Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).

ITM: Instrumentation Trace Macrocell: As used by pVision, ITM is thirty-two 32 bit memory addresses (Port O
through 31) that when written to, will be output on either the SWO or Trace Port. This is useful for printf type
operations. pVision uses Port O for printf and Port 31 for the RTOS Event Viewer. The data can be saved to a file.

9. ETM: Embedded Trace Macrocell: Displays all the executed instructions. The ULINKpro provides ETM. ETM
requires a special 20 pin CoreSight connector. ETM also provides Code Coverage and Performance Analysis. ETM is
output on the Trace Port or accessible in the ETB (ETB has ho Code Coverage or Performance Analysis).

10. ETB: Embedded Trace Buffer: A small amount of internal RAM used as an ETM trace buffer. This trace does not
need a specialized debug adapter such as a ULINKpro. ETB runs as fast as the processor and is especially useful for
very fast Cortex-A processors. Not all processors have ETB. See your specific datasheet.

11. MTB: Micro Trace Buffer. A portion of the device internal user RAM is used for an instruction trace buffer. Only
on Cortex-MO+ processors. Cortex-M3/M4 and Cortex-M7 processors provide ETM trace instead.

12. Hardware Breakpoints: The Cortex-MO0+ has 2 breakpoints. The Cortex-M3, M4 and M7 usually have 6. These can
be set/unset on-the-fly without stopping the processor. They are no skid: they do not execute the instruction they are
set on when a match occurs. The CPU is halted before the instruction is executed.

13. Watchpoints: Both the Cortex-MO0, M0+, Cortex-M3, Cortex-M4 and Cortex-M7 can have 2 Watchpoints. These are
conditional breakpoints. They stop the program when a specified value is read and/or written to a specified address or
variable. There also referred to as Access Breaks in Keil documentation.

© N o o

Read-Only Source Files:

Some source files in the Project window will have a yellow key on them: ﬁ This means they are read-only. This is
to help unintentional changes to these files. This can cause difficult to solve problems. These files normally need no
modification. pVision icon meanings are found here: www.keil.com/support/man/docs/uv4/uv4 ca filegrp att.htm

If you need to modify one, you can use Windows Explorer to modify its permission.
In the Projects window, double click on the file to open it in the Sources window.

Right click on its source tab and select Open Containing folder.

Explorer will open with the file selected.

Right click on the file and select Properties.

Unselect Read-only and click OK. You are now able to change the file in the pVision editor.
It is a good idea to make the file read-only when you are finished modifications.

SR cS @0 [[=

28 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/support/man/docs/uv4/uv4_ca_filegrp_att.htm

31) Document Resources: See www.keil.com/NXP

Books:

1. NEW! Getting Started MDK 5: Obtain this free book here: www.keil.com/mdk5/.

2. Thereisagood selection of books available on ARM: www.arm.com/support/resources/arm-books/index.php

3. MVision contains a window titled Books. Many documents including data sheets are located there.

4. Keil manuals and documents: www.keil.com/arm/man/arm.htm Videos: www.keil.com/videos

5. Alist of resources is located at: www.arm.com/products/processors/cortex-m/index.php

Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

6. The Definitive Guide to the Arm Cortex-M0/MO0+ by Joseph Yiu. Search the web.

7. The Definitive Guide to the Arm Cortex-M3/M4 by Joseph Yiu. Search the web.

8. Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano
Application Notes: www.keil.com/appnotes

9. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

10. Segger emWin GUIBuUilder with pVision™ www.keil.com/appnotes/files/apnt 234.pdf

11. Porting mbed Project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

12. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

13. Using pVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

14. RTX CMSIS-RTOS Download www.keil.com/demo/eval/rtx.htm

15. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html

16. Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

17. Cortex Debug Connectors: www.arm.com and search for cortex_debug_connectors.pdf

18. Sending ITM printf to external Windows applications: http://www.keil.com/appnotes/docs/apnt_240.asp

19. FlexMemory configuration using MDK www.keil.com/appnotes/files/apnt220.pdf

20. NEW! Migrating Cortex-M3/M4 to Cortex-M7 processors: www.keil.com/appnotes/docs/apnt 270.asp

21. NEW! ARMvV8-M Architecture Technical Overview www.keil.com/appnotes/files/apnt 291.pdf

22. NEW! Determining Cortex-M CPU Frequency using SWV www.keil.com/appnotes/docs/apnt_297.asp
Keil Tutorials for NXP Boards: www.keil.com/NXP

1. KL25Z Freedom www.keil.com/appnotes/docs/apnt_232.asp

2. K20D50M Freedom Board www.keil.com/appnotes/docs/apnt_243.asp

3. Kinetis K6ON512 Tower www.keil.com/appnotes/docs/apnt_239.asp

4. Kinetis K60D100M Tower www.keil.com/appnotes/docs/apnt_249.asp

5. Kinetis FRDM-K64F Freedom www.keil.com/appnotes/docs/apnt_287.asp

6. Kinetis K64F120M Tower www.keil.com/appnotes/docs/apnt_288.asp

7. NXP S32K Cortex-M4: www.keil.com/appnotes/docs/apnt_299.asp

Forums: www.keil.com/forum http://community.arm.com/groups/tools/content https://developer.arm.com/

Arm University program: www.arm.com/university. Email: university@arm.com

mbed:

http://mbed.org

For comments or corrections on this document please email bob.boys@arm.com.

For more information on the Arm CMSIS standard: www.keil.com/cmsis,

29 Copyright © 2017 Arm Ltd. All rights reserved

NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www2.keil.com/mdk5/
http://www.arm.com/support/resources/arm-books/index.php
http://www.keil.com/arm/man/arm.htm
http://www.keil.com/videos
http://www.arm.com/products/processors/cortex-m/index.php
http://www.arm.com/
http://www.keil.com/appnotes
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
https://www.keil.com/demo/eval/rtx.htm
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.arm.com/
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://www.keil.com/appnotes/files/apnt220.pdf
http://www.keil.com/appnotes/docs/apnt_270.asp
http://www.keil.com/appnotes/files/apnt_291.pdf
http://www.keil.com/appnotes/docs/apnt_297.asp
http://www.keil.com/appnotes/docs/apnt_232.asp
http://www.keil.com/appnotes/docs/apnt_243.asp
http://www.keil.com/appnotes/docs/apnt_239.asp
http://www.keil.com/appnotes/docs/apnt_249.asp
http://www.keil.com/appnotes/docs/apnt_287.asp
http://www.keil.com/appnotes/docs/apnt_288.asp
http://www.keil.com/appnotes/docs/apnt_299.asp
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://mbed.org/
mailto:bob.boys@arm.com
http://www.keil.com/cmsis

32) Keil Products and Contact Information: see www.keil.com/NXP
Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite™ (Evaluation version) 32K Code and Data Limit - $0
= New MDK-ARM-Essential™ For all Cortex-M series processors - unlimited code limit
= New MDK-Plus™ MiddleWare Level 1. ARM7™, ARM9™, Cortex-M, SecureCore®.
= New MDK-Professional™ MiddleWare Level 2. For details: www.keil.com/mdk5/version520.
For the latest MDK details see: www.keil.com/mdk5/selector/

Keil Middleware includes Network, USB, Graphics and File System. www.keil.com/mdk5/middleware/
USB-JTAG/SWD Debug Adapters A/l ULINK products support MTB. i
= ULINK2 - (ULINK2 and ME - SWV only - no ETM) L
= New ULINKplus- Cortex-Mx High performance SWV & power measurement.

= ULINKpro - Cortex-Mx SWV & ETM instruction trace. Code Coverage and
Performance Analysis.

= ULINKpro D - Cortex-Mx SWV no ETM trace ULINKpro works with Arm DS-5.

You can use OpenSDA on the Kinetis boards. For Serial Wire Viewer (SWV), a ULINKZ2,
ULINK-ME or a J-Link is needed. For ETM support, a ULINKpro is needed. OS-JTAG or
OpenSDA do not support SWV or ETM. KL25 does not have SWV.

= For special promotional or quantity pricing and offers, please contact Keil Sales.

Keil RTX RTOS is now provided under a Berkeley BSD or Apache 2.0 license. This makes it free.
All versions, including MDK-Lite, includes Keil RTX RTOS with source code !

New MDK now supports FreeRTOS. (
}

KEIL
Keil provides free DSP libraries for the Cortex-M processors. DJKEL:
. | DE !(Elk!- Development Tools
Sales can provide advice about the various tools options available to you. They ‘\ ‘i ®
will help you find various labs and appnotes that are useful. ‘\ - ‘;,‘GCS““%.S‘*‘."‘“?
All products are available from stock. il
p - - - - - aa el ot / -
All products include Technical Support for 1 year. This is easily renewed. = 1 | T
Call Keil Sales for special university pricing. Go to www.arm.com/university B £

Keil supports many other NXP processors including ARM9™, Cortex-Rand
Cortex-A processors. See www.keil.com/NXP for the complete list.

For more information:

Sales In Americas: sales.us@keil.com or 800-348-8051. Europe/Asia: sales.intl@keil.com +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.
Global Inside Sales Contact Point: Inside-Sales@arm.com Arm Keil World Distributors: www.keil.com/distis
Forums: www.keil.com/forum http://community.arm.com/groups/tools/content https://developer.arm.com/

JIEMSIS Cortex AarmekeiL

ARM® Cortex™ Microcontroller
Software Interface Standard Intelligent Processors by ARM*

30 Copyright © 2017 Arm Ltd. All rights reserved
NXP Cortex-MO+ Lab with ARM® Keil™ MDK 5 toolkit www.keil.com

http://www.keil.com/mdk5/version520
http://www2.keil.com/mdk5/selector/
http://www.keil.com/mdk5/middleware/
http://www.arm.com/
http://www.keil.com/NXP
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
mailto:mInside-Sales@arm.com
http://www.keil.com/forum
http://community.arm.com/groups/tools/content

