
1

Name:___ Email:____________________@ncsu.edu

ECE 461/561, Spring 2023: Test 1 Solutions
This quiz is closed-computer, closed-book, closed-notes. You may use one 8.5" x 11" sheet of paper with anything you

want written or printed on its two sides.

Assume the code is built using MDK-ARM (AC6 compiler, armlink linker, all settings for maximum optimization for time)

for the Kinetis KL25Z128 MCU used on the FRDM-KL25Z evaluation board and the core clock frequency is fixed at 48

MHz. All questions are equally weighted. 4 points per question. 100% = 96 pts for ECE 461, 104 pts for ECE 561

Please read and sign this statement: I have not received assistance from anyone nor assisted others while taking this

test. I have also notified the test proctor of any violations of the above conditions.

Signature __

Notes Score
1

2

3
4

5
6

7
8

9 Extra Credit

10
11

12

13
14

15
16

17
18

19

20
21

22

23
24

25 561 Only
26

27 561 Only

Total

Possibly Useful Reference Information

Condition Flag Meaning if 0 Meaning if 1

Z Zero Result not zero 0x0000 Result was zero

V Overflow Result did not overflow Result overflowed

N Negative Not negative, MS bit of result is 0 Negative, MS bit of result is 1

C Cary No carry out or borrow in Carry out or borrow in occurred

Mnemonic
Extension Meaning

Condition
Flags

 Mnemonic
Extension Meaning Condition Flags

EQ Equal Z == 1 VC No overflow V == 0

NE Not equal Z == 0 HI Unsigned higher C == 1 and Z == 0

CS Carry set C == 1 LS Unsigned lower or same C == 0 or Z == 1

CC Carry clear C == 0 GE Signed greater than or equal N == V

MI Minus, negative N == 1 LT Signed less than N != V

PL Plus, positive or zero N == 0 GT Signed greater than Z == 0 and N == V

VS Overflow V == 1 LE Signed less than or equal Z == 1 or N != V

2

PIT_IRQHandler

Process_Profile_Sample

25ec

25f6 2606

25fc

2604

F

F

A

T

T

Examining Object Code
Consider the following source code.

#define PIT_TFLG_TIF_MASK (0x0001)
void PIT_IRQHandler() {
 // Which channel triggered the interrupt?
 if (PIT->CHANNEL[0].TFLG & PIT_TFLG_TIF_MASK) {
 // clear status flag timer channel 0
 PIT->CHANNEL[0].TFLG &= PIT_TFLG_TIF_MASK;
 // Do ISR work
 Process_Profile_Sample();
 } else if (PIT->CHANNEL[1].TFLG & PIT_TFLG_TIF_MASK) {
 // clear status flag for timer channel 1
 PIT->CHANNEL[1].TFLG &= PIT_TFLG_TIF_MASK;
 }
}

Compiling the code resulted in the disassembly listing below.

000025ec 80 b5 push {r7,lr}

000025ee 09 48 ldr r0,[pc,#36] ; @0x00002614

000025f0 01 68 ldr r1,[r0,#0x0]

000025f2 c9 07 lsls r1,r1,#0x1f

000025f4 07 d1 bne 0x00002606

000025f6 01 69 ldr r1,[r0,#0x10]

000025f8 c9 07 lsls r1,r1,#0x1f

000025fa 03 d0 beq 0x00002604

000025fc 01 69 ldr r1,[r0,#0x10]

000025fe 01 22 movs r2,#0x1

00002600 0a 40 ands r2,r1

00002602 02 61 str r2,[r0,#0x10]

00002604 80 bd pop {r7,pc}

00002606 01 68 ldr r1,[r0,#0x0]

00002608 01 22 movs r2,#0x1

0000260a 0a 40 ands r2,r1

0000260c 02 60 str r2,[r0,#0x0]

0000260e 00 f0 5f f8 bl Process_Profile_Sample

00002612 80 bd pop {r7,pc}

00002614 0c 71 03 40

Use the object code listing to answer the following questions.

1. Identify each basic block of code. Draw a rectangle around each basic block in the object code listing above.

2. Draw the code’s control flow graph next to the object code listing above.

• Represent each basic block by a rectangle labeled with the last four digits of its starting address.

• Use arrows to show the control flow edges (arcs) between basic blocks. Label each control flow edge with A,

T, or F to indicate under which condition the edge is taken (always, condition true, or condition false). Do

not include control flow edges for subroutine returns.

3. Draw the function call graph based on the object code.

3

4. Write the address for each prolog instruction.

0x25ec

5. How much stack space (in bytes) does this function use, and what is it used for? Do not consider any subroutines it

may call.

Eight bytes of stack space are used to save r7 and lr (return address).

6. How many arguments does the function have, and which registers are used to pass them?

There are no arguments.

7. List the address for each epilog instruction.

0x2604 and 0x2612

8. What is the value (hexadecimal) of the word in memory starting at address 0x00002614, and what does it

represent?

The word is 0x4003710c, and it is the address of the PIT Channel 0 TFLG register (PIT_TFLG0)

9. Extra Credit: How do the instructions “lsls r1,r1,#0x1f / bne 0x00002606” starting at 0x000025f4 implement

the source “if (PIT->CHANNEL[0].TFLG & PIT_TFLG_TIF_MASK)”? Hint: lsls is “logical shift left, setting condition

flags.”

Full credit: shift left 31 positions to zero out all bits but bit 0 (TIF flag), Z flag set if result is zero, bne branch is taken

if result is zero (TIF wasn’t set).

3: minor error

2: better understanding….

1: bne checking Z flag or other minimal understanding

lsls (logical shift left) shifts the register left by a certain number of bits (shifting in zeroes to the LS bit) and sets the

condition code flags based on the final value of the destination register. So shifting r1 left by 0x1f = 31 positions will

move bit 0 (the TFLAG register’s TIF bit) to bit 31, and zero out bits 0 through 30.

The lsls instruction (like other instructions ending in s) sets the Z flag to one if the result is zero. Otherwise it clears

the Z flag to zero.

In this code, a Z flag == 1 indicates the TIF bit was zero. The conditional branch bne branches if the ne (not equal)

condition is true, represented by Z being 0. So the branch is taken if Z is 0, meaning the TIF bit was 1.

10. When the instruction at address 0x000025ee executes, where is the function’s return address located? If in a

register, specify the register name. If on the stack, specify the memory address relative to the stack pointer (e.g.

SP+12).

In memory at [SP+4] and in the link register lr

4

Profiling
The following diagram shows which function (a through g) a program is executing as time passes.

11. Complete the profile table below assuming sampling occurs at multiples of 5 ms (on the solid lines).

Assuming first sample is at T=0, last at T=50
Function Name Sample

count
Function
Name

Sample
count

(Total Samples) 11 d 2

a 2 e 2

b 1 f 2

c 1 g 1

Assuming first sample is at T=5, last at T=50
Function Name Sample

count
Function
Name

Sample
count

(Total Samples) 10 d 2

a 2 e 1

b 1 f 2

c 1 g 1

12. Use the results above to complete the profile table below, sorting functions with decreasing sample count.

Assuming first sample is at T=0, last at T=50
Function
Name

Sample
count

Function
Name

Sample
count

a/d/e/f 2 b/c/g 1

a/d/e/f 2 b/c/g 1

a/d/e/f 2 b/c/g 1

a/d/e/f 2

Assuming first sample is at T=5, last at T=50
Function
Name

Sample
count

Function
Name

Sample
count

a/d/f 2 b/c/e/g 1

a/d/f 2 b/c/e/g 1

a/d/f 2 b/c/e/g 1

a/d/f 2

13. How much could you speed up the program by optimizing only the top function?

Assuming first sample is at T=0, last at T=50: Up to 2 samples could be removed, resulting in the code taking 9

instead of 11 samples. The speed-up is 2/11.

Assuming first sample is at T=5, last at T=50: Up to 2 samples could be removed, resulting in the code taking 8

instead of 10 samples. The speed-up is 2/10.

14. Which functions (if any) were executed but were missed by sampling? None.

15. Complete the profile table assuming sampling occurs at multiples of 1.853 ms (on the dashed lines).
Assuming first sample is at T=0,

last at T=50

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

28 d 4

a 5 e 5

b 2 f 8

c 1 g 3

Assuming first sample is at T=0,

last at T=50-Tsample

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

27 d 4

a 5 e 4

b 2 f 8

c 1 g 3

Assuming first sample is at

T=Tsample, last at T=50

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

27 d 4

a 5 e 4

b 2 f 8

c 1 g 3

Assuming first sample is at

T=Tsample, last at T=50-Tsample

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

26 d 4

a 5 e 3

b 2 f 8

c 1 g 3

16. Which function had its fraction of total samples change the most between these two sampling periods? Be sure to

include the fractions from both sampling periods (e.g. 3/7 and 9/20).

Assuming first sample is at T=0, last at T=50: Function f went from 2/11 to 8/26

Assuming first sample is at T=Tsample, last at T=50: Function f went from 2/10 to 8/25

e a f d g c b f d e

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

5

Profiling (alternate version)
The following diagram shows which function (a through g) a program is executing as time passes.

1. Complete the profile table below assuming sampling occurs at multiples of 5 ms (on the solid lines).

½ pt per box

Assuming first sample is at T=0, last at T=50
Function Name Sample

count
Function
Name

Sample
count

(Total Samples) 11 d 1

a 2 e 2

b 3 f 1

c 0 g 2

Assuming first sample is at T=5, last at T=50

Function Name Sample
count

Function
Name

Sample
count

(Total Samples) 10 d 1

a 2 e 1

b 3 f 1

c 0 g 2

2. Use the results above to complete the profile table below, sorting functions with decreasing sample count.

½ pt per box

Assuming first sample is at T=0, last at T=50
Function
Name

Sample
count

Function
Name

Sample
count

b 3 d/f 1

a/e/g 2 d/f 1

a/e/g 2 c 0

a/e/g 2

Assuming first sample is at T=5, last at T=50
Function
Name

Sample
count

Function
Name

Sample
count

b 3 d/e/f 1

a/g 2 d/e/f 1

a/g 2 c 0

d/e/f 1

3. How much could you speed up the program by optimizing only the top function?

Assuming first sample is at T=0, last at T=50: Up to 3 samples could be removed, resulting in the code taking 8

instead of 11 samples. The speed-up is 3/11.

Assuming first sample is at T=5, last at T=50: Up to 3 samples could be removed, resulting in the code taking 7

instead of 10 samples. The speed-up is 3/10.

4. Which functions (if any) were executed but were missed by sampling? Function d was missed.

5. Complete the profile table assuming sampling occurs at multiples of 1.853 ms (on the dashed lines).
Assuming first sample is at T=0,

last at T=50

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

28 d 2

a 5 e 4

b 8 f 3

c 0 g 6

Assuming first sample is at T=0,

last at T=50-Tsample

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

27 d 1

a 5 e 4

b 8 f 3

c 0 g 6

Assuming first sample is at

T=Tsample, last at T=50

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

27 d 2

a 5 e 3

b 8 f 3

c 0 g 6

Assuming first sample is at

T=Tsample, last at T=50-Tsample

Function
Name

Sample
count

Function
Name

Sample
count

(Total
Samples)

26 d 1

a 5 e 3

b 8 f 3

c 0 g 6

6. Which function had its fraction of total samples change the most between these two sampling periods? Be sure to

include the fractions from both sampling periods (e.g. 3/7 and 9/20).

Assuming first sample is at T=0, last at T=50: Function b went from 3/11 to 8/26

Assuming first sample is at T=Tsample, last at T=50: Function b went from 3/10 to 8/25

6

Analysis Without a Profile
Consider the following source code. The profiler uses it to create a list of region numbers called SortedRegions[], which
is sorted from most to least frequent. Assume NumProfileRegions is 200.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

volatile int RegionCount[NumProfileRegions];
int SortedRegions[NumProfileRegions];

void Sort_Profile_Regions(void) {
 unsigned int i, j, temp;
 // Copy unsorted region numbers
 for (i = 0; i < NumProfileRegions; i++) {
 SortedRegions[i] = i;
 }
 // Sort those region numbers
 for (i = 0; i < NumProfileRegions; i++) {
 for (j = i + 1; j < NumProfileRegions; j++) {
 if (RegionCount[SortedRegions[i]] < RegionCount[SortedRegions[j]]) {
 temp = SortedRegions[i];
 SortedRegions[i] = SortedRegions[j];
 SortedRegions[j] = temp;
 }
 }
 }
}

A C b
W
B

A C b
A C b
R R C b?
R
R W
W
B
B
B
B

17. How many times do you expect the loop starting at line 7 to execute?

NumProfileRegions times = 200 times.

18. How many times do you expect the loop starting at line 11 to execute?

NumProfileRegions times = 200 times.

19. How many times do you expect the loop starting at line 12 to execute?

(199 + 198 … + 101 + 100 + 99 … + 2 + 1) times

First time (i=0) through loop 11: 199 times,

Second time (i=1) through loop 11: 198 times

…

Second-to-last time (i=198) through loop 11: 1 time,

Last time (i=199) through loop 11: 0 times

𝑛 =∑ 𝑖
199

𝑖=1
= (200 ∗

200 − 1

2
) = 200 ∗

199

2
= 19,900

NumProfileRegions * (NumProfileRegions – 1) / 2 times

20. What is the range of times which you expect code at lines 14 to 16 to execute? Include both the minimum and

maximum values, and explain what input data triggers each extreme.

Minimum

If the list is already sorted, then lines 14-16 will never execute, so 0 is the minimum.

2 pts: 0 times and list already sorted

Maximum

Bound the worst case. If lines 14-16 execute each time through the loop, they will execute 19,900 times. This

happens if the list is initially reverse-sorted.

2 pts: 19,900 times and reverse-sorted list

1.5 pts: same as 19 and reverse-sorted list

7

21. How many load register (ldr) instructions do you expect to execute each time that line 13 runs? Which address does

each instruction load from (e.g. r4+8, r5+r2)? Assume these registers have already been loaded with the following

contents: r0: &RegionCount, r1: &SortedRegions, r2: i, r3: j.

Four ldr instructions. OK to use , instead of +

• load from [SortedRegions[i]]: rni

o ldr r4, [r1 + r2*4].

• load from RegionCount[SortedRegions[i]]: rc[rni]

o ldr r5, [r0 + r4*4] This must be register loaded in previous instruction, this register doesn’t matter

• load from [SortedRegions[j]]: rnj

o ldr r6, [r1 + r3*4]

• load from RegionCount[SortedRegions[j]]: rc[rnj]

o ldr r7, [r0 + r6*4] This must be register loaded in previous instruction, , this register doesn’t matter

Points off:

• Number of ldr instructions != 4: -1 pt

• Offset not multiplied by 4 bytes/word: -1 pt (max once)

• Incorrect registers per color codes above: -1 pt (max once)

22. Which line of source code will dominate (account for the most) execution time? Explain why.

2 pts: Line 13.

2 pts: That line of code reads from memory four times and performs a comparison. It is executed each time through

the most deeply-nested loop.

23. Which line of source code will account for the second most execution time? Explain why.

2pts: Line 12.

1 pt: It executes each time through the most deeply-nested loop.

1 pt: On all iterations after the first, it increments j, compares j with the limit, and decides whether to exit the loop.

This takes three instructions. The other code in the loop body (lines 14, 15, 16) is is shorter than line 12, since

SortedRegions[i] and SortedRegions[j] were already loaded into registers by line 13. Furthermore, lines 14, 15, 16

are not executed on every loop iteration unless the list is reverse-sorted.

24. The array RegionCount is declared as volatile. How does this affect the assembly code generated for lines 13 through

16?

2 pts: RegionCount is volatile, so nothing read from RegionCount is allowed to be reused, so the code will be slower.

There will always be memory loads from RegionCount for line 13: one from RegionCount[SortedRegions[i]] and one

from RegionCount[SortedRegions[j]].

[However, if RegionCount were not volatile, the compiler could optimize by reusing previously read values. The

variable i usually stays the same from execution of line 13 to the next, only changing with each iteration of the line

11 for loop. In line 13, this means that SortedRegions[i] would be the same as the previous iteration of the line 12

loop, unless the previous iteration swapped it with SortedRegions[j]. If SortedRegions[i] was the same as the

previous iteration, then RegionCount[SortedRegions[i]] would be the same as the previous iteration and could be

reused, eliminating the need to reload it.]

2 pts: There is no impact on the code for lines 14-16, as they don’t access RegionCount.

8

25. ECE 561 Only: Revise lines 13-16 of the code to improve performance by removing the effect from the previous

question. Assume that profiling is disabled when Sort_Profile_Regions() runs, so RegionCount will not change then.

Write your code here:

4 pts:

The index SortedRegions[i] stays the same each time through the loop at line 12 (though it changes with each time

through the loop at line 11). So RegionCount[SortedRegions[i]] can be reused after the first loop iteration.

unsigned int rc_sr_i;

// Sort those region numbers

 for (i = 0; i < NumProfileRegions; i++) {

 int rc_sr_i = RegionCount[SortedRegions[i];

 for (j = i + 1; j < NumProfileRegions; j++) {

 if (rc_sr_i < RegionCount[SortedRegions[j]]) {

 temp = SortedRegions[i];

 SortedRegions[i] = SortedRegions[j];

 SortedRegions[j] = temp;

 rc_sr_i = temp;

 }

 }

 }

Other optimizations are possible but need to be evaluated in detail case by case.

General Optimization
26. Write two small loops in C code such that applying loop unrolling (e.g. by the compiler) would speed up the first loop

significantly, but the second loop only minimally. The loops can do anything that you want.

4 pts. Ratio of second loop body time divided by second loop increment+test+branch time should be larger than

ratio of first loop body time divided by first loop increment+test+branch time

Example code:
int a, i=0;

float f=0;

for (i = 0; i < N; i++) {

 a += i; // loop body is very fast compared to test and branch

}

for (i = 0; i < N; i++) {

 f += (0.317*i)*a; // loop body is much slower than loop test and branch

}

27. ECE 561 Only: Some numerical approximations use range reduction, even though it takes additional time. Give an

example and explain why range reduction is used.

2 pts: Explanation: Range reduction allows reuse of a more accurate portion of an approximation because of

duplication from symmetry or periodicity. Range reduction requires processing the input value (range) to fit within

the approximation’s preferred range.

2 pts: For example, sin(2000.73*π) = sin(0.73*π), as sin is periodic, repeating with period 2π. So range reduction in

this case is converting 2000.73*π to 0.73*π with a remainder or modulo operation: reduced_range = range % (2*π).

(Actually we need to use fmod instead of %, which is the integer modulus operator.)

