
P a g e | 1 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

HOMEWORK 1: SOLUTIONS

EXAMINING OBJECT CODE

OVERVIEW

In this lab you will examine the object code created by the compiler for an RTOS-based program which uses many of the

components of the KL25Z Freedom board and expansion shield. You will not run the code, so you do not need an MCU

board or expansion shield to complete this lab.

Objectives:

• Learn how to evaluate key program characteristics through analysis

o Control flow within function

o Function call graph

o Decompiler

• Use build tool output and additional visualization tools to simplify analysis

o IDE, build tools and their output

▪ Linker call graph (hypertext)

▪ Simulator in µVision with disassembly window

o Software reverse engineering tool Ghidra for analysis and visualization

▪ Disassembly, call behavior, control flow, decompilation, etc. from executable program file (AXF)

The revision history appears on the last page.

PROCEDURE

Obtain the project files from GitHub at agdean/ESO-24/HW1/. You will submit three items for this lab:

• Use the Google Form at https://forms.gle/t8WDscJu4xxQKfyu7 to submit answers for most of the numbered

questions in this document.

• Use Moodle to submit a PDF single report

document (PDF or MS Word) with images (scans,

diagrams, screenshots). Please try to retain the

quality of screenshot image quality in your

reports so you don’t lose points. If using MS

Word, please select File->Options->Advanced

and configure Image Size and Quality as shown:

do not compress image info in file, and set

Default Resolution to High Fidelity. Other word

processing programs likely have similar settings

available.

• Use Moodle to submit the Test_Basic.axf file which you built and analyzed.

mailto:agdean@ncsu.edu
https://github.ncsu.edu/agdean/ESO-24/tree/master/HW1
https://forms.gle/t8WDscJu4xxQKfyu7

P a g e | 2 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

GETTING STARTED

MDK-ARM

• If you don’t already have it installed, download MDK (Microvision Developers Kit) from https://www2.keil.com/mdk5

and install it, selecting the MDK-Community edition. Follow the instructions from Lab 0 to come up to speed.

• Open the project (HW1\Test_Basic.uvprojx).

• Select Project->Options for Target.

• Choose the Target tab. In the Code Generation section, verify the ARM Compiler selected is “Use default compiler

version 6” and that “Use Microlib” is not checked as shown below.

• Choose the Listing tab to configure the linker to generate a map file. Verify the Linker Listing section has all boxes

checked.

• On the C/C++ (AC6) tab, make sure the options are set as shown here.

• Click OK to apply all these changes.

• Build the program.

1. Find and copy the “*** Using Compiler ….” line from the build output window. For example: *** Using Compiler

'V6.13.1', folder: 'C:\Keil_v5\ARM\ARMCLANG\Bin'

GHIDRA

Follow the Ghidra installation instructions on the course’s References page under Software/Tools/Ghidra.

mailto:agdean@ncsu.edu
https://www2.keil.com/mdk5

P a g e | 3 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

Start Ghidra and create a new project (as described on the course’s References page under Software/Tools/Ghidra) to

examine the axf file for this lab.

2. In Ghidra, open the Help menu, select “About Ghidra” and copy the version number, build information and Java

version. For example, “Version 10.2.2 Build Public 2022-Nov-15 1249 EST Java Version 17.0.5”

EXAMINING OBJECT CODE AND CONTROL FLOW

Object code is confusing enough by itself. The branch instructions that change the control flow make it even worse. Here

we’ll start simple and work our way into more complex code.

IGNORING CONTROL FLOW

First we’ll use the debugger’s simulator to examine the mixed code listing (object code with source code interleaved).

Configure MDK-ARM’s target options to use the Debug Simulator rather the actual KL25Z MCU, as shown below.

Start a debug session (using Control-F5) to examine the disassembled code. Do not start the program running.

Open the file timers.c in the source code window. Place the cursor at the beginning of the Configure_TPM2_for_DMA

function, which should be at line 3. This will bring up the corresponding object code in the disassembly window. If that

window is not visible, open it with View->Disassembly Window.

mailto:agdean@ncsu.edu

P a g e | 4 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

For the following questions, look in the disassembly window to see the object code which implements the function.

1. How is the parameter period_us passed to this function? Through register r0

2. Which is the first instruction of the function Configure_TPM2_for_DMA? Include address, machine code, opcode and

operand.

3. The register r1 is loaded with a value which is then used by several store register instructions (str). What is the

hexadecimal value loaded into r1, and what does it represent? The value loaded is the word 0x4003a000 (4 bytes s

stored starting at 0x18300). It is the address of the TPM2 peripheral’s status and control (SC) register.

4. What does #0x30 represent in the instruction movs r2, #0x30? 48, which is the conversion factor from clock cycles

(at 48 MHz) to microseconds.

mailto:agdean@ncsu.edu

P a g e | 5 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

5. 561 Only: What is the instruction uxth … doing, and why? Unsigned extension of lower halfword in r2 into word

register r0. So r0 gets the lower halfword of r2, but zeroes in the upper halfword. r0 is then stored at [r1,#0x08] =

0x4003a008, which is the register TPM2_MOD. This code writes to TPM2->MOD:

Right-clicking on TPM_MOD_MOD and selecting “Go to definition” brings up this code:

The argument period_us*48 is ANDed with TPM_MOD_MOD_MASK, which is defined as 0xFFFF, which is 0x0000FFFF.

That is why the assembly code zeroes out the upper halfword of the argument.

6. Which instruction performs the return-from-subroutine? Include address, machine code, opcode and operand.

SIMPLE CONTROL FLOW

In the MDK debugger source code window, open the file OL_HBLED.c and click on the function

Set_OL_HBLED_Pulse_Width. This will bring up the object code in the disassembly window. If that window is not

visible, open it with View->Disassembly Window.

1. Identify each basic block in the function, listing them in order of increasing address. Assume that a subroutine call (bl,

blx) ends a basic block. Use this format to describe each basic block:

< first-instr-start-adx last-instr-start-adx last-instr-changes-control-flow successor_adx >

▪ Possible values of last-instr-changes-control-flow are no, yes-branch, yes-call and yes-return

▪ There may be from zero to multiple successor_adx entries for a basic block.

▪ Separate each basic block description with a space or new-line

Example:

<0x1234 0x1240 yes-branch 0x1242 0x128a> <0x1242 0x1248 no 0x124a> <0x124a 0x124c yes-return>

<0x1234 0x1240 yes-branch 0x1242 0x128a> describes a basic block starting at 0x1234 and ending with the instruction

starting at 0x1240. The basic block ends in a branch which leads to the basic block starting at 0x128a if taken. If the

branch is not taken, the next basic block to execute starts at 0x1242.

mailto:agdean@ncsu.edu

P a g e | 6 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

<0x1242 0x1248 no 0x124a> describes a basic block starting at 0x1242 and ending with the instruction starting at

0x1248. The basic block ends without a branch. The next basic block to execute starts at 0x124a.

The regular expression used for validation is:

(\s*<0x[0-9a-fA-F]+ 0x[0-9a-fA-F]+ (no|yes-branch|yes-call|yes-return)(0x[0-9a-fA-F]+)*>\s*)+

<0x346c 0x3472 yes-branch 0x3474 0x3476>

<0x3474 0x3474 no 0x3476>

<0x3476 0x347a yes-call>

<0x347e 0x347e yes-return>

2. Draw the control flow graph, labeling each basic block with its number and starting address and marking the control-

flow edges as T, F, or A (for true, false and always). You can draw by hand or use a program (e.g. gvedit in the graphviz

package (https://graphviz.gitlab.io/download/)). Submit this diagram in your report.

In Ghidra’s Function window pane, select the function Set_OL_HBLED_Pulse_Width. This will bring up the disassembly

listing in the Listing pane. Select the “Display Function Graph” icon in the toolbar near the top of the CodeBrowser

window. This will open a window with the control flow graph (CFG) of that function.

3. Capture a screenshot of the function’s CFG and include it in your report.

4. 561 Only: How are the two CFGs different? Why do you think Ghidra generates the CFG differently?

The Ghidra CFG has three basic blocks instead of four. It doesn’t use a subroutine call as a reason to end a basic block.

mailto:agdean@ncsu.edu
https://graphviz.gitlab.io/download/)

P a g e | 7 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

COMPLEX CONTROL FLOW

In Ghidra’s Function window pane, select the function LCD_Controller_Init. This will bring up the disassembly listing in

the Listing pane. Select the “Display Function Graph” icon in the toolbar near the top of the CodeBrowser window.

This will open a Function Graph window with the control flow graph (CFG) of that function. You can grab and move basic

blocks to improve the layout manually. Ghidra offer many different methods to automatically lay out the control flow

graph. The default is called “Nested Code Layout.”

Examine each of the different layout methods available using the “Relayout Graph” button marked above in magenta.

Initially the icon is , but it may change (for example to) for some layout methods. However, it should remain

in the same position on the toolbar.

1. Which layout method produces the CFG (without manual modifications) which is easiest for you to understand?

This is entirely up to you. (Example below is VHMCLP).

mailto:agdean@ncsu.edu

P a g e | 8 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

2. Capture screenshot of the function’s CFG using that layout and include it in your report.

One of the basic blocks in the CFG returns from the subroutine by using a pop instruction which loads the PC.

3. Include a screenshot of that basic block in your report.

4. Which C source code statements does that basic block’s instructions implement (including the subroutine return })?

Examine the C source code (in ST7789.c) using the MDK debugger’s source code window. Enter the C source code

statements.

mailto:agdean@ncsu.edu

P a g e | 9 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

The function uses a loop to write a series of initialization command and data bytes to the LCD controller.

5. Which register is used to hold the variable i? r4

6. Find the basic block which increments variable i within the loop and take a screenshot and include it in your report

7. 561 Only: Why is variable i incremented by 2 instead of 1? Hint: look at the definition of the LCD_CTLR_INIT_SEQ_T

data type.

The variable i is only used to index the array init_seq. Each element in that array is of type LCD_CTLR_INIT_SEQ_T. That

is a struct with two uint8_t fields (each one byte long), so the struct is two bytes long.

Before optimization, in each iteration the code would need increment i by one in and then multiply it by 2 to get the

address of element[i]. Incrementing i by two simplifies the code by turning these two operations into one.

The function uses a switch statement to select one of multiple possible cases for execution.

mailto:agdean@ncsu.edu

P a g e | 10 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

8. Which register is used to select the case? r2

9. What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_CMD case? Note that

in MDK you can left-click in a symbol name and press F12 to bring up its definition (e.g. numerical value). 0x1cb6

10. What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_DAT case? 0x1c8e

11. What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_END case? 0x1cb4

12. Why is there no code or basic block implementing the default case? The default case is empty (only has a break

statement), so there is no code needed for it.

The control flow from two of the cases (1 and 2) merges into a common basic block (with a store register instruction str)

before repeating the loop.

mailto:agdean@ncsu.edu

P a g e | 11 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

13. Take a screenshot of the three basic blocks. Make sure the resolution is good enough to read the instructions. You may

want to move the basic blocks for clarity. Include it in your report.

14. 561 Only: What does that common basic block do, and what is at the address targeted by the store register

instruction? The common basic block stores r2 to the memory location 0xf80ff084. This is the address of the Fast GPIO

C port set output register PSOR.

15. 561 Only: Explain why you think the compiler generated the merge.

The compiler removed duplicated code. In the source code, the cases call LCD_24S_Write_Command or

LCD_24S_Write_Command, but the compiler has inlined both of these calls. Both of these functions end in similar code

(using the macro GPIO_SetBit, which writes to FGPIOC_PSOR) but with different data.

The compiler sees there is common code in both cases, and so it has them merge just before the common code.

EXAMINING FUNCTION CALLING BEHAVIOR

LINKER STATIC CALL GRAPH

Programs typically contain multiple threads and exception/interrupt handlers. Each can call functions independently of

other threads or handlers. Subroutine calls and high-level language features hide or encapsulate information to make the

source code easier to understand. (Consider adding two integers vs. adding two floating-point values on a CPU without

hardware support for floating-point math). A static function call graph helps understand part of a program’s structure and

possible behavior by showing all possible function-calling behavior of the program, even if it is hidden within other

mailto:agdean@ncsu.edu

P a g e | 12 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

subroutine calls. Which calls occur, how often, and in which order depends on the program’s structure and probably input

data; this information would be in a dynamic call graph for a specific run of the program with specific input data.

The linker can generate a static call graph for the program during each build. To do this, make sure the Callgraph box is

checked in the Options for Target -> Listing -> Linker Listing section. The other boxes may be checked or unchecked,

depending on your goals. Note that the call graph will not be created in the linker listing file (e.g. .\Listings\....map). Instead,

it will be created in a separate file. Two output formats are available: hypertext (default) and plain-text. The hypertext file

<project_name>.htm will be created in the Objects directory.

We will continue examining the function LCD_Controller_Init. Use a web browser to open the call graph htm file in

the project’s Objects directory.

1. Which function(s) can LCD_Controller_Init call directly (i.e. without intervening nested calls)? Delay

2. Which function(s) can call LCD_Controller_Init directly? LCD_Init

Examining the C source code for LCD_Controller_Init seems to show ten possible function calls. This does not match

the linker’s call graph information above. Use the MDK debugger’s disassembly window to examine the object code for

LCD_Controller_Init.

3. Which function calls actually appear in the object code? Three calls to Delay

C-language macros are created by #define MACRO_NAME (MACRO BODY CODE) statements. An early stage of the

compiler preprocesses the input files. In this stage it replaces all uses of macro names with the macro body code.

4. Which apparent function calls in LCD_Controller_Init are actually uses of macros? GPIO_SetBit, GPIO_ResetBit

5. Which function calls are missing because the compiler inlined the function body code? LCD_24S_Write_Data,

LCD_24S_Write_Command

GHIDRA STATIC CALL GRAPHS AND TREES

Ghidra can create function call trees and call graphs. Ghidra uses hierarchical text listings to represent call trees. These

show the functions which can be called by this function (Outgoing Calls) or which can call this function (Incoming Calls). A

call graph is a diagram with nodes (vertices) representing functions, and connections (edges) representing calls.

Use Ghidra’s Functions window pane to select the function of interest. If the Function Call Trees window is not open, open

it with the menu option Window -> Function Call Trees: …. The call trees will be automatically updated as you select

different functions in the Functions window.

mailto:agdean@ncsu.edu

P a g e | 13 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

1. Which function(s) can LCD_Controller_Init call directly (i.e. without intervening nested calls)? Delay

2. Which function(s) can call LCD_Controller_Init directly? LCD_Init

3. Right-click on “Incoming References” and select “Expand Nodes to Depth Limit” to see all the functions which can

indirectly call LCD_Controller_Init. List the function names. __rt_entry_postli_1, main

Our program needs to perform unsigned integer division but the CPU lacks that kind of instruction. Instead, the compiler

links in a library function __aeabi_uidiv which performs an unsigned integer division. Use Ghidra’s Functions window

pane to select this function.

4. Which functions can call __aeabi_uidiv directly? LCD_Init, OS_Tick_Setup,

Thread_Read_TS, LCD_TS_Read, Thread_Sound_Manager

Ghidra can create a function call graph, as shown in the diagram to the right. If the Function

Call Graph window is not open, open it with the menu option Window -> Function Call

Graph: …. If it is open, then the call graph for the function will be automatically updated. By

default, the call graph only shows the function and its direct callers and callees (incoming

and outgoing calls).

• Left-click on a function node to select it: if the function has any outgoing calls a +

symbol will appear.

• Right-click on the node and you will be able to show outgoing edges (callees) from that

node or from all the nodes on that level. Or, click on the + symbol to show the outgoing

edges (callees) for only that node.

Whether you want indirect callers/callees hidden or shown depends on your analysis goals and the program size.

5. Use Ghidra to create a function call graph for __aeabi_uidiv, showing functions which can call it directly or

indirectly. Take a screenshot and include it in your report.

SOURCE CODE VS. DECOMPILED CODE

In MDK-ARM, view the source code for the function Get_DMA_Transfers_Completed, located in DMA.c.

mailto:agdean@ncsu.edu

P a g e | 14 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

1. Take a screenshot of the function’s C source code from MDK-ARM and put it in your report.

In Ghidra’s Functions pane, click on Get_DMA_Transfers_Completed to select it. At the bottom of the Functions pane,

select the Decompile: tab. This should bring up the decompiled view of function. Ghidra has been able to name the function

and the arguments because the axf object file contains some debug symbol (name) information.

2. Take a screenshot of the decompiled Get_DMA_Transfers_Completed function code and put it in your report.

3. What is uVar1 used for? Return value of -1, or bytes_xferred/2

4. What is uVar2 used for? bytes_xferred

5. What is uVar3 used for? switch statement argument (result of (DMA0->DMA[ch].DCR & DMA_DCR_SSIZE_MASK) >>

DMA_DCR_SSIZE_SHIFT)

6. What is DAT_40008108 and how is it used here? Hint: examine the source and object code. This is the address of DMA0

Status Reg./Byte Count Reg. for Channel 0. It is used as base pointer to access channel ch (argument to function).

7. Are the switch cases in the same order in both the source and decompiled code? If not, what is the order for the

decompiled code? No, the decompiled code cases are in order 2, 1, 0, but the source code is in order 0, 1, 2.

mailto:agdean@ncsu.edu

P a g e | 15 v1.1

 NCSU ECE 461/561 – Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

For the next three questions, consider the source code statement if (bytes_xferred < 0).

8. How does the decompiled code represent this statement? if (-1 < (int)uVar2)

9. How is the decompiled code different? The terms are reversed, the comparison has changed (was var < 0?, became -1 <

var?), type of bytes_xferred has changed from int32_t to uint.

10. 561 Only: Examine the CFG. Which two assembly code instructions (comparison and conditional branch) implement

that statement?

For the next two questions, consider the source code statements bytes_xferred/4 and bytes_xferred/2.

11. How are the statements implemented in the decompiled code? right shift >> by 2 or 1

12. How are the statements implemented in the assembly code? logical shift right, set condition code flags: lsrs by #2 or #1

13. 561 Only: Consider the number of return statements in the function. How many are in the source code, and how many

are in the decompiled code? If they are not the same, explain what the compiler did. Hint: examine the CFG for

subroutine returns.

The source code has five returns (bytes_xferred < 0, cases 0, 1, 2, default). The decompiled code has three.

The compiler generated code to merge three returns (for bx < 0, default case and case 2) into one.

REVISION HISTORY

V1.0

Base version.

V1.1

Changed control.c to OL_HBLED.c.

mailto:agdean@ncsu.edu

