Page |1 vl.l

HOMEWORK 1: SOLUTIONS
EXAMINING OBJECT CODE

OVERVIEW

In this lab you will examine the object code created by the compiler for an RTOS-based program which uses many of the
components of the KL25Z Freedom board and expansion shield. You will not run the code, so you do not need an MCU
board or expansion shield to complete this lab.

Objectives:
e Learn how to evaluate key program characteristics through analysis
o Control flow within function
o Function call graph
o Decompiler
e Use build tool output and additional visualization tools to simplify analysis
o IDE, build tools and their output
= Linker call graph (hypertext)
= Simulator in pVision with disassembly window
o Software reverse engineering tool Ghidra for analysis and visualization
= Disassembly, call behavior, control flow, decompilation, etc. from executable program file (AXF)

The revision history appears on the last page.

PROCEDURE

Obtain the project files from GitHub at agdean/ESO-24/HW1/. You will submit three items for this lab:
e Use the Google Form at https://forms.gle/t8 WDscJu4xxQKfyu7 to submit answers for most of the numbered
questions in this document.
e Use Moodle to submit a PDF single report
document (PDF or MS Word) with images (scans,
diagrams, screenshots). Please try to retain the Display

General
[7] Use pen to select and interact with content by default

quality Of Screenshot image quality in your Proofing Image Size and Quality |@ Examining Object Code Lab Exercise.docx ':
Save [Discard editing data O]

reports so you don’t lose points. If using MS
B oot compress images in file O]

. . Language

Word, please select File->Options->Advanced rccesity Defaultresolution:® [Figh ey <)
and configure Image Size and Quality as shown: TS
d t . . f . fl d t FETERERE Chart |@E}(amming Object Code Lab Exercise.docx ~

0 not compress image info in file, and se — ' :

P g ! Customize Ribban [] Properties follow chart data point@
Default Resolution to High Fidelity. Other word
g y Quick Access Toalbar Show document content

processing programs likely have similar settings Add-ins

[Show background celors and images in Print Layout view
aValla ble Trust Center [Show text wrapped within the document window

e Use Moodle to submit the Test_Basic.axf file which you built and analyzed.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu
https://github.ncsu.edu/agdean/ESO-24/tree/master/HW1
https://forms.gle/t8WDscJu4xxQKfyu7

Page |2

GETTING STARTED

vl.l

MDK-ARM

e If you don’t already have it installed, download MDK (Microvision Developers Kit) from https://www2.keil.com/mdk5

and install it, selecting the MDK-Community edition. Follow the instructions from Lab O to come up to speed.
e Open the project (HW1\Test_Basic.uvprojx).
e Select Project->Options for Target.
e Choose the Target tab. In the Code Generation section, verify the ARM Compiler selected is “Use default compiler
version 6” and that “Use Microlib” is not checked as shown below.
{ B Options for Target ‘Target 1 - -
Device Target | Output | Listing | User | C/C++(ACE) | Asm | Linker | Debug | Uities |

NXP MKL25Z21280m4 Code Generation
ARM Compiler: |Use default compiler version & j

Xal (MHz): [12.0

Operating system: |RTX Kemel J
System Viewer File: ™ Use MicroLIB -

[MKL25Z4 svd J

[Use Custom File

e Choose the Listing tab to configure the linker to generate a map file. Verify the Linker Listing section has all boxes
checked.
e Onthe C/C++ (AC6) tab, make sure the options are set as shown here.

SO

KA Options for Target Target 1° *
Device] Target I Output] Listing] User C/C++(ACE) Iﬂsm I Linker] Debug] Litilties]

Preprocessor Symbols

i Define: [CLOCK_SETUP=1

Undefine: |

Language / Code Generation

[Execute-only Code Wamings: |ACSike Wamings Language C: |39 -
? Optimization: |03 ~| I~ Tum Wamings into Emors Language C++: |g++11 -
| [Link-Time Optimization [Plain Char s Signed [V Short enums./wchar
[~ Spiit Load and Store Muttiple ™ Read-Only Position Independert [use RTTI
¥ One ELF Section per Function I Read-Write Position Independent ™ Mo Auto Includes
Include |.f|nc|ude;.f50urce;.fSource,-’LCD;.,-’Source,-'PrUfiIer E
Paths
Misc |
Controls

Compiler [.c std=c99 —target=amm-amm-none-eabi mcpu=cortex-mplus <

C;"‘?""' no-tti funsigned-char fshort-enums fshort-wechar
Ting

| OK | | Cancel | | Defaults

e (Click OK to apply all these changes.

e Build the program.
1. Find and copy the “*** Using Compiler” line from the build output window. For example: *** Using Compiler
'V6.13.1', folder: 'C:\Keil_v5\ARM\ARMCLANG\Bin'

GHIDRA

Follow the Ghidra installation instructions on the course’s References page under Software/Tools/Ghidra.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu
https://www2.keil.com/mdk5

Page |3

vl.l

Start Ghidra and create a new project (as described on the course’s References page under Software/Tools/Ghidra) to

examine the axf file for this lab.

2. In Ghidra, open the Help menu, select “About Ghidra” and copy the version number, build information and Java

version. For example, “Version 10.2.2 Build Public 2022-Nov-15 1249 EST Java Version 17.0.5”

EXAMINING OBJECT CODE AND CONTROL FLOW

Object code is confusing enough by itself. The branch instructions that change the control flow make it even worse. Here

we’ll start simple and work our way into more complex code.

IGNORING CONTROL FLOW

First we'll use the debugger’s simulator to examine the mixed code listing (object code with source code interleaved).

Configure MDK-ARM'’s target options to use the Debug Simulator rather the actual KL25Z MCU, as shown below.

m Options for Target Target

{* Use Simulator with restrictions
[T Limit Speed to Real-Time

¥ Load Application at Startup [+ Run to main{)
Initiglization File:

| []

Restore Debug Session Settings
¥ Breakpoints [+ Toolbox
v Watch Windows & Peformance Analyzer
¥ Memary Display [System Viewer

CPU DLL: Parameter:

Device] Tanget] Output] Listing] User] C/C+ [P«CE}-] Asm] Linker Debug] Litilities]

Settings | | © Use: |CMSIS-DAP Debugger x| Settings

¥ Load Application at Startup [+ Run to main{)
Initialization File:

| IS R

Restore Debug Session Settings
[v Breakpoirts ¥ Toolbox
[v Watch Windows
[v Memory Display v System Viewer

Driver DLL: Parameter:

|SAF~!MCM3.DLL |
Dialog DLL: Parameter:

|5ARMCM3_DLL |
Dialog DLL: Parameter:

|DAF~:MCM1.DLL |-pCMD+

[~ Wam if outdated Executable is loaded

|TAF~:MCM1.DLL |-pCMD+

[~ Wam if outdated Executable is loaded

Manage Component Viewer Description Files ... |

QoK | Cancel Defaults | Help

-

Start a debug session (using Control-F5) to examine the disassembled code. Do not start the program running.

Open the file timers.c in the source code window. Place the cursor at the beginning of the Configure_TPM2_for_DMA

function, which should be at line 3. This will bring up the corresponding object code in the disassembly window. If that

window is not visible, open it with View->Disassembly Window.

NCSU ECE 461/561 — Embedded System Optimization

A.G. Dean

agdean@ncsu.edu

2/21/2024

mailto:agdean@ncsu.edu

Page |4

For the following questions, look in the disassembly window to see the object code which implements the function.

0x00001828 0200 LSLS r0,r0,#8

125: {
126: // disable TPM
0x00001818 4905 LDR rl, [pc,#20] ; @0x00001830
0x0000181A 2200 MOVS 2, #0x00
127: TPM2->5C = 0;
128: f/load the counter and mod
126: TPM2->MOD = TPM MOD MOD(period_us*48):
0x0000181C 600A STR r2, [rl, #0x00]
0x0000181E 2230 MOVS r2,#0x30
130: f//set TFM to count up and divide by 1 prescaler and clock mode
131: TPM2->5C = (TPM_SC_DMA MASK | TPM_SC_PS(0)):
132:
0x00001820 4342 MULS r2,r0,r2
0x00001822 B290 UXTH 0,2
0x00001824 6088 STR r0, [xl,#0x08)
0x00001826 2001 MOVS r0, #0x01

‘Ignore—disassembler.is confused

141: }

~|gnore=disassembler is confused

0x0000182A 6008 STR x0, [xrl, #0x00]

~Ignore — disassembler is confused

0x0000182C 4770 BX ir

0x0000182E 4€CO MoV r8,r8
0x00001830 AQ00 DCW 0xR000
0x00001832 4003 DCW 0x4003

1. Howis the parameter period_us passed to this function? Through register r0
Which is the first instruction of the function Configure_TPM2_for_DMA? Include address, machine code, opcode and

operand.

hxDDDDlSlS 43905 LDE

r1, [pc, $20] |

3. Theregister rl is loaded with a value which is then used by several store register instructions (str). What is the
hexadecimal value loaded into r1, and what does it represent? The value loaded is the word 0x4003a000 (4 bytes s
stored starting at 0x18300). It is the address of the TPM2 peripheral’s status and control (SC) register.

0x00001830 A000 DCW
0x000018532 4003 DCH

OxB000
0x4003

TPM memory map (continued)

Chapter 31 Timer/PWM Module (TPM)

Absolute
address Register name
(hex)

Width
(in bits)

Section/

Access | Reset value page

4003_A000 |Status and Control (TPM2_SC)

R/W | 0000_0000h | 31.3.1/552

4003_A004 |Counter (TPM2_CNT)

R/W | 0000_0000h | 31.3.2/553

4003_A008 |Modulo (TPM2_MOD)

R/W | 0000_FFFFh | 31.3.3/554

4003_A00C |Channel (n) Status and Control (TPM2_C0SC)

BB B[R

R/W | 0000_0000h | 31.3.4/555

vl.l

4. What does #0x30 represent in the instruction movs r2, #0x30? 48, which is the conversion factor from clock cycles

(at 48 MHz) to microseconds.

NCSU ECE 461/561 — Embedded System Optimization

A.G. Dean

agdean@ncsu.edu

mailto:agdean@ncsu.edu

Page |5 vl.1l

5. 561 Only: What is the instruction uxth ... doing, and why? Unsigned extension of lower halfword in r2 into word
register r0. So r0 gets the lower halfword of r2, but zeroes in the upper halfword. r0 is then stored at [r1,#0x08] =
0x4003a008, which is the register TPM2_MOD. This code writes to TPM2->MOD:

/f1load the counter and mod
TPM2->MOD = TPM MOD MOD(period us*43);

Right-clicking on TPM_MOD_MOD and selecting “Go to definition” brings up this code:

* mKkL2szaH

€146 | /* MOD Bit Fields */

6147 | #define TPM MOD_MOD MASK 0xFFFFu

6148 fine TEPM MOD MOD SHIFT 0

6149 fine TEM_MOD_MOD_WIDTH 16

6150 | #define TPM MOD_MOD (x) (((uint32_t) (((uint32_t) (x))<<TPM_MOD_MOD_SHIFT))&TFM MOD MOD_ MASK)

The argument period_us*48 is ANDed with TPM_MOD_MOD_MASK, which is defined as OxFFFF, which is 0XOO00FFFF.
That is why the assembly code zeroes out the upper halfword of the argument.

6. Which instruction performs the return-from-subroutine? Include address, machine code, opcode and operand.
|0x0000132C 4770 BX 1r

|SIMPLE CONTROL FLOW

In the MDK debugger source code window, open the file OL_HBLED.c and click on the function
Set_OL_HBLED Pulse Width. This will bring up the object code in the disassembly window. If that window is not
visible, open it with View->Disassembly Window.

24: void Set_CL_HBLED_Pulse_Nldch(uznt;é_t pw)
0x0000346C BS580 PUSH {x7,1r}
0x0000346E 4602 MOV r2,x0
253 if (pw > LIM DUTY_ CYCLE)
26: pw = LIM DUTY CYCLE;
0x00003470 280F cMP xr0, #0x0F
0x00003472 D300 BCC 0x0000347¢6
0x00003474 220F MOVS r2,$0x0F
0x0000347¢6 4802 LDR x0, [pc,#8] ; @0x00003480
0x00003478 2104 MOVS rl, #0x04
27: PWM Set Value (TPM_HBLED, PWM HBLED CHANNEL, pw):’
0x0000347A F7FFFF21 BL.W 0x000032C0 PWM_Set_Value
28:
29:
0x0000347E BD8O POP {x7,pc}
0x00003480 8000 DCW 0x8000
0x00003482 4003 DCW 0x4003

1. Identify each basic block in the function, listing them in order of increasing address. Assume that a subroutine call (bl,
blx) ends a basic block. Use this format to describe each basic block:
< first-instr-start-adx last-instr-start-adx last-instr-changes-control-flow successor_adx >
= Possible values of last-instr-changes-control-flow are no, yes-branch, yes-call and yes-return
= There may be from zero to multiple successor_adx entries for a basic block.
= Separate each basic block description with a space or new-line
Example:
<0x1234 0x1240 yes-branch 0x1242 0x128a> <0x1242 0x1248 no 0x124a> <0x124a 0x124c yes-return>

<0x1234 0x1240 yes-branch 0x1242 0x128a> describes a basic block starting at 0x1234 and ending with the instruction
starting at 0x1240. The basic block ends in a branch which leads to the basic block starting at 0x128a if taken. If the
branch is not taken, the next basic block to execute starts at 0x1242.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu

Page |6 vl.1l

<0x1242 0x1248 no 0x124a> describes a basic block starting at 0x1242 and ending with the instruction starting at
0x1248. The basic block ends without a branch. The next basic block to execute starts at 0x124a.

The regular expression used for validation is:

(\s*<0x[0-9a-fA-F]+ 0x[0-9a-fA-F]+ (no|yes-branch|yes-call| yes-return)(0x[0-9a-fA-F]+)*>\s*)+

<0x346¢c 0x3472 yes-branch 0x3474 0x3476>
<0x3474 0x3474 no 0x3476>

<0x3476 0x347a yes-call>

<0x347e 0x347e yes-return>

2. Draw the control flow graph, labeling each basic block with its number and starting address and marking the control-
flow edges as T, F, or A (for true, false and always). You can draw by hand or use a program (e.g. gvedit in the graphviz
package (https://graphviz.gitlab.io/download/)). Submit this diagram in your report.

In Ghidra’s Function window pane, select the function Set_OL_HBLED_Pulse_Width. This will bring up the disassembly
listing in the Listing pane. Select the “Display Function Graph” icon "% in the toolbar near the top of the CodeBrowser
window. This will open a window with the control flow graph (CFG) of that function.

3. Capture a screenshot of the function’s CFG and include it in your report.

- Set_OL_HBLED_Pulse_Width @D M
void __ stdcall Set_OL HBLED Pulse Width(uintlé_t pw)
void <VOID: <RETURN>

uintlé_t

«.346c push (7,
..3462 mov
...3470 cmp pw,#0xf
«.3472 bcc LAB 0000347¢€

[Bo6os474 - | M
[...3474 movs r2,#0xf

3476 -LAB_000... g ~) | W
LAB 00003476

...3476 ldr pw,[__arm cp.1_0]

3478 movs . #0x4

3472 bl t.

..347e pop [r7,pc}

4. 561 Only: How are the two CFGs different? Why do you think Ghidra generates the CFG differently?

The Ghidra CFG has three basic blocks instead of four. It doesn’t use a subroutine call as a reason to end a basic block.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu
https://graphviz.gitlab.io/download/)

Page |7 vl.1l

COMPLEX CONTROL FLOW

In Ghidra’s Function window pane, select the function LCD_Controller_Init. This will bring up the disassembly listing in
the Listing pane. Select the “Display Function Graph” icon "™ in the toolbar near the top of the CodeBrowser window.
This will open a Function Graph window with the control flow graph (CFG) of that function. You can grab and move basic
blocks to improve the layout manually. Ghidra offer many different methods to automatically lay out the control flow
graph. The default is called “Nested Code Layout.”

File Edit Mavigation 5earch Select Tools Help

B &= PREEPRD | JOIDULFV| oo
& Function Graph - Test Fault-22v... [[| & | Sl ~|BE2 | & - Q- | & x|

Examine each of the different layout methods available using the “Relayout Graph” button marked above in magenta.

a
o - -

o
= , but it may change (for example to ’
in the same position on the toolbar.

Initially the icon is

) for some layout methods. However, it should remain

1. Which layout method produces the CFG (without manual modifications) which is easiest for you to understand?
This is entirely up to you. (Example below is VHMCLP).

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu

Page |8

2.

Capture screenshot of the function’s CFG using that layout and include it in your report.

vl.l

s in o - 0|

LAB 0000lcad

...lcad adds

s -)|
LAB 0000lcaé
..lcaé ldrb r2, [r4,#0x0]
..lcas cmp r2,#0xl
..lcaa beq LAB 0000lché

l=—

-0 W
r2, $0x2
LAB_00001cSe

~

| TES
..lcac cmp
..lcae beg

00001¢58 - LCD_Controller_Irit ¥-@80| W
oid _ stdcall LCD_Controller Init(LCD_CTLR_INIT_SEQ T ..
void <VOID> <RETURN>
: r0:4 init_seq
Stack[-0x18]:4 local_la
Stack[-0xlc]:4 local_le
ntroller_Init

..lc58 1r}
..lc5a sub =p,#0xc

..lc5c mov r4,init seg

..lcSe 1dr init seq, [->LCD on]

.1c60 movs rS5,$0x1

..1c62 str S, [init_seq->Type, #0x0]=>...
..lcéd 1sls

..lcéé ldr

..lcE8 str

..lcéa lsls

..lcéc str

...lcée lsls
...1c70 str
...1c72 str

, [r6, $#0x8]=>DAT_f8...

...1c74 mows init_seq, #0x64

..1c76 str init_seq, [sp, $local_lc]
..1€78 b1

.lete ldr #local 18]
.lele str #0x4] =>DBT_£8...
.1c80 ldr #local lc]
.ulc82 bl

0xc
init_seq, [r6,$0x4]=>DAT_f&...
rl, [__arm cp.5_2]
LAB_00001caé

..1c96 1sls init_seq,r5

...1c88 str
...lc8a ldr
...lcBc b

\ ..lcge ldr ¢
.1c90 r

.undau -0 W
wlcb0 cmp 2, $0x0

..1ch2 bne LAB_0000lcad
[00001cb4 -0 |
..lcbd b LAB_0000lcdd

-lun-LAa,nn‘.. -0 M

LAB_00001cd0
«.lcd0 movs init_seq,#0xa
.led2 b1 Delay

..lcdé add
...1cd8 pop

-m-uﬂfnnmmmie -0 X

LAB 00001lcBe
2, [r€, #0x0]=>DAT_f80££080

lcsz
L 1csd
RELY;
legs
© lecE str
.lcga
.lecs str
.lese
.lcca str
e o
e ..1oce mov
s
loee b

-6 _LAB_00001ch6

-0 W

LAB 00001ché

[r€, #0x0]=>DAT_£30££050
[rd, #0x1]

,#0x3
&, #0x0]=>DAT_£E0££080

[z€, #0x0]=>DAT_£E0L.
[r€, #0x
7, [£€, #0x4]
r2,init_seq

LAB_00001ca2

—

-0 M

-LAB_00001ca2 7)
LB 00001lca2
..lca2 str r2,[ré,#0x4]=>DAT_£20££084

One of the basic blocks in the CFG returns from the subroutine by using a pop instruction which loads the PC.

3.

Include a screenshot of that basic block in your report.

¥

.)lﬂiﬂ—LAE_Uﬂ... 5~ O

|

wledl mowvs
wlod2 b1 Delay
welodé

«.led8 pop

LAE 00001cdO
init_ seq, #0xa

add sp,#0x

Which C source code statements does that basic block’s instructions implement (including the subroutine return })?

Examine the C source code (in ST7789.c) using the MDK debugger’s source code window. Enter the C source code

statements.

235
236 | }

Delay (10):

A.G. Dean

NCSU ECE 461/561 —

Embedded System Optimization

agdean@ncsu.edu

2/21/2024

mailto:agdean@ncsu.edu

A.G. Dean

Page |9

Which register is used to hold the variable i? r4

Find the basic block which increments variable i within the loop and take a screenshot and include it in your report

.noumt&-m...ﬁ’ - | W

LAB 00001lcal

...lcad adds ri,rd,$0x2

A Ik

The function uses a loop to write a series of initialization command and data bytes to the LCD controller.

vl.l

561 Only: Why is variable i incremented by 2 instead of 1? Hint: look at the definition of the LCD_CTLR_INIT_SEQ_ T

data type.

cypedef struct {
uint8_t Type; // 0: end, 1: command, 2: data
wints_t Value;

} LCD CTLR_INIT SEQ_T; // sequence of commands and

while (!'done) {
switch (init_seg[i] .Type) {
case LCD CTRL INIT SEQ CMD:
LCD 245 Wrice Command (init seqg[i].Value):
break;
case LCD CTRL INIT SEQ DAT:
LCD 245 Write Data(init seq[i].Value):
break;
case LCD CTRL INIT SEQ END:
done = 1;
break;
defaulc:
break;
}
it++;
}

The variable i is only used to index the array init_seq. Each element in that array is of type LCD_CTLR_INIT_SEQ_T. That

is a struct with two uint8_t fields (each one byte long), so the struct is two bytes long.
Before optimization, in each iteration the code would need increment i by one in and then multiply it by 2 to get the

address of element[i]. Incrementing i by two simplifies the code by turning these two operations into one.

The function uses a switch statement to select one of multiple possible cases for execution.

NCSU ECE 461/561 — Embedded System Optimization
agdean@ncsu.edu

2/21/2024

mailto:agdean@ncsu.edu

Page |10 vl.1l
¥ ¥
iE6-1a.. /-) | W
LAB 00001lcaé
wolcaé ldrk 2, (o4, #0x0]
«.lcad cmp =rZ2,#0xl
«.lcaa beq LAB 00001lchké
~
SR
—_ Y r
; = - LAB_00001chs -]
L DAT (2) mss-ve. PRI
.- — LAB 00001lcbe
.lcac cmp rZ2,$#0x2 T .
..lcae beq LAB_0000lcde Eﬂ-m_oomm -0 M wlcbé gtr init_seq, [r€, #0x8]=>DAT_Z&...
..lch8 ldr r2,[ré,#0x0]=>DAT_£30££080
LAB 00001lc8e o -
\ s 14 = o eeneenen wlcha ands r2,rl
welofe ldz o, [6, #0x0]=-DRT_f20Z5050 ..lcbc str r2, [ré,#0x0]=>DAT_£20££080
— welcB0 ands r2) :
— - B ..lcbe ldrb r2, [rd,#0xl] »
E-O N welc92 str 2 [-u#;th]—)L,-_i_L.,_Lf_-__ w1oe0 1818 12,02, 8053
- e rd, [rd X
wlcbl cop 2, #0x0 lesd lazb H'Fq '!L"L] «.lee2 ldr 13, [r6, #0x0]=>DAT_f20££080
..lcb2 bne LAB_0000lcad 1636 1sls r2,z2,#0x3 ..lccd orrs r3,r2
r3, [r6, #0x0]=>DAT F£ROFff080
welC98 1dr 29, (26, #0x0]=0DRT_ HEe ..lccé str =3, [ré,#0x0]=>DRT_£20££080
E D (O) ...lcza orEs = ..lcc8 str 17, [ré, $0x8]=>DAT_£S0££088
— '“icgc StE o lEee o . f ..lcca str ©7,[ré,#0x4]=>DAT £20£2024
7, [v6, #0x8]=>DAT_£S0££088 -
1ch4 -0 M ...lc ; ex o (6, #0%E] = N ~loccc mov rZ,init_seg
=elCal mow Fa,r
welchbd b LAB_0000Lledd \ \ / ».lcce b LAB_00001lca2
Y LAB_0000 1622 -0 X
1cd0 -LAB_00... g -] E
-0 H LAB 00001lca2
LAS_00001cdl ..lca2 str r2,[ré,#0x4]=>DAT_f30££084

we.lcd0 movs init_seq, #0xa

8. Which register is used to select the case? r2
9. What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_CMD case? Note that
in MDK you can left-click in a symbol name and press F12 to bring up its definition (e.g. numerical value). Ox1cbh6

10.
11.
12.

statement), so there is no code needed for it.

What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_DAT case? Ox1c8e
What is the starting address of the first basic block which implements the LCD_CTRL_INIT_SEQ_END case? Ox1lch4
Why is there no code or basic block implementing the default case? The default case is empty (only has a break

The control flow from two of the cases (1 and 2) merges into a common basic block (with a store register instruction str)

before repeating the loop.

NCSU ECE 461/561 — Embedded System Optimization
agdean@ncsu.edu

A.G. Dean

2/21/2024

mailto:agdean@ncsu.edu

Page |11

vl.l

13. Take a screenshot of the three basic blocks. Make sure the resolution is good enough to read the instructions. You may

14.

15.

want to move the basic blocks for clarity. Include it in your report.

_DAT (2)

W.,—us_oooom -0 K
LAB_00001c8e
..lcg8e ldr r2,[r¢,#0x0]=>DAT_£S0££020
Nl ...1c90 ands r2,r]
...1c92 str r2,[ré,$0x0]=>DAT_f£30££080
..1c94 ldrb r2, [r4,#0xl)
«.1c96 1sls r2,r2,$#0x3

1698 1ldr r3, [ré
~.1C%9a orrs r3,r2

, #0x0]=>DAT_£280££080

...lc9c str r3,[ré,$#0x0]=
wlc9e str 7, [r6,#0x8]=>D
»l
1cal mov

T ———

-S40 (1)

Wemmm &

LAB | Ooﬂﬁlcbc
ws1Cbé
...1cb8
wolcba
...lcbc
w.lcbe
~.lccl
..lcc2 ldr
~lCCé Orrs r3,r2

r3, [rc,$#0x0]=>D

AT_£S0££080

...lcc6 str r3,[ré ,#WV‘]- DAT

«.lcc8 str 7o [

..lcca str r ,[,',#Jh1]->:; e

«.lccc mov r2,init_seq

..lcce b LAB_0000lca2
O o

LAB_0000lca2

~slCa2 str 1r2,[r¢

-, #0x4]=>DAT_£20££084

561 Only: What does that common basic block do, and what is at the address targeted by the store register

instruction? The common basic block stores r2 to the memory location 0xf80ff084. This is the address of the Fast GPIO

C port set output register PSOR.

= T

FBOF_F084

Port Set Output Register (FGPIOC_PSOR) 32

W
(always
reads 0)

0000_0000h

41.3.2/781

561 Only: Explain why you think the compiler generated the merge.

The compiler removed duplicated code. In the source code, the cases call LCD_24S_Write_Command or

LCD_24S_Write_Command, but the compiler has inlined both of these calls. Both of these functions end in similar code
(using the macro GPIO_SetBit, which writes to FGPIOC_PSOR) but with different data.

/* Write one byte as a command

void LCD_24S_Write_Command(uin
GPIO_ResetBit (LCD_D_NC_POS);
GPIO_Write (command) ;
GPIO_ResetBit (LCD_NWR_POS) ;
GPIO_SetBit (LCD_NWR_POS) ;
GPIO SetBit (LCD D NC_POS) ;

}

/* Write one byte as data to the
void LCD_24S_Write_Data(uint8_t
// GPIO_SetBit (LCD_D_NC_POS); /|

GPIO_Write (data);

GPIO_ResetBit (LCD_NWR_POS) ;

GPIO_SetBit (LCD_NWR_POS) ;

}

The compiler sees there is common code in both cases, and so it has them merge just before the common code.

EXAMINING FUNCTION CALLING BEHAVIOR

LINKER STATIC CALL GRAPH

Programs typically contain multiple threads and exception/interrupt handlers. Each can call functions independently of

other threads or handlers. Subroutine calls and high-level language features hide or encapsulate information to make the

source code easier to understand. (Consider adding two integers vs. adding two floating-point values on a CPU without

hardware support for floating-point math). A static function call graph helps understand part of a program’s structure and

possible behavior by showing all possible function-calling behavior of the program, even if it is hidden within other

NCSU ECE 461/561 — Embedded System Optimization

A.G. Dean

agdean@ncsu.edu

2/21/2024

mailto:agdean@ncsu.edu

Page |12 vl.l

subroutine calls. Which calls occur, how often, and in which order depends on the program’s structure and probably input
data; this information would be in a dynamic call graph for a specific run of the program with specific input data.

The linker can generate a static call graph for the program during each build. To do this, make sure the Callgraph box is
checked in the Options for Target -> Listing -> Linker Listing section. The other boxes may be checked or unchecked,
depending on your goals. Note that the call graph will not be created in the linker listing file (e.g. .\Listings\....map). Instead,
it will be created in a separate file. Two output formats are available: hypertext (default) and plain-text. The hypertext file
<project_name>.htm will be created in the Objects directory.

We will continue examining the function LCD_Controller_Init. Use a web browser to open the call graph htm file in
the project’s Objects directory.

LCD_Controller Init (Thumb, 132 bytes, Stack size 32 bytes, st7789.0(.text. LCD_Controller Init))

[Stack]

s Max Depth = 36
¢ (Call Chain=LCD _Controller Init = Delay

[Calls]
s == Delay
[Called By]

¢ == LCD_Init

1. Which function(s) can LCD_Controller_Init call directly (i.e. without intervening nested calls)? Delay
2. Which function(s) can call LCD_Controller_Init directly? LCD_Init

Examining the C source code for LCD_Controller_Init seems to show ten possible function calls. This does not match
the linker’s call graph information above. Use the MDK debugger’s disassembly window to examine the object code for
LCD_Controller_Init.

3. Which function calls actually appear in the object code? Three calls to Delay

C-language macros are created by #define MACRO_NAME (MACRO BODY CODE) statements. An early stage of the
compiler preprocesses the input files. In this stage it replaces all uses of macro names with the macro body code.

4. Which apparent function calls in LCD_Controller_Init are actually uses of macros? GPIO_SetBit, GPIO_ResetBit
5. Which function calls are missing because the compiler inlined the function body code? LCD_24S_Write_Data,
LCD_24S_Write_Command

GHIDRA STATIC CALL GRAPHS AND TREES

Ghidra can create function call trees and call graphs. Ghidra uses hierarchical text listings to represent call trees. These
show the functions which can be called by this function (Outgoing Calls) or which can call this function (Incoming Calls). A
call graph is a diagram with nodes (vertices) representing functions, and connections (edges) representing calls.

Use Ghidra’s Functions window pane to select the function of interest. If the Function Call Trees window is not open, open
it with the menu option Window -> Function Call Trees: The call trees will be automatically updated as you select
different functions in the Functions window.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu

Page |13 vl.1l

£ Function Call Trees: LCD_Con @ E 5 EE X ‘
Incoming Calls Dutgoing Calls

|f Incoming References - LCD_Controller_Init | f Outgeing References - LCD_Controller_Init |

1. Which function(s) can LCD_Controller_Init call directly (i.e. without intervening nested calls)? Delay
Which function(s) can call LCD_Controller_Init directly? LCD_Init

3. Right-click on “Incoming References” and select “Expand Nodes to Depth Limit” to see all the functions which can
indirectly call LCD_Controller_Init. List the function names. __rt_entry_postli_1, main

Our program needs to perform unsigned integer division but the CPU lacks that kind of instruction. Instead, the compiler
links in a library function __aeabi_uidiv which performs an unsigned integer division. Use Ghidra’s Functions window
pane to select this function.

4. Which functions can call __aeabi_uidiv directly? LCD_Init, OS_Tick_Setup, .
Thread_Read_TS, LCD_TS_Read, Thread_Sound_Manager
__rt_entry_postii_1
Ghidra can create a function call graph, as shown in the diagram to the right. If the Function M
Call Graph window is not open, open it with the menu option Window -> Function Call
Graph: If it is open, then the call graph for the function will be automatically updated. By . i
default, the call graph only shows the function and its direct callers and callees (incomin
grap Y (g LCD| Init - ‘

and outgoing calls).

‘ Test_OL_HELED init_mma

symbol will appear LCD_Controler_Init

e Left-click on a function node to select it: if the function has any outgoing calls a +

e Right-click on the node and you will be able to show outgoing edges (callees) from that Delay
node or from all the nodes on that level. Or, click on the + symbol to show the outgoing
edges (callees) for only that node.

Whether you want indirect callers/callees hidden or shown depends on your analysis goals and the program size.

5. Use Ghidra to create a function call graph for __aeabi_uidiv, showing functions which can call it directly or
indirectly. Take a screenshot and include it in your report.

__rt_entry_postii_1

Thread_Read_TS
main sveRbKernelStart Thread_Sound_Manager
05_Tick_Setup LCD_T5_Read

LCD_Init

__aeabi_uidiv

SOURCE CODE VS. DECOMPILED CODE

In MDK-ARM, view the source code for the function Get_DMA_Transfers_Completed, located in DMA.c.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu

Page |14

1. Take a screenshot of the function’s C source code from MDK-ARM and put it in your report.

int32_t Get DMA Transfers Completed(uint32_t ch) {
// Get progress from byte count register

if (bytes_xferred < 0)
return -1;
switch ((DMAO->DMA[ch].DCR & DMA DCR_SSIZE_MASK) >> DMA DCR_SSIZE_SHIFT) {
case 0:
return bytes_xferred/4;
break;
case 1:
return bytes_ xferred;
break;
case 2:
return bytes xferred/2;
break;
default:
return -1;
break;

int32_t bytes_xferred = Reload DMA Byte Count - (DMAO->DMA[ch].DSR BCR & DMA DSR _BCR_BCR_MASK) ;

vl.l

In Ghidra’s Functions pane, click on Get_DMA_Transfers_Completed to select it. At the bottom of the Functions pane,
select the Decompile: tab. This should bring up the decompiled view of function. Ghidra has been able to name the function

and the arguments because the axf object file contains some debug symbol (name) information.

2. Take a screenshot of the decompiled Get_DMA_Transfers_Completed function code and put it in your report.

inti2_t Get DMA Tranafera_Completed{uint32_t ch)

if (uVard = 2} |
uvVarl = uVar2 »» 1;
}
else |
if (uVard = 1} |
return uvar2;
}
if (uVari == 0} |
return uVarz »> 2;
}
}
}
return uVarl;

3. Whatis uVarl used for? Return value of -1, or bytes_xferred/2
4. What is uVar2 used for? bytes xferred

5. What is uVar3 used for? switch statement argument (result of (DMAO->DMA[ch].DCR & DMA_DCR_SSIZE_MASK) >>

DMA_DCR_SSIZE_SHIFT)

6. What is DAT_40008108 and how is it used here? Hint: examine the source and object code. This is the address of DMAO

Status Reg./Byte Count Reg. for Channel 0. It is used as base pointer to access channel ch (argument to function).
7. Are the switch cases in the same order in both the source and decompiled code? If not, what is the order for the
decompiled code? No, the decompiled code cases are in order 2, 1, 0, but the source code is in order 0, 1, 2.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu

mailto:agdean@ncsu.edu

Page |15 vl.1l

For the next three questions, consider the source code statement if (bytes_xferred < 0).

8. How does the decompiled code represent this statement? if (-1 < (int)uVar2)

9. How is the decompiled code different? The terms are reversed, the comparison has changed (was var < 0?, became -1 <
var?), type of bytes_xferred has changed from int32_t to uint.

10. 561 Only: Examine the CFG. Which two assembly code instructions (comparison and conditional branch) implement
that statement?

wel®dd cmp r©l,#0x0
o 19dé bmi LAB 000019£0

For the next two questions, consider the source code statements bytes_xferred/4 and bytes_xferred/2.

11. How are the statements implemented in the decompiled code? right shift >> by 2 or 1
12. How are the statements implemented in the assembly code? logical shift right, set condition code flags: Isrs by #2 or #1

—aseo | Case2

5ea g/~ MW fOee-L. g~] M
..1%a lsrs ch,rl,#0x2 LAB 00001%ee
-.l%ec bx Ir wel8ee lsrs ch,rl,#0xl

13. 561 Only: Consider the number of return statements in the function. How many are in the source code, and how many
are in the decompiled code? If they are not the same, explain what the compiler did. Hint: examine the CFG for
subroutine returns.

The source code has five returns (bytes_xferred < 0, cases 0, 1, 2, default). The decompiled code has three.

[--19e4 beq LaB_0o00019f2 |
—~ case 1 \Ezase 2

= -0 M - 5 - O M
|...19¢6 cmp r2,#0x0 LAB_000019£2
|...19e8 bne LAB_000019£0 l...19£2 mov ch,rl

Case .\—...19f4 e

«.19ea 1lsrs ch,rl, $#0x2
...19ec bx

LAB_000019%ee
...19ee lsrs ch,rl,#0xl

e, case 2

The compiler generated code to merge three returns (for bx < 0, default case and case 2) into one.

REVISION HISTORY

V1.0

Base version.

V1.1

Changed control.c to OL_HBLED.c.

NCSU ECE 461/561 — Embedded System Optimization
A.G. Dean agdean@ncsu.edu 2/21/2024

mailto:agdean@ncsu.edu

