
P a g e | 1

ECE 461/561 agdean@ncsu.edu 2/22/2024

VISUALIZING CODE TIMING

WITH USER-DEFINED SIGNALS

OVERVIEW

We may need to understand the timing of software. Here we look at how long it takes to perform two different floating-

point math operations with slowly changing input data. There are other possible timing questions: When does a function

start and stop relative to other functions? When does an ISR run? How much time elapses between an interrupt request

and the ISR starting? We can use the logic analyzer and debug signals to see the timing characteristics of these events.

The files debug.c and debug.h provide debug signal generation. The following table shows how each DBG_ signal is

allocated to a specific MCU port bit and Analog Discovery DIO signal when plugged into the Analog Discovery with the

connector as shown. (Of course, you’ll need to plug a USB cable into the Analog Discovery to use it.)

Signal Name
in Code

MCU
Port Bit

AD2 DIO
Signal

DBG_0 D0 DIO 0

DBG_1 D2 DIO 1

DBG_2 D3 DIO 2

DBG_3 D4 DIO 3

DBG_4 B8 DIO 4

DBG_5 B9 DIO 5

DBG_6 B10 DIO 6

DBG_7 B11 DIO 7

EXAMPLE PROJECT: DEBUGSIGNALS

The DebugSignals project (available on Github in the class repository in the Tools\TestCode\DebugSignals directory is used

here to demonstrate the concepts and methods. It contains debug.c, debug.h, main.c, and several other files.

P a g e | 2

ECE 461/561 agdean@ncsu.edu 2/22/2024

DEBUG.H

We don’t have to change anything within the debug.h file. However, it will make the code easier to read and maintain if we

define more descriptive names for the debug signals. Here we added #defines so that DBG_MULT is DBG_1, and DBG_SQRT

is DBG_2.

P a g e | 3

ECE 461/561 agdean@ncsu.edu 2/22/2024

MAIN.C

Within the main.c file, we #include the debug.h file. The main() function initializes the debugging support

(Init_Debug_Signals()) and the RGB LED outputs (Init_RGB_LEDs()) on the FRDM-KL25Z. The main() function then repeats a

loop performing floating point multiply and square root operations. Note how these operations are bracketed with

DEBUG_START and DEBUG_STOP macro calls with a debug signal name (DBG_MULT or DBG_SQRT) as the argument.

Build, download and run the program. The LED should look lavender, but it is actually switching between quickly between

yellow and blue.

VIEWING DEBUG SIGNALS WITH WAVEFORMS

• Connect the Analog Discovery to the FRDM/shield stack. On your PC start the Waveforms program and open the

DebugSignals.dwf3work workspace. The workspace has been set up for your convenience.

• Set the logic analyzer to trigger on the rising edge of DBG_MULT (DIO 1) by

clicking in the cell in row DIO 1 and column T and selecting Rise.

• It should now look like this:

P a g e | 4

ECE 461/561 agdean@ncsu.edu 2/22/2024

• Make sure the program is running on the MCU board.

• Press Run in Waveforms.

• You should see a plot like this:

• You may need to adjust the time base (horizontal sensitivity) to zoom in or out. This control is located near the

upper right corner:

• To add more signals, press the green + to add the debug signals based on which DIO signal they are connected

through.

AUTOMATIC MEASUREMENTS

The Waveforms scope tool can measure the input channel characteristics over multiple acquisitions and compute

statistics for you automatically. These have already been set up in the demonstration workspace for the DBG_MULT

and DBG_SQRT signals. This screen shot shows the sqrt operation is much slower than the multiplication, and also has a

wider range of execution times.

Note that the time measurements are limited to the maximum time range shown on the horizontal axis (50 us in this

case). You may need to increase the time per division as the scope is running until the maximum stops increasing.

If you need to add more measurements, follow these steps:

• In the Logic 1 menu, select Measurements. This will show or hide the Measurements window.

• Click the + Add button to get the Add measurement dialog box. Select the digital signal to measure and select

PosWidth (width of positive pulse). Click Add and then click Close.

• Click the Show button and check the Average, Minimum and Maximum entries.

• Click the gear icon and check the Multiple Acquisitions box so the statistics are not reset with each new

acquisistion.

P a g e | 5

ECE 461/561 agdean@ncsu.edu 2/22/2024

CODE MODIFICATIONS FOR AN EXISTING PROJECT

• Files

o If not present in the project directory or a subdirectory, copy debug.c and debug.h in.

• Project Settings

o If debug.c is not already in the Project Source code file list, add it.

• debug.h

o #define descriptive names for debug signals, assigning them to DBG_0

through DBG_7

• main.c

o Add #include “debug.h”

o In the function main(), add a call to Init_Debug_Signals().

• Any .c files where you’ll start or stop the debug signals

o Add #include “debug.h”

o For each timing event to monitor…

▪ Identify the location in the code where the timing event starts. Just before that location, add a

macro to raise the output signal to 1: DEBUG_START(DBG_MY_SIGNAL_POS)

▪ Identify the location in the code where the timing event ends. Just after that location, add a

macro to lower the output signal to 0: DEBUG_STOP(DBG_MY_SIGNAL_POS)

o Note that there is also a DEBUG_TOGGLE macro available to invert the output signal (i.e. change 1 to 0,

and 0 to 1). This may be useful in some cases.

