
P a g e | 1

ECE 461/561 agdean@ncsu.edu 5/4/2023

SOLUTIONS: ANALYZING AND

“OPTIMIZING” RESPONSIVENESS (V1.1)

CONTENTS

Overview .. 2

Methods for Analyzing Thread Timing... 2

User-Defined Debug signals ... 2

Thread Visualizer Debug signals .. 3

Viewing Debug Signals With Logic Analyzer .. 4

Experimental Timing Analysis .. 4

Measuring Task and Handler Computation Time .. 4

Analyzing The SoundBuffer Refill Latency ... 5

Making The Refill Latency Visible .. 6

Automatic Refill Latency Measurement .. 7

What Makes The Refill Latency so Long? .. 8

Improving the SoundBuffer Refill Latency ... 10

Changing Thread Priorities .. 10

Using Double-Buffering for Sound Buffer .. 11

ECE 561 Only: Maximizing the Update Rate .. 13

Optional: Evaluating Thread Visualization Timing Accuracy .. 18

Delay Between Thread Activity and TV Signal ... 19

Measuring CPU and RTOS Timing Overheads .. 19

Handler/Thread Interactions ... 20

Thread/Thread Interactions... 21

Measuring SysTick Handler Computation Time ... 21

P a g e | 2

ECE 461/561 agdean@ncsu.edu 5/4/2023

OVERVIEW

In this lab you will evaluate the timing characteristics of an RTOS-based system and then improve the quality of

audio generation through scheduling and other changes. Please make sure there is no µSD card in the shield’s

socket, because this code uses the SPI pins as debug signals. Pick up a jumper wire (socket-to-socket) from the

instructor or a TA to connect the DAC output to the AD2 1+ input.

You will need to submit your work and responses as follows:

• Google Forms (link to be announced):

o Responses to numbered questions in this document.

• Moodle:

o PDF lab report (based on the provided report template)

o Build log file (Objects/*.build_log.htm)

Set up the code as follows:

➢ Download the project code for the lab from the archive.

➢ Confirm that you can build the program without errors. Note that we are not using the profiler in this work, so

you only need to build the program once after a code change, not three times.

METHODS FOR ANALYZING THREAD TIMING

We will use the logic analyzer and debug signals to see when threads and handlers execute over time. We would

like to understand the timing of the software. When does a thread run? When does an ISR run? How much time

overhead does the RTOS take to switch between threads?

The software in this exercise supports two types of debug signals: user-defined signals and automatic thread

visualization signals. You have used user-defined debug signals before, but they do not directly show RTOS activity.

The code in this exercise makes the RTOS automatically generate thread visualization (TV) debug signals to indicate

when threads resume running, are blocked, or are preempted. However, these TV signals are not generated for

interrupt and exception handlers.

USER-DEFINED DEBUG SIGNALS

We can monitor some software timing with user-defined debug signals. This involves picking a specific GPIO output

signal (e.g. DBG_0) for the activity and then adding macro calls (e.g. DEBUG_START(DBG_0), DEBUG_STOP(DBG_0))

to our code to control that output signal. Relevant macros and code are in debug.c and debug.h. In general, when

the event starts, use DEBUG_START() to set the bit to 1. When the event stops, use DEBUG_STOP() to clear the

debug signal to 0. To toggle the output, use DEBUG_TOGGLE().

Exception handlers and interrupt service routines are not threads, so they start running without RTOS

involvement, so they are not supported by the thread visualizer. For this type of routine, you need to select a user

debug signal, set it at the beginning of the handler/ISR (DEBUG_START) and clear it at the end (DEBUG_STOP).

➢ Add code to DMA0_IRQHandler (in DMA.c) to control DBG_1 showing when it is executing.

One special case is that we want to know when the RTOS idle thread is running, not just when it resumes or is

preempted. The idle thread (RTX_Config.c: osRtxIdleThread()) is an infinite loop which runs if there are no other

P a g e | 3

ECE 461/561 agdean@ncsu.edu 5/4/2023

threads ready to run. Making that loop toggle a debug signal will make idle processor time easier to see on the

logic analyzer. Note that the signal is changing at a high frequency, so the logic analyzer’s sampling may cause

aliasing, so the signal appears to be constantly 1, constantly 0, or changing at a much lower frequency than reality.

You may need to adjust the analyzer’s time base (zoom in or out) to see the real signal without aliasing.

➢ Add code to osRtxIdleThread() (in RTX_Config.c) to toggle (invert) output signal DBG_0 each time the loop

executes. If the signal is changing, that means the idle thread is running.

THREAD VISUALIZER DEBUG SIGNALS

Figure 1. Example of thread visualizer signals. At -2 µs, Thread_Sound_Manager is preempted. At 0 µs, Thread_Refill_SoundBuffer resumes

running (triggering the logic analyzer). At 28 µs, Thread_Refill_SoundBuffer blocks. At 34 µs, Thread_Sound_Manager resumes running.

The thread visualizer code in new_events.c/h lets you use a logic analyzer to see when different threads are

executing in a system built on the RTX5 kernel. Each thread’s activity is represented by a debug output signal. The

kernel uses instrumentation code to automatically:

• Set the bit to one when the thread starts or resumes executing.

• Clear the bit to zero when the thread is preempted and stops running.

• Toggle the bit twice and then clear it to zero when the thread blocks and stops running. Based on the

sampling rate and display time scale of your logic analyzer, you many need to zoom in to distinguish

between blocking and preemption. Note that this toggling takes about 1.7 µs, delaying other activities

slightly.

Signal Name
in Code

osThreadNew
Call Order

Use in this Code AD2 DIO
Signal

MCU Port
Bit

DBG_0 n/a, user defined Toggled by idle thread loop DIO 0 D0

DBG_1 n/a, user defined DMA0_IRQ Handler DIO 1 D2

DBG_2 n/a, user defined ↑: Refill SoundBuffer requested
↓: First sample written to SoundBuffer

DIO 2 D3

DBG_3 n/a, user defined unused DIO 3 D4

DBG_4 1st TV: Thread_Read_TS (touchscreen) DIO 4 B8

DBG_5 2nd TV: Thread_Read_Accelerometer DIO 5 B9

DBG_6 3rd TV: Thread_Update_Screen DIO 6 B10

DBG_7 4th TV: Thread_Sound_Manager DIO 7 B11

DBG_8 5th TV: Thread_Refill_SoundBuffer DIO 8 E2

DBG_9 6th TV: osRtxIdleThread DIO 9 E3

DBG_10 7th TV: osRtxTimerThread DIO 10 E1

DBG_11 8th unused DIO 11 E4

Thread_Sound_
Manager is
preempted

Thread_Refill_
Soundbuffer resumes

Thread_Sound_
Manager resumes

Thread_Refill_
Soundbuffer blocks

P a g e | 4

ECE 461/561 agdean@ncsu.edu 5/4/2023

As configured for this project, the debug code supports up to twelve debug signals. Debug signals are allocated to

threads in the order that osThreadNew is called, up until all are used. The default signal allocation is shown in the

table. After all user threads have been created, the kernel calls osThreadNew to create the idle thread and the

timer thread, which may result in up to two more TV signals being allocated.

VIEWING DEBUG SIGNALS WITH LOGIC ANALYZER

➢ Connect the logic analyzer to the shield. Start the logic analyzer program (Waveforms).

➢ Build and download the program. Reset the Freedom board to start the program running. Run the logic

analyzer without setting up any triggering. Adjust the sampling time base (“base”) to about 50 ms/division.

You should see something like

Figure 2:

Figure 2. Example of logic analyzer display.

➢ In order to simplify data analysis, you may want to rename each channel in use based on the table above.

EXPERIMENTAL TIMING ANALYSIS

MEASURING TASK AND HANDLER COMPUTATION TIME

We need task and handler computation times to build a periodic task model of the system’s software.

P a g e | 5

ECE 461/561 agdean@ncsu.edu 5/4/2023

➢ To simplify the timing analysis, set all threads to have the same priority. This way, only ISRs can interfere with

our timing measurements. Make sure that each THREAD_..._PRIO declaration in threads.h is

osPriorityNormal.

1. Use the logic analyzer to complete the following table with the range of observed timing information for each

thread or handler, except the Idle thread. Trigger the analyzer on the rising edge of the given thread’s TV

debug signal when possible. You may need to adjust the sampling rate to accommodate short or long

functions. Move the board and press the screen to execute as much code as possible.

Thread or IRQ Handler
Maximum Measured Execution

Duration Ci
Execution Period Ti

DMA_Handler 22.36 µs 25.6 ms

Read Touchscreen (with
screen touched)

7.07 ms
(Wrong: 2.32 ms without touch)

~57 ms (scope). OK:
50 ms (period in
threads.h)

Update Screen

890 µs: tilted moving board.
(Wrong: 28.5 µs without
movement)

~57 ms (scope). OK:
50 ms (period in
threads.h)

Refill SoundBuffer

~2.9 to 5.5 ms (may have
measured full and partial (with
variable amounts of work))

25.6 ms

Sound Manager

145 µs 200.1 ms.
OK: 200 ms, defined
in sound.h. OK: 250
ms (there is dead
code in threads.h)

Read Accelerometer
~ 8.7 ms ~108.7 ms. OK: 100

ms (period in
threads.h)

Points are allocated per cell based on how closely it matches the expected value(s).

2. You should see only one thread being preempted. Which thread is preempted, and is this acceptable?

Only the idle thread is preempted, and this is fine.

ANALYZING THE SOUNDBUFFER REFILL LATENCY

Figure 3. Sound generation architecture with default single buffer.

Voice_mutex

TPM

DMA

ISR

DMA DAC

Refill

Sound

Buffer

Sound

Manager

EV_REFILL_

REMAINING_SB

EV_REFILL_

ENTIRE_SB

Speaker

Voice

SoundBuffer

P a g e | 6

ECE 461/561 agdean@ncsu.edu 5/4/2023

One time-critical operation in the shield code is refilling the sound buffer with audio samples before the DMA

reads the next sample. By default, a single buffer is used. The sound buffer is refilled using this sequence of events:

• DMA transfers last sample, triggering IRQ.

• DMA IRQ handler runs, setting an event flag for Thread_Refill_Sound_Buffer.

• RTOS sees the set event flag and unblocks Thread_Refill_Sound_Buffer, allowing it to run eventually (once

it is the highest priority ready thread).

Because the playback rate is one sample per 50 microseconds, the first sample needs to be in the buffer within 50

microseconds of the previous sample being used.

If you press Unmute on the LCD you’ll hear the flawed audio output, with lots of buzzing and clicks which come

from the sound buffer not being refilled in time. Let’s look at the analog output of the DAC and directly see the

impact of the delayed sound buffer refill. Use the Analog Discovery 2 to monitor the analog output (as well as the

digital outputs).

➢ Connect Channel 1+ to the DAC output. Use a socket-socket jumper wire from as shown:

➢ Configure the Waveforms program to provide a mixed-signal display. On the Welcome tab, select Scope. In

the View menu, select Digital (at the bottom of the list).

➢ In the newly-created logic analyzer window, press the green + to add the debug signals for the DMA IRQ

Handler (DIO 1) and the TV signal for Thread_Refill_Sound_Buffer (DIO 8). Trigger using the logic analyzer, on

the rising edge of the DMA IRQ Handler. Start the program running on the MCU board and press Run in

Waveforms.

+ –

P a g e | 7

ECE 461/561 agdean@ncsu.edu 5/4/2023

You should see a display similar to the one shown here, though the time scale and amplitude will vary.

Notice the error in the oscilloscope trace – the bad data output sticks up like a sore thumb. The DAC output

changes before Thread_Refill_Sound_Buffer has a chance to change the first sample in the buffer. The timebase is

set to 200 us/division, so each division represents four output samples. This new DAC output is wrong - it is an old

value which hasn’t been updated yet. The DAC output should change again after 50 us to correct value, and

subsequent values should also be correct.

➢ Press Unmute on the LCD and listen to the audio. There should be occasional clicking, indicating the bad data

outputs.

MAKING THE REFILL LATENCY VISIBLE

Let’s simplify the timing delay analysis by making signal DBG_2 explicitly show the time from the refill request to

when the first sample is written.

➢ Change the DMA IRQ Handler to set debug signal DBG_2.

➢ Modify Thread_Refill_Sound_Buffer to clear DBG_2 after it has written the first sample to the buffer.

➢ In the logic analyzer window, press the green + to add DBG_2 (DIO 2). Trigger the scope on the rising edge of

DBG_2 and start the scope running. You should see something similar to this, with the C1 (orange) and

P a g e | 8

ECE 461/561 agdean@ncsu.edu 5/4/2023

T_Refill_SoundBuffer and DBG_2 traces varying as the scope is triggered:

3. Let the scope run for a few seconds. What is the shortest duration DBG_2 pulse you see? (Format: 1.23 us)

87.34 µs

AUTOMATIC REFILL LATENCY MEASUREMENT

The Waveforms scope tool can measure the input channel characteristics, such as the width of the DBG_2 signal.

➢ In the Scope 1 View menu items, select Digital Measurements. This will create a Measurements window.

➢ Click the + Add button to get the Add measurement dialog box. Select the digital signal to measure (DIO 2 or

DBG_2 if renamed) and select PosWidth (width of positive pulse). Click Add and then click Close.

➢ Click the Show button and check the Average, Minimum and Maximum entries.

➢ Click the gear icon and check the Multiple Acquisitions box.

➢ Start the scope running. You should see something like this:

➢ Note that the Maximum value is limited to the maximum time range shown on the horizontal axis (1.2 ms in

this case). Increase the time per division as the scope is running until the maximum stops increasing.

4. What is the maximum positive pulse width of DIO 2 (i.e. delay to update the first SoundBuffer sample)? It

should be several ms. (format: 1.23 ms)

8.5125 ms

WHAT MAKES THE REFILL LATENCY SO LONG?

Let’s switch to the logic analyzer to see what the other threads are doing when we get multi-millisecond latencies.

P a g e | 9

ECE 461/561 agdean@ncsu.edu 5/4/2023

➢ Stop the scope and switch to the Logic 1 tab.

➢ Click the Pulse trigger button, then select the Timeout tab, setting Source to DIO 2, Polarity to Positive, and

More than: to 1 ms. Click OK.

➢ Run the logic analyzer. It will trigger (t =0 ms) when the DIO 2 signal has been asserted for 1 ms. The rising

edge of DIO 2 should be at t = -1 ms; adjust the time base to see that if needed. Here is an example which

shows that Thread_Read_TS started running at about t = -1.25 ms. Although the refill was requested at t = -1

ms, it still hadn’t been serviced as of t = 0.6 ms because Thread_Read_TS kept running.

5. Increase the timeout value to just below the maximum delay you determined in the previous question. Note

that you can type in a specific numerical value (e.g. 1.23 ms) instead of just selecting one of the listed

timeouts. Capture the logic analyzer traces in a screenshot and include it in your report.

Solution Screenshot:

Has labeled signal traces. Includes timing information (e.g. X axis labels, time base (“2 ms/div”).

Shows entire DBG_2 pulse (8.5 ms), starting with DMA0_ISR and ending right after T_Refill_SB starts running,

and with intervening thread (e.g. Read Accelerometer).

Examples of screenshots which lost points:

DMA0 ISR signal missing, hard to read text (labels, timing information)

P a g e | 10

ECE 461/561 agdean@ncsu.edu 5/4/2023

Sampling rate (time base) too slow, so can’t measure width of DBG2.

Timing information cropped from image, text is very hard to read, signals not labeled, sampling rate too slow

to measure DBG2 pulse width.

6. Which threads and/or ISRs are delaying the refill request in your specific screenshot case?

Thread_Read_Accelerometer here.

7. How do their execution times compare with the corresponding maximum execution times (Ci) you provided in

Question 1?

Thread_Read_Accelerometer takes about 8.6 ms, which is close to the observed maximum above.

IMPROVING THE SOUNDBUFFER REFILL LATENCY

P a g e | 11

ECE 461/561 agdean@ncsu.edu 5/4/2023

CHANGING THREAD PRIORITIES

One problem with this system is that Thread_Refill_Sound_Buffer is not given priority over other threads, making

its response time longer than necessary. Let’s raise the priority of Thread_Refill_Sound_Buffer above all other

threads.

➢ Examine the structure Refill_Sound_Buffer_attr in threads.c to see that its .priority field is set to

THREAD_RSB_PRIO, which is defined in threads.h. Change the definition from osPriorityNormal to

osPriorityAboveNormal. Valid priority levels are define in cmsis_os2.h (search for osPriority) and online here.

Save the files, rebuild the project and download it.

➢ Switch back to the scope window. Click Reset in the Measurements window to reset the statistics. Start the

scope running again.

8. What is the maximum positive pulse width of DIO 2 (i.e. delay to update the first SoundBuffer sample)? It

should be well under one ms, but still larger than the deadline of 50 µs. (format: 1.23 ms)

116 us (or about 90 us if DIO_2 is set at end of ISR)

➢ Switch to the logic analyzer and set the timeout to a little less than the maximum delay you just measured.

9. Capture the logic analyzer traces in a screenshot and include it in your report.

Solution Screenshot:

Has labeled signal traces. Includes timing information (e.g. X axis labels, time base (“2 ms/div”).

Shows DBG_2 pulse (116 us), starting with DMA0_ISR and ending right after T_Refill_SB starts running, with no

threads running during that time (other than the previously running thread, which hasn’t had its TV signal

updated yet).

10. Which threads and/or ISRs are delaying the refill request in your specific screenshot case? Describe the

sequence of events.

11. How do their execution times compare with the corresponding maximum execution times (Ci) you provided in

Question 1?

USING DOUBLE-BUFFERING FOR SOUND BUFFER

https://www.keil.com/pack/doc/cmsis/RTOS2/html/group__CMSIS__RTOS__ThreadMgmt.html#gad4e3e0971b41f2d17584a8c6837342ec

P a g e | 12

ECE 461/561 agdean@ncsu.edu 5/4/2023

Figure 4. Sound generation architecture with double buffer.

The code has support for double-buffering the sound output. This raises the deadline for refilling the first

SoundBuffer entry from 1*TSample = 50 µs to NUM_SOUNDBUFFER_SAMPLES*TSample = 256*50 µs = 12.8 ms.

➢ To enable it, change the definition of USE_DOUBLE_BUFFER (in sound.h) from 0 to 1. To keep the total buffer

memory size the same, each buffer is half the size of the original buffer. This reduction will double the release

frequency of DMA controller interrupt, its handler, and Thread_Refill_Sound_Buffer.

➢ Save the files, rebuild the code and download it.

➢ Switch back to the scope window. Click Reset in the Measurements window to reset the statistics. Start the

scope running again.

12. What is the maximum positive pulse width of DIO 2 (i.e. delay to update the first SoundBuffer sample)? It

should be well under the deadline of 12.8 ms. (format: 1.23 ms)

0.1135 ms, 0.133 ms

13. Watch the DAC output on the scope for at least 20 seconds. Do you ever see a corrupted sample?

14. Press Unmute on the LCD and listen to the audio. Is the sound quality better? Most of the clicking should be

gone, but there are other bugs remaining in the system.

➢ Switch to the logic analyzer and set the timeout to a little less than the maximum delay you just measured.

15. Capture the logic analyzer traces in a screenshot and include it in your report.

Has labeled signal traces. Includes timing information (e.g. X axis labels, time base (“2 ms/div”).

Timing reference information present, appropriate zoom, DBG_2 pulse width around 130 us. See examples

below.

16. Which threads and/or ISRs are delaying the refill request in your specific screenshot case? Describe the

sequence of events.

Thread_Read_Accelerometer was running: 112.8 us:

Voice_mutex

TPM

DMA

ISR

DMA DAC

Refill

Sound

Buffer

Sound

Manager

EV_REFILL_

REMAINING_SB
EV_REFILL_

ENTIRE_SB

Speaker

Voice

SoundBuffer

P a g e | 13

ECE 461/561 agdean@ncsu.edu 5/4/2023

Why does T_Read_TS run before T_Refill_Soundbuffer?:

Screen touched, and idle thread was running: 133.4 us:

Thread_Read_TS was preempted by Thread_Update_Screen (104.7 us):

P a g e | 14

ECE 461/561 agdean@ncsu.edu 5/4/2023

Screen untouched, and idle thread was running: 131.6 us:

17. How do their execution times compare with the corresponding maximum execution times (Ci) you provided in

Question 1?

Times should be no larger than Ci above.

ECE 561 ONLY: MAXIMIZING THE UPDATE RATE

The deadline with the double buffer is so long that we now have large timing margin. Let’s see how high of a

sampling frequency this system can support.

➢ Change the definition of AUDIO_SAMPLE_FREQ from its initial frequency of 20,000 Hz (20 kHz). Note that this

reduces the deadline to NUM_SOUNDBUFFER_SAMPLES/AUDIO_SAMPLE_FREQ. At 100 kHz, the deadline will

be 2.56 ms. Raise AUDIO_SAMPLE_FREQ to the closest multiple of 10 kHz which works.

18. What is your maximum value of AUDIO_SAMPLE_FREQ (a 10 kHz multiple) which works?

~150 kHz? Depends on definition of “works”

Triggering Frequency for T_Refill_SoundBuffer

Both DMA_ISR and T_Sound_Manager trigger T_Refill_SoundBuffer. Examine their triggering frequencies:

DMA_ISR:

frelease_DMA = AUDIO_SAMPLE_FREQ/NUM_SOUNDBUFFER_SAMPLES = 100 kHz/256 = 390.6 Hz.

T_SoundManager:

frelease_SM = 4 Hz. CSM = 115 us.

P a g e | 15

ECE 461/561 agdean@ncsu.edu 5/4/2023

Compute Times

T_Refill_SoundBuffer:

Due to full buffer refill: CRSB_Refill = 1215 us or 1548 us. Depends on how many voices are active (2 to 3). A new

note is generated every 200 ms. Each voice’s note duration is hardcoded to AUDIO_SAMPLE_FREQ/2, so it will

last 500 ms. So for the DMA-triggered full buffer refills, either 3 notes need to be generated (5/6 of the time),

or 2 notes (1/6 of the time).

Due to partial buffer update (due to new note): CRSB_Update = depends on how much of buffer must be updated,

from nothing up to the maximum (max(CRSB_Refill). Remember that new note generation (sound manager) and

full buffer refill (DMA IRQ) are not synchronized.

DMA_ISR:

CDMA_ISR = 22.8 us.

T_SoundManager:

CSM = 115 us (200 us with OS overhead).

U = UDMA_ISR + UT_SM + UT_RSB = (390.6 Hz * 22.8 us) +

Extreme Example

Sequence:

• -40 us: T_SM starts running and aquires Voice_mutex just before DMA empties buffer.

• 0 us: DMA ISR starts running, sets event flag (EV_REFILL_ENTIRE_SB).

• 53 us: Scheduler preempts T_SM since event unblocks T_RSB.

• 83 us: T_RSB blocks on Voice_mutex, T_SM resumes running

• 148 us: T_SM releases Voice_mutex, T_RSB aquires it and resumes running

• 157 us: T_RSB updates first sample in waveform buffer

• 1675 us: T_RSB finishes filling sound buffer and blocks waiting on event flag. T_SM resumes running and

sets event flag (EV_REFILL_REMAINING_SB).

• 1700 us: T_SM stops, T_RSB resumes

• 3090 us: T_RSB finishes updating sound buffer, T_SM resumes

• 3113 us: T_SM finishes. Elapsed time = 3153 us.

P a g e | 16

ECE 461/561 agdean@ncsu.edu 5/4/2023

Notes:

CSM = 200 us with OS overhead, up from 115 us.

CRSB = 27.5 us + 1525 us + 1377 us = entire refill (1552.5 us) + update (1377 us)

So minimum period = 3153 us.

Experiments:

Measure margin between last sample written by T_Refill_SoundBuffer (indicated by DBG_2 with new code)

and next DMA ISR starting.

70 kHz: 1.346 ms margin

80 kHz: 855 us margin

100 kHz: DMA_ISR runs every 2.565 ms. 460 us margin.

120 kHz: DMA_ISR runs every 2.054 ms. 146 us margin

Glitch: Partial Refill writes to wrong buffer?

P a g e | 17

ECE 461/561 agdean@ncsu.edu 5/4/2023

Is partial refill starting at 0 ms related to glitch in buffer starting at 2.144 ms?

130 kHz: 94 us margin

Not enough time for Refill Soundbuffer to complete.

P a g e | 18

ECE 461/561 agdean@ncsu.edu 5/4/2023

140 kHz: 1.798 ms period, 88 us margin

1.541 ms period, 6 us margin

160 kHz: 1.541 ms period, no margin

P a g e | 19

ECE 461/561 agdean@ncsu.edu 5/4/2023

➢ Raise the AUDIO_SAMPLE_FREQ to 10 kHz above your working frequency in order to break the system.

➢ Switch back to the scope window. Click Reset in the Measurements window to reset the statistics. Start the

scope running again.

19. What is the maximum positive pulse width of DIO 2 (i.e. delay to update the first SoundBuffer sample)?

(format: 1.23 ms)

Depends on screenshot.

➢ Switch to the logic analyzer and set the timeout to a little less than the maximum delay you just measured.

20. Capture the logic analyzer traces in a screenshot and include it in your report.

SB Refills should take more of CPU’s time.

Expect to see more frequent SB Refills. 20 kHz -> 12.8 ms, 100 kHz -> 2.56 ms, 150 kHz -> 1.7 ms, 200 kHz ->

1.28 ms

21. Which threads and/or ISRs are delaying the refill request in your specific screenshot case? Describe the

sequence of events.

Depends on screenshot.

22. How do their execution times compare with the corresponding maximum execution times (Ci) you provided in

Question 1?

Times should be no larger than Ci above.

OPTIONAL: EVALUATING THREAD VISUALIZATION TIMING ACCURACY

How accurate is the timing of the debug signals? Let’s try to determine the timing differences between TV signals

and changes in the actual thread execution. Everything from here to the end of this lab is optional and can be done

for extra credit.

➢ Change the definition of AUDIO_SAMPLE_FREQ back to 20,000 Hz (20 kHz) to reduce processor loading and

simplify the timing analysis.

P a g e | 20

ECE 461/561 agdean@ncsu.edu 5/4/2023

DELAY BETWEEN THREAD ACTIVITY AND TV SIGNAL

Figure 5. Time delays between TV signal changing and thread resuming, and thread suspending and and TV signal changing.

You’ll determine the times shown in Figure 5. First you will measure the delay TR between a thread resume event

(indicated on a TV debug signal) and when the thread actually starts running. We will use the idle thread because

when it is running, it is toggling DBG_0 quickly.

➢ Use Normal trigger mode, and set the trigger the condition to be the rising edge of the idle thread’s TV debug

signal (DIO 9).

23. What is the range of delays from triggering (rising edge of DIO 9) until the user debug signal (Idle Toggle,

DBG_0/DIO 0) resumes toggling? (Format: 1.23 us – 2.34 us)

2.4 us - 11.45 us

There are only two times measured: 2.4 us (when T_Refill_SoundBuffer or T_Sound_Manager blocks) and

11.45 us (when T_Read_TS or T_Update_Screen blocks).

Second, measure the delay TS between when a thread stops executing and when the TV debug signal indicates it

has been preempted.

➢ Set the trigger condition to be the falling edge of the idle thread’s TV debug signal (DIO 9).

24. What is the range of delays from the idle thread user debug signal stopping toggling until the logic analyzer

triggers? (Format: 1.23 us – 2.34 us)

25 us - 56 us

There are only two times measured: 25 us (normally) and 56 us (when DMA0 ISR executes, and then sets the

event flag to run Thread_Refill_SoundBuffer). The RTOS doesn’t update the TV signal for the idle thread until

just before resuming Thread_Refill_SoundBuffer.

MEASURING CPU AND RTOS TIMING OVERHEADS

TR Time for thread
to resume

TS Time for thread
to suspend

TR Time for thread
to resume

TS Time for thread
to suspend

P a g e | 21

ECE 461/561 agdean@ncsu.edu 5/4/2023

Figure 6. RTOS and CPU time delays to measure.

Next measure how much time the CPU and RTOS use to switch between threads and handlers, and between

threads, as shown in Figure 6. Note that these are measurements which likely underestimate the worst-case

times, making any analysis likely to be unsafe. You must add a large margin of safety (ignorance) when applying

these values in actual practice. The two times TTTH and THTT involve the CPU’s interrupt response behavior and are

accurate, assuming interrupts have not been disabled.

HANDLER/THREAD INTERACTIONS

➢ First measure the delay TTTH between when a thread stops running and when the body of the ISR handler

begins. Use two simultaneous trigger conditions for the logic analyzer: the rising edge of the user debug signal

for the DMA IRQ Handler, and the idle thread TV bit being one.

25. What is the range of delays? (Format: 1.23 us – 2.34 us)

0.72 us – 0.77 us

➢ Second, measure the delay THTTCS between the body of the DMA IRQ handler ending and the TV debug signal

of a new thread rising. Note that the handler will set a thread event flag to request the refilling of the sound

buffer. When the handler completes, the scheduler will switch contexts to a different thread.

26. What is the range of delays? (Format: 1.23 us – 2.34 us)

34 – 38 us

➢ Third, consider the DMA IRQ handler interrupting the idle thread and then letting the idle thread resume.

Temporarily comment out the call to osThreadFlagsSet in DMA0_IRQHandler (in DMA.c) to let the idle thread

run immediately after the handler. Measure the delay THTT between the body of the DMA IRQ handler ending

and the body of the interrupted idle thread resuming. Rebuild and download the project and run the code.

27. What is the range of delays? (Format: 1.23 us – 2.34 us)

0.38 us – 0.38 us

Handler
(DMA IRQ)

Thread A
(e.g. Idle)

Thread B
(e.g. Refill

Sound
Buffer)

TCSP Context Switch
from Preemption

TR Thread
resume

TS Thread
suspend

TCSB Context Switch
from Blocking

TR Thread
resume

TS Thread
suspend

THTTCS Handler to
Thread with Context

Switch

TR Thread
resume

TTTH Thread
to Handler

THTT Handler to
Thread (no

Context Switch)

P a g e | 22

ECE 461/561 agdean@ncsu.edu 5/4/2023

➢ Uncomment the call to osThreadFlagsSet in DMA0_IRQHandler to re-enable the code.

THREAD/THREAD INTERACTIONS

➢ First, measure the delay TCSP when switching from a thread to any other thread due to preemption. Trigger the

logic analyzer on the falling single edge of the idle thread’s TV debug signal and measure the range of times

until the first thread resumes (a TV debug signal rises).

28. What is the range of delays? (Format: 1.23 us – 2.34 us)

1.85 us – 1.98 us

➢ Second, measure the delay TCSB when switching from a thread to any other thread due to blocking. Blocking is

indicated by the signal falling, rising, and then falling again within a few microseconds. Trigger the logic

analyzer on the falling edge of the Read_Accelerometer thread’s TV debug signal and measure the range of

times from the first falling edge until the first other TV debug signal rises.

29. What is the range of delays? (Format: 1.23 us – 2.34 us)

4.97 us – 5.17 us

30. How much extra time is taken by the blocking case’s extra two toggles of the output signal? I.e., what is the

time TToggle from the first falling edge to the second falling edge? (Format: 1.23 us)

1.67 us

31. What is the corrected range TCSB after subtracting the time TToggle?

3.3 us – 3.5 us

MEASURING SYSTICK HANDLER COMPUTATION TIME

We haven’t instrumented the SysTick timer. We expect it to run at a frequency set in RTX_Config.h (System

Configuration). We’ll evaluate its behavior by looking at times when the idle thread should be toggling its user

debug signal but is not. We’ll use Pulse Trigger (instead of Simple) with Timeout to trigger when the idle thread

signal has a positive pulse longer than 1 µs.

➢ Specify the signal source (the idle user debug signal), polarity (positive), and time More than 1 us. The analyzer

will trigger when it sees a pulse of the given polarity from the source lasting long enough.

32. For how long does the idle signal stop toggling? Be sure to exclude cases where there is other CPU activity

shown on the DMA0 ISR and TV threads. What is the range of times?

(Format: 1.23 us – 2.34 us)

4.36 to 4.4 us

