
1

Memory Size Analysis and Optimization

2

MCUs and Memory

▪ MCUs typically have integrated memory

▪ Flash ROM and RAM

▪ Possibly EEPROM, FRAM

▪ MCUs available with a variety of memory sizes

▪ Price rises with increased memory

▪ Can switch between MCUs in same family (with same

peripherals)

▪ Pin-compatibility very important

▪ Want a variety of MCUs with same package and footprint

▪ Then don’t need to redesign PCB and recertify it to

change MCU

P
ri

ce

RAM

3

Memory Expansion Feature

▪ Memory expansion mode provides

address and data buses to access

external memory

▪ Slower than on-chip memory

▪ More pins required on MCU package

▪ More complex PCB design
M

e
m

o
ry

 C
o
st

Access Speed (1/latency)

4

Motivation

▪ Why does memory size matter?

▪ Software Gas Law: Over time, program expands to use all

available resources (memory here).

▪ Existing memory might be (nearly) full. Nearly full memory slows

development.

▪ MCUs with more memory (if available) cost more

▪ Some systems have small sections of faster memory (cache,

scratch-pad memory (TCM)).

▪ Smaller memory requirements improve spatial locality, making caches

and scratch-pads work better

▪ Which part of the program uses the most memory?

▪ Start by shrinking that part

5

UNDERSTANDING

MEMORY REQUIREMENTS

6

What Memory Does a Program Need?

▪Five possible types

▪ Code

▪ Read-only static data

▪ Writable static data

▪ Initialized

▪ Zero-initialized

▪ Uninitialized

▪ Heap

▪ Stack

▪What goes where?

▪ Code is obvious

▪ And the others?

int a, b;
const char c=123;
int d=31;
void main(void) {

int e;
char f[32];
e = d + 7;
a = e + 29999;
strcpy(f,“Hello!”);

}

7

What Memory Does a Program Need?

▪Can the information change?

▪ No? Put it in read-only,

nonvolatile memory

▪ Instructions

▪ Constant strings

▪ Constant operands

▪ Initialization values

▪ Yes? Put it in read/write

memory

▪ Variables

▪ Intermediate computations

▪ Return address

▪ Other housekeeping data

int a, b;
const char c=123;
int d=31;
void main(void) {

int e;
char f[32];
e = d + 7;
a = e + 29999;
strcpy(f,“Hello!”);

}

8

What Memory Does a Program Need?

▪How long must the data exist? Reuse

memory if possible.

▪ Statically allocated

▪ Exists from program start to end

▪ Each variable has its own fixed location

▪ Space is not reused

▪ Automatically allocated

▪ Exists from function start to end

▪ Space can be reused

▪ Dynamically allocated

▪ Exists from explicit allocation to explicit

deallocation

▪ Space can be reused

int a, b;
const char c=123;
int d=31;
void main(void) {

int e;
char f[32];
e = d + 7;
a = e + 29999;
strcpy(f,“Hello!”);

}

9

int a, b;
const char c=123;
int d=31;
void main(void) {

int e;
char f[32];
e = d + 7;
a = e + 29999;
strcpy(f,“Hello!”);

}

Program Memory Use

RAM

Heap Data

Initialized
Data

Stack

Flash ROM

Program
.text

Initialization
Data

Constant
Data

Startup and
Runtime

Library Code

Zero-
Initialized

Data

10

Executable File Sections

▪ ROM (RO)
▪ .text
▪ Program code (instructions)

▪ Will not change, is read directly from ROM by program

▪ Exact size known at build time

▪ .constdata
▪ Initialization data for variables

▪ Is copied from ROM to RAM on system start-up

▪ Exact size known at build time

▪ .rodata
▪ Read-only (const) data

▪ Will not change, is read directly from ROM by program

▪ Exact size known at build time

▪ RAM (RW, ZI)
▪ .data
▪ Holds variables which have been initialized

▪ Is loaded from ROM to RAM on system start-up

▪ Exact size known at build time

▪ .bss
▪ Uninitialized data, stack, heap

▪ Is cleared to zero on system start-up before main() begins

▪ Exact size not known at build time for non-trivial

programs
▪ Stack and heap growth depend on program behavior, input data

▪ So how much space to allocate for stack and heap?
▪ Too little? Program may malfunction or crash

▪ Too much? We waste precious RAM

.text

.constdata

.rodata

.data

.bss

11

Summary of Stack Memory Use

▪ Stack grows with calls to

subroutines (and ISRs), shrinks

with returns

▪ Depth in callgraph determines

amount of stack space used

▪ Maximum stack space required at

leaf nodes (c) of call graph

64

44 c

36 b b b

32 a a a a a

0

main main main main main main main

main

a

b

c

Maximum stack

space needed

(ignoring ISRs)

32 bytes

4 bytes

8 bytes

20 bytes

12

DATA ALIGNMENT AND PACKING

13

Data Alignment and Packing

▪ Naturally aligned data

▪ N-byte object is located at address which is

multiple of N

▪ ARM architecture designed to be fast for

accessing naturally aligned data, can access

aligned word in memory with one operation

▪ What about a data structure (struct,

union) with different field sizes?

▪ Padding is used to align fields naturally

A

char c

A+1

padding

A+2 A+3

short s

A+4

available

A+5

available

A+6

available

A+7

available

struct mystruct {
char c;
short s;
… // next field

}

14

Data Alignment and Packing - ARMCC

▪ Use 1-byte alignment for all fields within

structure/union using __packed qualifier

▪ ARMCC User Guide, Sections 4.30(++),

10.4, 15.10

▪ Compiler will generate code which

supports unaligned accesses

▪ More code, slower

A

char c

A+1 A+2 A+3

availableshort s

A+4

available

A+5

available

A+6

available

A+7

available

struct mystruct {
char c;
__packed short s;
… // next field

}

15

Data Alignment and Packing – ARMCLANG (AC6)

▪ Align all fields within structure/union to at most n

bytes: #pragma pack (n)

▪ Pack all fields within structure/union by aligning to 1

byte: __attribute__((packed))

▪ Align specific field within structure/union to 1 byte:

__attribute__((packed))

▪ ARMCLANG Arm Compiler for Embedded User

Guide, Section 4.5

▪ Compiler will generate code which supports

unaligned accesses

▪ More code, slower

A

char c

A+1 A+2 A+3

availableshort s

A+4

available

A+5

available

A+6

available

A+7

available

struct __attribute__((packed)) mystruct
{

char c;
short s;
… // next field

}

struct mystruct {
char c;
short __attribute__((packed)) s;
… // next field

}

#pragma pack (1)
struct mystruct {

char c;
short s;
… // next field

}

16

TOOLCHAIN SUPPORT FOR ANALYSIS

OF MEMORY USE

17

Linker can Generate a “Map File”

▪ Useful memory information

▪ Select Project Options

▪ Select Listing tab

▪ Check Linker Listing and all

checkboxes in section

▪ Two files created

▪ .\lst*.map – text file with almost all this

information

▪ .\obj*.htm – HTML page with static call

graph

18

Map File Contents

▪ Map file shows how memory is used

▪ Symbol table, memory map, image component sizes

▪ We might care about function and data sizes

19

Per-Module Information

▪ Includes both compiled modules and library modules which were linked in

▪ Includes padding and data in code segment

in ROM in RAM
.constdata
.rodata

.data .bss.text

20

Summary Size Information

▪ ELF image includes zero-initialized data and debug information, not included in ROM

21

Automation!

▪ Want to create a sorted list of function sizes

▪ Possible approaches

▪ Process map file – depends on text format of map file, may

change if linker changes

▪ Process axf file – is in ELF format, will not change. More

stable approach

▪ Tools needed

▪ Program to analyze axf file and determine function sizes –

use custom “getregions” program built on

libelf code

▪ Program to sort functions by size – use DOS

“sort”

▪ Use a batch file to do this in one step

▪ find_sizes.bat

print function

names and sizes

executable file

sort by size

function names

sorted by size

22

More Automation

▪ Have MDK run the

find_sizes.bat script

every time the program

is built

23

Results

▪ Now we know what’s using the most ROM

▪ We’ll start at the top of the list and work

our way down

24

STACK SIZE ANALYSIS

25

Summary of Stack Memory Use

▪ Stack grows with calls to

subroutines (and ISRs), shrinks

with returns

▪ Depth in callgraph determines

amount of stack space used

▪ Maximum stack space required at

leaf nodes (c) of call graph

64

44 c

36 b b b

32 a a a a a

0

main main main main main main main

main

a

b

c

Maximum stack

space needed

(ignoring ISRs)

32 bytes

4 bytes

8 bytes

20 bytes

26

Stack Memory Size Estimation

▪ Two approaches to find maximum stack size

▪ 1. Run program, measure stack space used

▪ Tests may not actually trigger worst-case stack usage, so

unsafe

▪ Typically add a safety margin

▪ 2. Analyze program without running it

▪ Based on analysis of function and handler call graphs

▪ Some linkers provides this information

▪ Typically overestimates maximum stack usage, so safe but

maybe too conservative

Stack

Test 3: 844 bytes

Test 39: 880 bytes

Test 2: 820 bytes
Test 1: 800 bytes

Test 899: 960 bytes
Test 131: 932 bytes

Analysis A: <=2000 bytes

Analysis B: <=1600 bytes

Analysis C: <=1504 bytes

Real Maximum: 1024 bytes

27

Experimental Stack Memory Size Estimation

▪ Experimental measurement

1. Preload stack memory space with known pattern

2. Run program with many different test cases
◦ Want to increase likelihood of hitting maximum stack

depth

3. Examine stack memory space to see how much

was overwritten

4. Use this measurement but add a safety margin

(e.g. 20%)

▪ Can also have code perform this measurement

at run-time

▪ CMSIS-RTOS2 offers

osThreadGetStackSpace(thread_id) if stack

watermarking was enabled.

1 3 42

Run

code

28

Analytical Stack Depth Bounding

▪ Find a number which is not less than the

maximum stack memory possibly required

▪ Smaller is better – less overestimation and

wasted RAM

▪ Basic approach per thread

▪ Determine stack frame size for each function and

ISR/exception handler in program

▪ Create call graph for main and each ISR/exception

handler

▪ For each call graph, find maximum stack depth of

all leaf nodes (functions which cannot call any

other functions)

▪ Then must put together thread, handler and

RTOS information

main
Frame=8 bytes

C=8 bytes

f1
Frame=12 bytes

C=20 bytes

__i4tof4
Frame=20 bytes

C=40 bytes

__f4mul
Frame=44 bytes

C=64 bytes

__ltof
Frame=16 bytes

C=56 bytes

__f4ltor
Frame=20 bytes

C=60 bytes

29

Static Call Graph

▪ Text-based description of all possible

function calling activity

▪ Default output is html (./obj/*.htm)

▪ See –callgraph option in ARM Linker User

Guide

▪ Information per function F

▪ Code size

▪ Stack frame size

▪ Maximum depth stack depth and call chain

starting with this function

▪ Callers: Functions which may call F

▪ Callees: Functions which F may call

▪ Obstructions to call graph analysis

▪ List of recursive functions

▪ List of function pointers

30

Graphical Call Graph Generator Tool

▪ https://github.ncsu.edu/mjdargen/Keil-uVision-

Call-Graph-Generator, by Michael Dargenio

▪ Python script

▪ Converts .txt callgraph description from linker in Keil

uVision to graph description file for GraphViz

▪ GraphViz can generate png, svg outputs

▪ Options

▪ Stack size per function

▪ Include by uncommenting line outputfile.writelines(…

%stack_size)

▪ Library functions (_<function_name>)

▪ To reduce graph size, ignores likely library functions

▪ Can disable this if needed by removing tests (if

((caller.find(‘_’)!=0) …

https://github.ncsu.edu/mjdargen/Keil-uVision-Call-Graph-Generator
https://github.ncsu.edu/mjdargen/Keil-uVision-Call-Graph-Generator

31

Maximum Stack Depth Use – Main (non-threaded)

▪ Maximum stack depth and corresponding function call chain

▪ Unknown?

32

Improving Stack Depth Bounding

▪ Handle recursion and function pointers

▪ Eliminate them from program

▪ Modify program to help analyzer understand better

▪ Manually adjust estimates based on ad-hoc analysis

▪ Tell the analyzer limits to recursion, where function pointers go

▪ Eliminating infeasible paths

▪ Analyze program control and data flow to prune call graph

▪ Requires a quite bit of analysis

▪ Commercial stack-depth analysis tools provide these and other features

33

What about Interrupts?

▪ Follow same call graph analysis procedure for each ISR

▪ On entry, there will already be 32 bytes on stack due to hardware interrupt handling
(pushing registers onto stack)

▪ Can any interrupt handlers be interrupted?
▪ No: Worst case stack contribution is from only one handler (with largest stack frame)

▪ Yes:
▪ Which ISR(s) can be interrupted?

▪ What are the interrupt priorities?

▪ How often can these interrupts occur? Fast enough to interrupt a previously running ISR?

▪ Complexity: good reason to keep interrupts disabled in ISRs

34

Which Stack? Main or Process?

▪ CPU has two stack pointers

▪ Main Stack Pointer

▪ Process Stack Pointer

▪ CPU can operate in two different modes

▪ Handler mode for exception/interrupt handlers

▪ Thread mode otherwise

▪ SPSEL flag (in CONTROL) selects SP for thread mode

▪ On reset, SPSEL = 0

▪ SP refers to either MSP or PSP, depending on mode and SPSEL

▪ Handler mode uses MSP

▪ Thread mode

▪ If SPSEL is 0, uses MSP

▪ If SPSEL is 1, uses PSP. This means handlers use a different stack than threads.

Thread Mode
MSP (no RTOS)
or PSP (RTOS)

Handler Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

35

Handler Stack Usage without RTOS

▪ Only main stack pointer (MSP) is used ▪ CPU hardware automatically pushes 32

bytes onto main stack before executing

handler (“register stacking”)

▪ Handler stack frame is added to main stack

Address Offset Contents

-8
Free space/Handler stack frame?

-4

MSP upon entering exception handler → 0 Saved R0

+4 Saved R1

+8 Saved R2

+12 Saved R3

+16 Saved R12

+20 Saved LR

+24 Saved PC

+28 Saved xPSR

MSP before entering exception handler → +32 Foo’s stack frame

36

Stack Depth (MSP) for Single-Threaded System

▪ Overview of worst-case

▪ Main is using its largest possible stack

▪ IRQ with max. possible stack use occurs

▪ Must include stacked registers (pushed by hardware)

▪ Details on next slide

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main IRQ_Handler_A IRQ_Handler_B

main
Frame=8 bytes
C=8 bytes

IRQ_Handler_C

372 bytes

48 bytes

16 bytes

4 bytes

37

Maximum Stack Depth for Single-Threaded System (MSP Only)

▪ Bound on maximum

program stack depth

▪ main: 372 bytes

▪ + Registers stacked by

hardware in response to

IRQ: 32 bytes

▪ + largest IRQ Handler (A):

48 bytes

▪ Total: 452 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main

IRQ_Handler_A

372 bytes

48 bytes

IRQ_Handler_A

48 bytes

stacked registers

32 bytes

main

372 bytes

Registers Stacked

by Hardware

32 bytes

38

What if Interrupts can be Interrupted in Single-Threaded System?

▪ Need to consider…

▪ Priority of interrupts: Assume A > B > C

▪ Worst-case interrupt sequencing

▪ Opposite to priority: C, B, A

▪ Registers stacked only once due to tail-chaining

▪ Example: If no additional interrupt arrivals possible,

max. stack depth = 472 bytes

▪ Even more complex if an IRQ can interrupt its

own handler

▪ Handler must be reentrant

▪ Must consider arrivals of interrupts during service time (use

response-time analysis)

▪ Need timing constraints for worst case analysis

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main IRQ_Handler_A IRQ_Handler_B

main
Frame=8 bytes
C=8 bytes

IRQ_Handler_C

372 bytes

48 bytes

16 bytes

4 bytes

IRQ_Handler_A 48 bytes

stacked registers 32 bytes

IRQ_Handler_B 16 bytes

stacked registers 32 bytes

IRQ_Handler_C 4 bytes

stacked registers 32 bytes

main 372 bytes

39

Stacks in Multi-Threaded Systems (with RTOS)

▪ Process SP (PSP) used for threads

▪ Main SP (MSP) used for RTOS

Thread 1

Stack
Thread 2

Stack

main/RTOS

Stack

Thread 3

Stack

MSPPSP

40

Handler Stack Usage with RTOS

▪ Which SP?

▪ PSP used for threads, and first level of interrupts

▪ MSP used for RTOS and nested interrupts

(second and deeper levels)

▪ Thread running Foo uses PSP

▪ CPU automatically pushes 32 bytes onto process

stack before starting executing handler

▪ Handler uses MSP

▪ Handler stack frame is added to main stack

Address Offset Contents

PSP upon entering

exception handler →

0 Saved R0

+4 Saved R1

+8 Saved R2

+12 Saved R3

+16 Saved R12

+20 Saved LR

+24 Saved PC

+28 Saved xPSR

PSP before entering

exception handler →

+32 Foo’s stack frame

Address Offset Contents

0

+4

+8

+12

+16

+20

+24

+28 Free space

becomes

Handler’s stack

frame

MSP before and upon

entering exception

handler →

+32 bar’s stack frame

41

Stack Depths for Multi-Threaded System

▪ Need maximum stack depth for main and

each thread

▪ Determine bounds on each thread’s

maximum stack depth

▪ Maximum stack depth

▪ + Registers stacked for IRQ handler: 32 bytes

▪ Determine bound on maximum main stack

depth

▪ Main thread: 128 bytes

▪ + Largest IRQ Handler (A): 48 bytes

▪ + Registers stacked for IRQ handler from

main thread: 32 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

Thread 1

372 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

Thread 2

200 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

IRQ_Handler_A

48 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

IRQ_Handler_B

16 bytes

main
Frame=8 bytes
C=8 bytes

f1
Frame=12 bytes
C=20 bytes

__i4tof4
Frame=20 bytes
C=40 bytes

__f4mul
Frame=44 bytes
C=64 bytes

__ltof
Frame=16 bytes
C=56 bytes

__f4ltor
Frame=20 bytes
C=60 bytes

Main thread

128 bytes

42

Maximum Stack Depths without Nested Handlers

MSPPSP

IRQ_

Handler_A

48 bytes

stacked

registers

32 bytes

main/RTOS

Stack

128 bytes

stacked

registers

32 bytes

Thread 1

Stack

372 bytes

stacked

registers

32 bytes

Thread 2

Stack

200 bytes

IRQ_

Handler_A

48 bytes

main/RTOS

Stack

128 bytes

Thread Mode:

Thread was

running

Handler Mode:

Handler or

RTOS was running

What was the CPU mode (what was it running)

when the interrupt / exception was requested?

43

Nested Interrupt/Exception Handlers

▪ CPU is running Thread 2 in thread mode, using PSP as SP

▪ Interrupt 1 is requested

▪ CPU stacks some of Thread 2’s registers via PSP onto

Thread 2 stack

▪ CPU switches to handler mode, using MSP as SP

▪ CPU runs Interrupt 1 handler, using MSP for stack frame

▪ Interrupt 2 is requested, preempts Interrupt 1

▪ CPU stacks some of Interrupt Handler 1’s registers via

MSP onto main stack

▪ CPU runs Interrupt 2 handler, using MSP for stack frame

Thread 1

Stack
Thread 2

Stack

main/RTOS

Stack

Thread 3

Stack

MSPPSP

Stacked Registers

from Context

Switch

Stacked Registers

from Context

Switch

HW-Stacked

Registers from

Interrupt 1

Interrupt 1
Handler’s

SW-Stacked
Registers

HW-Stacked

Registers from

Interrupt 2

Interrupt 2
Handler’s

SW-Stacked
Registers

44

REDUCING READ-ONLY MEMORY

REQUIREMENTS

45

Reducing ROM Requirements

▪ Conceptual Goals

▪ Eliminate code for unneeded features

▪ Implement needed code more efficiently (densely)

▪ Methods

▪ Use language support

▪ Configure compiler and toolchain better

▪ Write better code with a better design

▪ Rearchitect software to reduce duplicated or similar code

▪ Often, seeing the details of the problem make solutions obvious

46

Use C Language Support

▪ Enable linker to delete unused code from module

▪ Modify function declaration with static to indicate that no function outside of

the declaring file will call that function

static void read_xyz(void)
{

// sign extend byte to 16 bits.
// need to cast to signed since function
// returns uint8_t which is unsigned
acc_X = (int8_t) i2c_read_byte(MMA_ADDR, REG_XHI);
Delay(100);
acc_Y = (int8_t) i2c_read_byte(MMA_ADDR, REG_YHI);
Delay(100);
acc_Z = (int8_t) i2c_read_byte(MMA_ADDR, REG_ZHI);

}

my_file.c

47

Configure Compiler and Toolchain

▪ Select correct processor type, or else

▪ Compiler may think you have an older processor core…

▪ … which lacks certain instructions (but which actually exist in this core) …

▪ … which leads the compiler to link in library code to implement that functionality …

▪ … even though the core supports it with efficient, native instructions!

48

Configure Compiler and Toolchain

▪ In Project Options->Target, select MicroLIB
▪ Highly optimized for code size, unlike default C library

▪ Warnings

▪ Not ISO C-compliant, some C features missing or slower

▪ No reentrant function variants

▪ No mutex locks provided

▪ Floating point code handles denormalized values differently

from IEEE 754 standard

▪ No OS interaction functions provided

▪ No wide characters or multibyte strings

▪ No file I/O support, just stdin, stdout and stderror.

▪ I/O streams are unbuffered

▪ Use cross-module optimization
▪ Uses multiple passes to build program, using feedback

to improve performance

49

Linker Basics

▪ Basics of sections

▪ Input Section: For each source module a

compiler processes, it generates up to three

input sections

▪ RO – read-only

▪ RW – read/write

▪ ZI – zero-initialized

▪ Output Section: Linker creates an output

section by contiguously joining multiple input

sections of the same type (RO, RW, or ZI)

▪ Region: Contiguous sequence of one, two or

three output sections

▪ Program Segment: Contains one region

▪ Main linker optimization is elimination of

unused/unreachable sections

▪ Linker can only remove completely unused input

sections

▪ So help linker identify and delete these sections

50

Use Linker Options and Optimizations

▪ Many options available,

well-documented

▪ See Linker User Guide
▪ MDK ARM-> Help->Open Books

Window

▪ Tools User’s Guide->Complete

User’s Guide Selection

▪ Linker User Guide->

Using Linker Optimizations

51

Linker Options

▪ Linker feedback option – used in cross-

module optimization

▪ Use --feedback file on compiler and linker

command lines

▪ Linker creates text file naming the unused and

inlined functions

▪ Re-compile. Compiler reads the file and rebuilds

objects, moving functions into own sections

▪ Re-link. Linker can remove functions in own

sections.

▪ Function inlining

▪ Controlled with --inline, --no_inline

▪ Replaces calls to a small function with copies of

the called function

▪ Will save time

▪ May or may not save memory – depends on

function body size and work needed to set up

arguments and activation record

▪ Help the linker by adding compiler option --
split_sections

▪ Makes compiler generate one section per function

in source file

▪ Linker can then remove unused sections

▪ Allow linker to compress initialization (RW)

data sections

▪ ARMlink enables compression by default, applies it

if it will reduce total size

▪ ARMlink supports run-length compression (runs of

repeated bytes) and Limpel-Ziv 77 compression

(repeated phrases in buffer)

52

Rearchitect Software to Remove Similar or Identical Code

▪How can we improve this?

if(DifferentTalker)

sprintf(buffer, "$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,”

“W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

else if(DifferentSenType)

sprintf(buffer, "$GPGLC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,”

”W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

else if(IllegalInField)

sprintf(buffer, "$GPRMC,%02d%02d%02d,A,%02d%06.3fa,N,%03d%06.3f,”

”W,%05.1f,%04.1f,%06ld,%05.1f,W*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

else if(IllegalAsField)

sprintf(buffer, "$GPRMC;%02d%02d%02d;A;%02d%06.3f;N;%03d%06.3f;”

”W;%05.1f;%04.1f;%06ld;%05.1f;W*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

53

Use a Table

▪ Everything is the same except for the format strings

▪ So put them in a table.
char Formats[13][] = {

"$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,W,%05.1f,%04.1f,%06ld,%05.1f,W*“,

"$GPGLC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,W,%05.1f,%04.1f,%06ld,%05.1f,W*“,

"$GPRMC,%02d%02d%02d,A,%02d%06.3fa,N,%03d%06.3f,W,%05.1f,%04.1f,%06ld,%05.1f,W*“,

"$GPRMC;%02d%02d%02d;A;%02d%06.3f;N;%03d%06.3f;W;%05.1f;%04.1f;%06ld;%05.1f;W*",

… (deleted) …

};

if(DifferentTalker)

format_num = 0; //error in talker id - not gps

else if(DifferentSenType)

format_num = 1; //error in sentence type - not gll

else if(IllegalInField)

format_num = 2; //letter in field

else if(IllegalAsField)

format_num = 3; //illegal separator

sprintf(buffer, Formats[format_num],

hr, min, sec, lat_deg, lat_min, lon_deg, lon_min, speed, track, date, var);

…

54

But Don’t Always Use Tables

▪ Example: Floating point sine function has multiple possible implementations

▪ Standard C math library

▪ Lookup table (LUT)

▪ Polynomial approximation

▪ Different memory requirements for each - Which is smallest?

▪ Standard C math library

▪ Fixed size - examine map file to determine

▪ Lookup table

▪ RO Size = (resolution needed) * (range of input values) * (element size)

▪ May be able to reduce table size with symmetry, periodicity, interpolation

▪ Needs mathlib code for floating point add, multiply (and divide?) to perform these operations

▪ Polynomial approximation

▪ Needs mathlib code for floating point multiply and addition

▪ Coefficients use a negligible amount of memory

55

When to Compute Constant Data?

▪ At compile/build time?

▪ Optimizes program execution speed

▪ Minimizes program initialization time

▪ Requires ROM section to hold all that data

▪ At system start-up?

▪ Increases program initialization time

▪ Requires RAM to hold table

▪ Requires ROM to hold code to compute the data values

▪ When that particular value is needed?

▪ Increases program execution time

▪ Useful in some but not all cases

▪ Could cache the values in RAM as a trade-off

56

Example: Printf (scanf is similar)
▪ Standard printf format string: %[flags][width][.precision][length]specifier

Specifier

c Character

d Signed decimal integer

I Signed decimal integer

e Scientific notation (mantissa/exponent)

using e character

E Scientific notation (mantissa/exponent)

using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital

letters)

p Pointer address

n Nothing printed

% Character

Flags

-

Left-justify within the given field width;

Right justification is the default (see

width sub-specifier).

+

Forces to precede the result with a plus

or minus sign (+ or -) even for positive

numbers. By default, only negative

numbers are preceded with a -ve sign.

(space)

If no sign is going to be written, a blank

space is inserted before the value.

#

Used with o, x or X specifiers the value

is preceded with 0, 0x or 0X

respectively for values different than

zero. Used with e, E and f, it forces the

written output to contain a decimal

point even if no digits would follow. By

default, if no digits follow, no decimal

point is written. Used with g or G the

result is the same as with e or E but

trailing zeros are not removed.

0

Left-pads the number with zeroes (0)

instead of spaces, where padding is

specified (see width sub-specifier).

Width

(number)

Minimum number of characters

to be printed. If the value to be

printed is shorter than this

number, the result is padded with

blank spaces. The value is not

truncated even if the result is

larger.

*

The width is not specified in the

format string, but as an additional

integer value argument preceding

the argument that has to be

formatted.

Precision

.number

For integer specifiers (d, i, o, u, x, X) −

precision specifies the minimum number

of digits to be written. If the value to be

written is shorter than this number, the

result is padded with leading zeros. The

value is not truncated even if the result is

longer. A precision of 0 means that no

character is written for the value 0. For e,

E and f specifiers − this is the number of

digits to be printed after the decimal

point. For g and G specifiers − This is the

maximum number of significant digits to

be printed. For s − this is the maximum

number of characters to be printed. By

default all characters are printed until the

ending null character is encountered. For

c type − it has no effect. When no

precision is specified, the default is 1. If

the period is specified without an explicit

value for precision, 0 is assumed.

.*

The precision is not specified in the

format string, but as an additional integer

value argument preceding the argument

that has to be formatted.

Length

h

The argument is interpreted as a

short int or unsigned short int (only

applies to integer specifiers: i, d, o, u,

x and X).

l

The argument is interpreted as a

long int or unsigned long int for

integer specifiers (i, d, o, u, x and X),

and as a wide character or wide

character string for specifiers c and s.

L

The argument is interpreted as a

long double (only applies to floating

point specifiers: e, E, f, g and G).

Based on https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

57

Small Printf
▪ From Georges Menie, https://www.menie.org/georges/embedded/printf.c

Specifier

c Character

d Signed decimal integer

I Signed decimal integer

e Scientific notation (mantissa/exponent)

using e character

E Scientific notation (mantissa/exponent)

using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital

letters)

p Pointer address

n Nothing printed

% Character

Flags

-

Left-justify within the given field width;

Right justification is the default (see

width sub-specifier).

+

Forces to precede the result with a plus

or minus sign (+ or -) even for positive

numbers. By default, only negative

numbers are preceded with a -ve sign.

(space)

If no sign is going to be written, a blank

space is inserted before the value.

#

Used with o, x or X specifiers the value

is preceded with 0, 0x or 0X

respectively for values different than

zero. Used with e, E and f, it forces the

written output to contain a decimal

point even if no digits would follow. By

default, if no digits follow, no decimal

point is written. Used with g or G the

result is the same as with e or E but

trailing zeros are not removed.

0

Left-pads the number with zeroes (0)

instead of spaces, where padding is

specified (see width sub-specifier).

Width

(number)

Minimum number of characters

to be printed. If the value to be

printed is shorter than this

number, the result is padded with

blank spaces. The value is not

truncated even if the result is

larger.

*

The width is not specified in the

format string, but as an additional

integer value argument preceding

the argument that has to be

formatted.

Precision

.number

For integer specifiers (d, i, o, u, x, X) −

precision specifies the minimum number

of digits to be written. If the value to be

written is shorter than this number, the

result is padded with leading zeros. The

value is not truncated even if the result is

longer. A precision of 0 means that no

character is written for the value 0. For e,

E and f specifiers − this is the number of

digits to be printed after the decimal

point. For g and G specifiers − This is the

maximum number of significant digits to

be printed. For s − this is the maximum

number of characters to be printed. By

default all characters are printed until the

ending null character is encountered. For

c type − it has no effect. When no

precision is specified, the default is 1. If

the period is specified without an explicit

value for precision, 0 is assumed.

.*

The precision is not specified in the

format string, but as an additional integer

value argument preceding the argument

that has to be formatted.

Length

h

The argument is interpreted as a

short int or unsigned short int (only

applies to integer specifiers: i, d, o, u,

x and X).

l

The argument is interpreted as a

long int or unsigned long int for

integer specifiers (i, d, o, u, x and X),

and as a wide character or wide

character string for specifiers c and s.

L

The argument is interpreted as a

long double (only applies to floating

point specifiers: e, E, f, g and G).

Based on https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

https://www.menie.org/georges/embedded/printf.c

58

REDUCING READ/WRITE MEMORY

REQUIREMENTS

59

Reducing RAM Requirements

▪Conceptual Goals

▪ Estimate RAM requirements more

accurately

▪ Reduce RAM requirements

▪ Eliminate unneeded data storage

▪ Improve storage density

▪Methods

▪ Analyze

▪ Use better stack depth analysis

▪ Reduce

▪ Allocate less space for stacks

▪ Use language support

▪ Configure compiler and toolchain better

▪ Improve storage density

▪ Pack data

▪ Compress data

▪ Better data structures

▪ Use more memory-efficient algorithms

▪ Reduce activation record size

▪ Pass arguments by register, not stack

▪ Demote costly variables

▪ Too much scope (static, global)

▪ Volatile

▪ Read-only (const)

60

Minimize Space Allocated to Stack(s)

▪ Analyze program’s stack use by threads and handlers (including ISRs)

▪ Set sizes

▪ Bare metal – no scheduler

▪ Main thread stack size

▪ RTOS

▪ Default stack size

▪ Thread-specific sizes

61

Setting Stack Memory Size (Bare Metal)

▪ Defined in Startup/startup_MKL25Z4.s

▪ Two editing options

▪ Select using bottom tab

on IDE source code editor

window

62

RTX5 Thread Configuration

▪ Default thread stack sizes

▪ Idle thread

▪ Other threads

▪ Support for monitoring stack size

▪ Overflow (overrun) detection

▪ Watermark initialization

63

CMSIS-RTOS2: Setting a Custom Stack Size for a Thread

▪ Declare a structure “attr” of type

osThreadAttr_t

▪ Initialize it

▪ attr.stack_mem to point to custom stack space

▪ attr.stack_size to size of custom stack space

▪ Clear unused attributes to NULL

▪ Call osThreadNew(my_thread, &argument, &attr);

64

Use Toolchain Support

▪ Maximize optimization for size

▪ Select smallest feasible memory model, if

applicable

▪ Shortens addresses

▪ Simplifies their calculation and use

▪ If possible, use library versions optimized

for less RAM

▪ If speed is also important, take advantage

of the “80/20” rule

▪ Most programs spend about 80% of their time in

20% of the code

▪ Can specify different optimizations per module

▪ Apply different optimizations for the

different parts of the code

▪ Optimize time-critical modules for speed

▪ Optimize remaining modules for size

65

Use Different Algorithms

▪ Example: sorting n data items

▪ Merge sort

▪ Typical implementation does not sort in place,

needs an extra O(n) RAM space

▪ Possible to reduce space overhead O(n/2), but

makes coding more complicated, slows sorting

operation

▪ Possible to reduce space requirement to O(n),

but requires recursion (so need more stack

space) and makes coding more complicated

▪ Quick sort

▪ Data stays in place

▪ Divide and conquer approach uses recursion,

requiring O(n) stack space and O(n) data storage,

▪ Can reduce to O(log n) stack space with special

tricks (Sedgewick’s method)

66

Use Different Algorithms

▪ Bubble sort

▪ Is an in-place sort, so no extra memory needed

(actually, need to store one element to perform

the swap)

▪ Is slow - O(n2)

▪ Shell sort

▪ In-place sort

▪ Not recursive, so stack is not used

▪ Speed is typically O(n log n), worst case is O(n2)

▪ Sometimes used to implement C’s qsort library

function

▪ Heap sort

▪ Uses a binary tree

▪ If explicitly implemented as a tree, extra memory

(O(n)) is needed

▪ If binary tree is implemented in an array, no extra

memory is needed but coding is more complex

▪ Speed is O(n log n)

67

Reduce Activation Record Size

▪ Use smallest practical automatic variables

▪ Remember ARM calling convention

▪ First four arguments can be passed in registers r0-r3

▪ Remaining arguments will go on the stack

▪ Use smallest practical arguments

▪ Pass pointers to large data rather than data itself

▪ Group related items together in a structure and pass a

pointer

▪ Note that arguments passed on stack are word-aligned,

so a one-byte argument will take four bytes

▪ Limit number of arguments to a function

▪ Make function result fit within two registers

▪ Do NOT convert automatic variables to statics or

globals

▪ Automatics reuse memory space, releasing their

memory when the scope (e.g. function) ends

▪ Each global or static variable uses its memory for the

full lifetime of the program

68

Example Source Code

sprintf(buffer,
"$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,W,%05.1f,%04.1f,%06ld,%05
.1f,W*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

▪ What does the object code look like?

69

Object Code for Call to Sprintf
BL __aeabi_f2d
MOV r7,r0
MOV r0,r4
STR r1,[sp,#0x2c]
BL __aeabi_f2d
STR r0,[sp,#0x28]
MOV r6,r1
MOV r0,r4
BL __aeabi_f2d
MOV r4,r0
MOV r5,r1
LDR r0,[sp,#0xc]
BL __aeabi_f2d
STR r0,[sp,#0x10]
STR r1,[sp,#0x18]
LDR r0,[sp,#8]
BL __aeabi_f2d
MOV r3,r1
MOV r2,r0
LDR r0,[sp,#0x40]
LDR r1,[sp,#0x2c]

STR r1,[sp,#0x3c]
STR r6,[sp,#0x2c]
STR r0,[sp,#0x30]
STR r7,[sp,#0x38]
LDR r1,[sp,#0x18]
STR r5,[sp,#0x24]
LDR r0,[sp,#0x10]
STR r1,[sp,#0x1c]
STR r0,[sp,#0x18]
LDR r0,[sp,#0x44]
STR r4,[sp,#0x20]
STR r3,[sp,#0xc]
STR r2,[sp,#8]
STR r0,[sp,#0x10]
LDR r1,|L1.204|
ADD r0,sp,#0x48
LDR r3,[sp,#0x34]
LDR r2,[sp,#0x14]
BL __2sprintf

70

Why So Much Code?

▪ 13 arguments!

▪ Can only pass first four in registers

▪ Remaining arguments go on stack

▪ Compiler must move each argument from memory (automatic variables in

activation record) to memory (argument space in activation record)

71

Use Stack-Friendly Functions

▪ Printf, scanf provide many features but use much stack space (or even heap, depending

on implementation)

▪ Use other functions (itoa, ftoa, atoi, atof, etc.)

▪ Look for other lightweight functions when possible, or write your own

72

Demote Costly Variables

▪Too much scope

▪ Static variables (including globals) always use RAM, eliminating reuse

▪ Reduce scope of variables by declaring them within function (or even block {})

▪ Enables RAM reuse by placing variables on stack

▪Volatile

▪ Compiler must allocate space in memory for a volatile variable, can’t optimize it into only a

register

▪Read-only (const)

▪ Some data is only read, never written

▪ Store this data in ROM rather than RAM

▪ Use const to modify variable type, indicating variable goes in ROM

const int lookup_table[256] = {234, 234, 345, 252, … };

73

OPTIMIZATION FOR MULTITASKING

SYSTEMS

74

Key Optimizations for Multitasking Systems

▪ ROM

▪ Configure RTOS to include only necessary

features

▪ Share read-only resources (code, RO data)

between threads if possible

▪ RAM

▪ Improve the accuracy of stack depth estimates

▪ Tighter bounds enable safe reduction in stack space

allocated

▪ Acquire tool to analyze stack depth from object

code

▪ Set up test harness to perform automated stack

depth measurement

▪ Use a non-preemptive scheduler

▪ Only needs enough stack space for the largest stack

of all the tasks

▪ Retain some preemption, but reduce number of

stacks required

▪ Combine independent run-to-completion tasks with

a mini-scheduler (state machine)

▪ Note: combined tasks must not block!

▪ Use preemption threshold scheduling

▪ Configure RTOS

▪ Do not over-provision (e.g. # tasks, # mutexes, queue

sizes, etc.)

▪ Use safe dynamic memory allocation to reuse

resources

75

MEMORY SIZE OPTIMIZATION

EXAMPLE: FILE SYSTEM

76

77

MEMORY SIZE OPTIMIZATION

EXAMPLE: SHIELD CODE

78

79

APPENDIX

80

Maximum Stack Use - Threaded

▪ Use information for thread root functions

▪ Also need to consider other kernel

threads (idle thread, event timer thread,

etc.)

	Default Section
	Slide 1: Memory Size Analysis and Optimization
	Slide 2: MCUs and Memory
	Slide 3: Memory Expansion Feature
	Slide 4: Motivation

	Memory Requirements
	Slide 5: Understanding Memory requirements
	Slide 6: What Memory Does a Program Need?
	Slide 7: What Memory Does a Program Need?
	Slide 8: What Memory Does a Program Need?
	Slide 9: Program Memory Use
	Slide 10: Executable File Sections
	Slide 11: Summary of Stack Memory Use
	Slide 12: Data Alignment and Packing
	Slide 13: Data Alignment and Packing
	Slide 14: Data Alignment and Packing - ARMCC
	Slide 15: Data Alignment and Packing – ARMCLANG (AC6)

	Toolchain Support
	Slide 16: Toolchain support for analysis of Memory use
	Slide 17: Linker can Generate a “Map File”
	Slide 18: Map File Contents
	Slide 19: Per-Module Information
	Slide 20: Summary Size Information
	Slide 21: Automation!
	Slide 22: More Automation
	Slide 23: Results
	Slide 24: Stack Size Analysis
	Slide 25: Summary of Stack Memory Use
	Slide 26: Stack Memory Size Estimation
	Slide 27: Experimental Stack Memory Size Estimation
	Slide 28: Analytical Stack Depth Bounding
	Slide 29: Static Call Graph
	Slide 30: Graphical Call Graph Generator Tool
	Slide 31: Maximum Stack Depth Use – Main (non-threaded)
	Slide 32: Improving Stack Depth Bounding
	Slide 33: What about Interrupts?
	Slide 34: Which Stack? Main or Process?
	Slide 35: Handler Stack Usage without RTOS
	Slide 36: Stack Depth (MSP) for Single-Threaded System
	Slide 37: Maximum Stack Depth for Single-Threaded System (MSP Only)
	Slide 38: What if Interrupts can be Interrupted in Single-Threaded System?
	Slide 39: Stacks in Multi-Threaded Systems (with RTOS)
	Slide 40: Handler Stack Usage with RTOS
	Slide 41: Stack Depths for Multi-Threaded System
	Slide 42: Maximum Stack Depths without Nested Handlers
	Slide 43: Nested Interrupt/Exception Handlers

	Reducing ROM
	Slide 44: Reducing Read-Only Memory Requirements
	Slide 45: Reducing ROM Requirements
	Slide 46: Use C Language Support
	Slide 47: Configure Compiler and Toolchain
	Slide 48: Configure Compiler and Toolchain
	Slide 49: Linker Basics
	Slide 50: Use Linker Options and Optimizations
	Slide 51: Linker Options
	Slide 52: Rearchitect Software to Remove Similar or Identical Code
	Slide 53: Use a Table
	Slide 54: But Don’t Always Use Tables
	Slide 55: When to Compute Constant Data?
	Slide 56: Example: Printf (scanf is similar)
	Slide 57: Small Printf

	Reducing RAM
	Slide 58: Reducing Read/Write Memory Requirements
	Slide 59: Reducing RAM Requirements
	Slide 60: Minimize Space Allocated to Stack(s)
	Slide 61: Setting Stack Memory Size (Bare Metal)
	Slide 62: RTX5 Thread Configuration
	Slide 63: CMSIS-RTOS2: Setting a Custom Stack Size for a Thread
	Slide 64: Use Toolchain Support
	Slide 65: Use Different Algorithms
	Slide 66: Use Different Algorithms
	Slide 67: Reduce Activation Record Size
	Slide 68: Example Source Code
	Slide 69: Object Code for Call to Sprintf
	Slide 70: Why So Much Code?
	Slide 71: Use Stack-Friendly Functions
	Slide 72: Demote Costly Variables

	Multithreaded Systems
	Slide 73: Optimization for multitasking systems
	Slide 74: Key Optimizations for Multitasking Systems
	Slide 75: Memory Size Optimization Example: File System
	Slide 76
	Slide 77: Memory Size Optimization Example: Shield Code
	Slide 78
	Slide 79: Appendix
	Slide 80: Maximum Stack Use - Threaded

