NC STATE UNIVERSITY

Memory Size Analysis and Optimization

MCUs and Memory

= MCUs typically have integrated memory
= Flash ROM and RAM
= Possibly EEPROM, FRAM
= MCUs available with a variety of memory sizes
* Price rises with increased memory

= Can switch between MCUs in same family (with same
peripherals)

= Pin-compatibility very important
* Want a variety of MCUs with same package and footprint

= Then don’t need to redesign PCB and recertify it to
change MCU

Price

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Memory Expansion Feature

= Memory expansion mode provides
address and data buses to access
external memory

Sty Cost

= Slower than on-chip memory

g’\ ; %l Tom

B Cly

= More pins required on MCU package & ﬁl&}\,\

= More complex PCB design

Access Speed (|/latency)

Motivation

* Why does memory size matter?

= Software Gas Law: Over time, program expands to use all
available resources (memory here).

= Existing memory might be (nearly) full. Nearly full memory slows
development.

= MCUs with more memory (if available) cost more

= Some systems have small sections of faster memory (cache,
scratch-pad memory (TCM)).

= Smaller memory requirements improve spatial locality, making caches
and scratch-pads work better

= Which part of the program uses the most memory!?
= Start by shrinking that part

NC STATE UNIVERSITY

NC STATE UNIVERSITY

UNDERSTANDING
MEMORY REQUIREMENTS

NC STATE UNIVERSITY

int a, b; " Five possible types
const char c=123; = Code
1 nt d=3:!-; _ = Read-only static data
VO d main(void) { = Writable static data
1Nt e; = |nitialized
char f[32]; « Zero-initialized
e =d + 7; = Uninitialized
a =e + 29999; * Heap
strcpy(f, “Hello!"); « Stack

" What goes where!
= Code is obvious
= And the others!?

NC STATE UNIVERSITY

int a, b; = Can the information change!
const char c=123; » No? Put it in read-only,
int d=31; nonvolatile memory

void main(void) { = Instructions

nt e; = Constant strings

ghirdf£3;:_l ; = Constant operands

2 = e + 25999; = |nitialization values

strcpy(f, “Hello!”);: ° Yes? Put it in read/write
} memory

= Variables

" Intermediate computations
= Return address

= Other housekeeping data

NC STATE UNIVERSITY

" How long must the data exist! Reuse

int a, b;

const char c=123; memory if possible.

int d=31; = Statically allocated

void main(void) { = Exists from program start to end
int e; = Each variable has its own fixed location
char f[32]; = Space is not reused
e =d + 7;

= Automatically allocated

a =e + 29999;

T | 7Y -
} strcpy (f, "Hello!™); Space can be reused

= Dynamically allocated

= Exists from function start to end

= Exists from explicit allocation to explicit
deallocation

= Space can be reused

Program Memory Use

RAM

Zero-
Initialized
Data

a,

bj;

const char |c=1234;////a

Initialized
Data

Stack

ad =

Heap Data

e//igx/d=31;
void main(void) f—

%E
C

NC STATE UNIVERSITY

Flash ROM

Constant
Data

T[32]];

e +

strcpy(f, “Hel]

0
e =d + 7; E

0

0

i

29999 N I Library Code E
,I I

- l

! I

Initialization
Data

Runtime

Executable File Sections

p-

N

- ROM (RO)

= . text

. text |
@ D
.constdata
s 2
.rodata

= Program code (instructions)

= Will not change, is read directly from ROM by program
= Exact size known at build time

= ,constdata

= |nitialization data for variables

= |s copied from ROM to RAM on system start-up
= Exact size known at build time

= ,rodata

= Read-only (const) data

= Will not change, is read directly from ROM by program
= Exact size known at build time

= RAM (RW, ZI)

= .data

N
.data
4
.bss
N

NC STATE UNIVERSITY

= Holds variables which have been initialized
" |s loaded from ROM to RAM on system start-up
= Exact size known at build time

= .bss

= Uninitialized data, stack, heap
" |s cleared to zero on system start-up before main() begins
= Exact size not known at build time for non-trivial

programs

= Stack and heap growth depend on program behavior, input data
= So how much space to allocate for stack and heap?
= Too little? Program may malfunction or crash
* Too much? We waste precious RAM

NC STATE UNIVERSITY

Summary of Stack Memory Use

= Stack grows with calls to
subroutines (and ISRs), shrinks
with returns

a
* Depth in callgraph determines ,, ,' n

amount of stack space used /] o
= Maximum stack space required at 20 bytes'

¥

C

b

a

leaf nodes (c) of call graph

64 i
o ; :’ ; ": ".,
“ L : | |
Maximum stack % | H b b !
s.pace‘ needed 2| a a a a i
(lgnormg ISRS) main main main main main main main

NC STATE UNIVERSITY

DATA ALIGNMENT AND PACKING

Data Alignment and Packing

* Naturally aligned data

= N-byte object is located at address which is
multiple of N

= ARM architecture designed to be fast for
accessing naturally aligned data, can access
aligned word in memory with one operation

= What about a data structure (struct,
union) with different field sizes!?
= Padding is used to align fields naturally

NC STATE UNIVERSITY

struct mystruct {

char c;
short s;
.. // next field
}
A A+l A+2 A+3
char c padding short s

Data Alignment and Packing - ARMCC

= Use |-byte alignment for all fields within
structure/union using __packed qualifier

= ARMCC User Guide, Sections 4.30(++),
10.4, 15.10

= Compiler will generate code which
supports unaligned accesses

= More code, slower

char c;

__packed short s;
.. // next field

struct mystruct {

char c

A+l

short s

A+2

NC STATE UNIVERSITY

Data Alignment and Packing — ARMC

NC STATE UNIVERSITY

LANG (AC6)

A
char c

A+l A+2

short s

#pragma pack (1)
struct mystruct {
char c;
short s;
.. // next field

}

= Align all fields within structure/union to at mo/
bytes: #pragma pack (n)

= Pack all fields within structure/union by aligning to |
byte: attribute_ ((packed)) S\\\\\\‘

= Align specific field within structure/union to | byte:
__attribute_ ((packed))

= ARMCLANG Arm Compiler for Embedded User

struct __attribute__((packed)) mystruct
{
char c;
short s;
.. // next field

}

Guide, Section 4.5

= Compiler will generate code which supports
unaligned accesses

= More code, slower

struct mystruct {
char c;
short __attribute__((packed)) s;
.. // next field

NC STATE UNIVERSITY

TOOLCHAIN SUPPORT FOR ANALYSIS
OF MEMORY USE

NC STATE UNIVERSITY

Linker can Generate a “Map File”

= Useful memory information V. Options for Target 'KL25Z Flash’
Device] Target] Output Listing] User] CICH-] Asm] Linker] Debug] Ltilities]
[] Select Project Options Select Folder for Listings... | Page Width: |?5' _%I Page Length: |66 _%I

W fssembler Listing: st\"lst
lv Cross Reference

= Select Listing tab

= Check Linker Listing and all
checkboxes in section

lv C Compiler Listing: Nst* i«

[C Preprocessor Listing: Mst'"i

= Two files created

v Linker Listing: .Mst\Basicllmap

= \Ist*.map — text file with almost all this e oo o oz
. f . v Callaraph v Cross Reference v Totals Info
Information ¥ Unused Sections Info
= \obj*.htm — HTML page with static call ¥ Veneers Info
graph

Ok Cancel Defaults Help

Map File Contents

= Map file shows how memory is used
= Symbol table, memory map, image component sizes

Global Symbols

Symbol Name

SystemInit
SystemCoreClockUpdate
main

Delay

aecabl uidiv
aeabi uidivmod
__aeabi i2d
__ISusesfp
__scatterload null
__mathlib zero
Init RGB_LEDs
Control RGB LEDs
i2c_init

i2c start

Value ov Type

0x000000£1 Thumb
0x00000195 Thumb
0x000002£fd Thumb
0x00000385 Thumb
0x000003al Thumb
0x000003al1 Thumb
0x000003cd Thumb
0x000003£5 Thumb
0x000003£f5 Thumb
0x000003f8 Data

0x00000411 Thumb
0x0000048d Thumb
0x000004e5 Thumb
0x0000052fF Thumb

= We might care about function and data sizes

Code
Code
Code
Code
Code
Code
Code
Code
Code

Code
Code
Code
Code

Size
164
310

124
24

44
34

124
70
74
26

NC STATE UNIVERSITY

Object (Section)

system mkl25z4.0/(.text)
system mkl25z4.0(.text)
main.o(.text)
delay.o(.text)
unidiv.o(.text)
uidiv.o(.text)
dflti.of(.text)
iusefp.o(.text)
handlers.o(i.__scatterload_null]
gqnan.o(.constdata)

leds.of(.text)

leds.o(.text)

i2c.o(.text)

iZc.o(.text)

Per-Module Information

.text

Code

28
604
212
136
528

44
552

Code

544
376
20
44
172
0
12

.rodata
.constdata
in ROM
(inc. data) EC Data
4 1]
12 0
15 1]
12 0
36 1]
24 152
&l 1]
([inc. data) RO Data
70 152
40 0
3] 0
o] 0
0 0
0 B
& 0

.data

EW Data

= O o O O OO

EW Data

Lo T e R v T s Y e Y e T s |

.bss

21 Data

102

[Y < e T v Y O e Y e

ZI Data

Lo Y v Y Y e T e Y O |

Debug

764
1559
173
479
1443
640
2305

NC STATE UNIVERSITY

Object Name

delay.o

i2c.o

leds.o

main.o

mma8451.0

startup mkl25z4.0
system mklZ25z4.0

Library Member Name

atan.o
atanZ.o
dunder.o
fpclassify.o
poly.o
gnan.o
sgrt.o

" Includes both compiled modules and library modules which were linked in

* Includes padding and data in code segment

NC STATE UNIVERSITY

Summary Size Information

Code (inc. data) EQ Data EW Data ZI Data Debug
5440 342 384 24 1024 12103 Grand Totals
5440 342 3684 24 1024 12103 ELF Image Totals
5440 342 364 24 0 0 ECOM Totals

Total RO Size (Code + RO Data) 5824 2.65kB)

Total BRW Size (RW Data + ZI Data) 1048 (1.02kEBE)

Total ROM Size (Code + RO Data + RW Data) 56848 (5.71kEB)

= ELF image includes zero-initialized data and debug information, not included in ROM

20

NC STATE UNIVERSITY

Automation!
executable file
" Want to create a sorted list of function sizes v
: rint function
= Possible approaches n';mes o] g
= Process map file — depends on text format of map file, may *
change if linker changes o
sor Size
= Process axf file — is in ELF format, will not change. More 4
stable approach l
* Tools needed function names
= Program to analyze axf file and determine function sizes — sorted by size
use custom “‘getregions’” program built on " [l ind_szesbat (3
“belf COde : ;:Ijhg':?jfs-::;pt runs by MDE, =o i=s in <Project>
= Program to sort functions by size — use DOS L Geem on e
“SOI"t” i .;z;::;;h[;j.'Zzss‘\fu;zt;zif;jzzz?ficjgnﬁgj;ziZ;zjzted_functian_sizes.txt
= Use a batch file to do this in one step

= find_sizes.bat

21

More Automation

= Have MDK run the
find_sizes.bat script
every time the program
is built

22

Options for Target 'KL25Z Flash’

NC STATE UNIVERSITY

Device I Target I Output I Listing User ID"CHI Asm I Linker I Debug I |kilities I

—Run User Programs Before Compilation of a C/C++ File

[~ Fun #1: |

Stop Build/Rebuild #1 on Exit Code: I Mot Specified LI

[T Run #2: I

Stop Build/Rebuild #2 on Exit Code: I Mot Specified ;I

— Run User Programs Before Build/Rebuild

[Run#l: |

[~ Run #2: I

—Run User Programs After Build/Rebuild

¥ Run #1: ISmpts\find_sjzes.bat IL

[~ Run #2: I

¥ Beep When Complete [™ Start Debuaging

| QK I Cancel Defaults

Help

Results

= Now we know what’s using the most ROM

= We'll start at the top of the list and work

23

our way down

00000474
00000336
00000326
00000310
00000260
00000234
00000202
00000188
00000172
00000166
00000164
00000162
00000162
00000136
00000124
00000124
00000122
00000118
00000116
00000106
00000080
00000074
00000070

atan

atanz
__aeabi dadd

NC STATE UNIVERSITY

SystemCoreClockUpdate

convert xyz to roll pitch

__aeabi ddiv
__aeabi dmul

i2c read byte
__kernel poly
_double epilogue
SystemInit
_dsart

__aeabi fadd
read full xyz
main
Init RGB LEDs
__aeabi fmul

i2c write byte
_float epilogue
i2c_read setup
i2c repeated read
i2c init
Control RGB LEDs

NC STATE UNIVERSITY

STACK SIZE ANALYSIS

NC STATE UNIVERSITY

Summary of Stack Memory Use

= Stack grows with calls to
subroutines (and ISRs), shrinks
with returns

a
* Depth in callgraph determines ,, ,' n

amount of stack space used /] o
= Maximum stack space required at 20 bytes'

¥

C

b

a

leaf nodes (c) of call graph

64 i
o ; :’ ; ": ".,
“ L : | |
Maximum stack % | H b b !
s.pace‘ needed 2| a a a a i
(lgnormg ISRS) main main main main main main main

25 v 0

NC STATE UNIVERSITY

Stack Memory Size Estimation

* Analysis A: <=2000 bytes = Two approaches to find maximum stack size

Analysis B: <=1600 bytes
Andlysis C: <=1504 bytes = |. Run program, measure stack space used

= Tests may not actually trigger worst-case stack usage, so
unsafe

Real Maximum: 1024 bytes
| = Typically add a safety margin

Stacik . o
' = 2.Analyze program without running it

= Based on analysis of function and handler call graphs

Test 3: 844 bytes = Some linkers provides this information

Test 2: 820 bytes o ' i i
Test - 800 bytes Typically overestimates maximum stack usage, so safe but

maybe too conservative

 Test 39: 880 bytes

26

NC STATE UNIVERSITY

Experimental Stack Memory Size Estimation

= Experimental measurement
|. Preload stack memory space with known pattern

2. Run program with many different test cases

Want to increase likelihood of hitting maximum stack
depth

3. Examine stack memory space to see how much
was overwritten

4. Use this measurement but add a safety margin
(e.g.20%)

Run
code

= Can also have code perform this measurement

at run-time 1 2 3 4

= CMSIS-RTOS2 offers
osThreadGetStackSpace(thread _id) if stack
watermarking was enabled.

27

Analytical Stack Depth Bounding

* Find a number which is not less than the
maximum stack memory possibly required
= Smaller is better — less overestimation and
wasted RAM
= Basic approach per thread

= Determine stack frame size for each function and
ISR/exception handler in program

= Create call graph for main and each ISR/exception
handler

= For each call graph, find maximum stack depth of
all leaf nodes (functions which cannot call any
other functions)

* Then must put together thread, handler and
RTOS information

28

NC STATE UNIVERSITY

main
Frame=8 bytes
C=8 bytes
f1
Frame=12 bytes
C=20 bytes
__i4tof4 _ _f4mul
Frame=20 bytes Frame=44 _bytes
C=40 bytes C=64 byte®
__ltof __f4ltor
Frame=16 bytes Frame=20 bytes
C=56 bytes C=60 bytes

Static Call Graph

= Text-based description of all possible
function calling activity
= Default output is html (./obj/*.htm)
= See —callgraph option in ARM Linker User
Guide
* Information per function F
= Code size
= Stack frame size

= Maximum depth stack depth and call chain
starting with this function

= Callers: Functions which may call F
= Callees: Functions which F may call
= Obstructions to call graph analysis
= List of recursive functions
= List of function pointers

29

Init LCD (Thumb, 110 bytes, Stack size 16 bytes,
lcd_4bit.o(.text))

[Stack]

e Max Depth = 64
e Call Chain =Init LCD = lcd write cmd =
wait_while busy = lcd read status = Delay

[Calls]

>> Delay

>> led 1nit port
>> led write_cmd
>> led write 4bit

[Called By]

e >> main

NC STATE UNIVERSITY

Graphical Call Graph Generator Tool

= https://github.ncsu.edu/mjdargen/Keil-uVision-
Call-Graph-Generator, by Michael Dargenio

= Python script
= Converts .txt callgraph description from linker in Keil
uVision to graph description file for GraphViz
= GraphViz can generate png, svg outputs

= Options
= Stack size per function

= Include by uncommenting line outputfile.writelines(...
Jostack _size)

= Library functions (_<function_name>)
= To reduce graph size, ignores likely library functions

= Can disable this if needed by removing tests (if
((callerfind(*_")!=0) ...

30

NC STATE UNIVERSITY

Handler main
0 bytes Stack size 16 bytes

Init_Profiling

main
Stack size 16 bytes

main

Stack size 8 bytes Stack size 16 bytes

file
bytes

LCD_JPEG
Stack size 32 bytes

Init_Profiling
Stack size § bytes

Init_Profiling
Stack size 8 bytes

axt_PrntChar
ize 40 bytes

LCD_JPEG
Stack size 32 bytes

LCD_Frase
Stack size 8 bytes

LCD_Plot_Pixel

pipeg_decode it
Stack size 16 bytes

Stack size 24 bytes

LCD_Controller Init
Stack size 24 bytes

pipeg_decode _mcu
Stack size § bytes

pipeg_decode_init
Stack size 16 bytes

pipeg_decode it
Stack size 16 bytes

lacataQOVFNarl-ar lacataQOVFNTarl-ar

https://github.ncsu.edu/mjdargen/Keil-uVision-Call-Graph-Generator
https://github.ncsu.edu/mjdargen/Keil-uVision-Call-Graph-Generator

NC STATE UNIVERSITY

Maximum Stack Depth Use — Main (non-threaded)

Static Call Graph for image .\obj\BasicUI axf

#<CALLGRAPH=# ARM Linker, 5.03 [Build 76]: Last Updated: Thu Mar 13 20:30:55 2014
Maximum Stack Usage = 132 bytes + Unknown(Cycles, Untraceable Function Pointers)
Call chain for Maximum Stack Depth:

main = calculate roll = atan2f = aeabi fsub = aeabi fadd = float epilogue

= Maximum stack depth and corresponding function call chain
= Unknown?

31

NC STATE UNIVERSITY

Improving Stack Depth Bounding

= Handle recursion and function pointers
= Eliminate them from program
= Modify program to help analyzer understand better
= Manually adjust estimates based on ad-hoc analysis
= Tell the analyzer limits to recursion, where function pointers go

* Eliminating infeasible paths
= Analyze program control and data flow to prune call graph
= Requires a quite bit of analysis

= Commercial stack-depth analysis tools provide these and other features

32

NC STATE UNIVERSITY

What about Interrupts!?

* Follow same call graph analysis procedure for each ISR

= On entry, there will already be 32 bytes on stack due to hardware interrupt handling
(pushing registers onto stack)

= Can any interrupt handlers be interrupted?
= No: Worst case stack contribution is from only one handler (with largest stack frame)
" Yes:

= Which ISR(s) can be interrupted?
= What are the interrupt priorities?

= How often can these interrupts occur? Fast enough to interrupt a previously running ISR?
= Complexity: good reason to keep interrupts disabled in ISRs

33

Which Stack? Main or Process!?

. Reset
= CPU has two stack pointers

= Main Stack Pointer
* Process Stack Pointer

= CPU can operate in two different modes
= Handler mode for exception/interrupt handlers
* Thread mode otherwise

= SPSEL flag (in CONTROL) selects SP for thread mode Exceptic >taring
Processing Exception
= On reset, SPSEL = 0

Completed Procéssing
= SP refers to either MSP or PSP, depending on mode and SPSEL
= Handler mode uses MSP

* Thread mode
= |f SPSEL is 0, uses MSP

= |f SPSEL is |, uses PSP. This means handlers use a different stack than threads.

Thread Mode
MSP (no RTOS)
or PSP (RTOS)

Handler Mode
MSP

34

NC STATE UNIVERSITY

Handler Stack Usage without RTOS

MSP upon entering exception handler -

MSP before entering exception handler -

Address Offset Contents
:i Free space/Handler stack frame?
0 Saved RO
+4 Saved R1
+8 Saved R2
+12 Saved R3
+16 Saved R12
+20 Saved LR
+24 Saved PC
+28 Saved xPSR
+32 Foo’s stack frame

= Only main stack pointer (MSP) is used

35

= Handler stack frame is added to main stack

= CPU hardware automatically pushes 32
bytes onto main stack before executing
handler (“register stacking”)

NC STATE UNIVERSITY

Stack Depth (MSP) for Single-Threaded System

main IRQ Handler_A IRQ_Handler_B IRQ_Handler_C

Frame=8 bytes Frame=8 bytes C:B’hy(es Frame=8 bytes
Csbytes | e TS

16 bytes

- 48 bytes

= Overview of worst-case
372 bytes = Main is using its largest possible stack

= [RQ with max. possible stack use occurs
= Must include stacked registers (pushed by hardware)

= Details on next slide

36

Maximum Stack Depth for Single-Threaded System (MSP Only)

main)
. = Bound on maximum
Registers Stacked program stack depth
: B |2kl = main: 372 bytes
32 bytes ' y

stacked registers = + Registers stacked by
32 bytes hardware in response to
IRQ: 32 bytes
= + largest IRQ Handler (A):
48 bytes

= Total: 452 bytes

41 __famul
Frame=20 bytes Frame=44 bytes
=40 bytes =64 bytes

ffffff
Frame=16 bytes Frame=20 bytes
=56 bytes

Frame=8 bytes

372 bytes

48 bytes

37

What if Interrupts can be Interrupted in Single-Threaded System!?

Frane=8 bytes Frane=8 bytes c=8 bytes Frane=8 bytes

16 bytes
* Need to consider...
= Priority of interrupts:Assume A >B > C

= Worst-case interrupt sequencing
48 bytes = Opposite to priority: C, B,A
= Registers stacked only once due to tail-chaining

IRQ _Handler_A | 48 bytes

= Example: If no additional interrupt arrivals possible,

stacked registers | 32 bytes max. stack depth = 472 bytes

372 bytes | |RQ_Handler_B | I6 bytes = Even more complex if an IRQ can interrupt its
stacked registers | 32 bytes own handler
IRQ_Handler C |4 bytes = Handler must be reentrant

= Must consider arrivals of interrupts during service time (use

stacked registers | 32 bytes response-time analysis)

main 372 bytes = Need timing constraints for worst case analysis

38

NC STATE UNIVERSITY

Stacks in Multi-Threaded Systems (with RTOS)

PSP = MSP

main/RTOS

Thread 3

Thread |

-
- Thread 2

* Process SP (PSP) used for threads
= Main SP (MSP) used for RTOS

39

NC STATE UNIVERSITY

Handler Stack Usage with RTOS
Address Offset Contents Address Offset Contents
PSP upon entering 0 Saved RO 0
exception handler - +4
+4 Saved R1 +8
+8 Saved R2 +12
+12 Saved R3 +16
+16 Saved R12 +20
+20 Saved LR +24
+24 Saved PC +28 Free space
+28 Saved xPSR becomes
PSP before entering +32 Foo’s stack frame Handler’s stack
exception handler - frame
. +32 bar’s stack frame
= Which SP? MSP before and upon
) entering exception
= PSP used for threads, and first level of interrupts ghan dlir N

= MSP used for RTOS and nested interrupts
(second and deeper levels)

= Thread running Foo uses PSP

= CPU automatically pushes 32 bytes onto process
stack before starting executing handler

= Handler uses MSP

= Handler stack frame is added to main stack

40

Stack Depths for Multi-Threaded System

Thread | Thread 2 Main thread IRQ_Handler A IRQ_Handler B

rane=8 by
=8 bytes

Frame=8 bytes

16 bytes

48 bytes

e = Need maximum stack depth for main and = Determine bound on maximum main stack
& 372 bytes each thread depth

— = Determine bounds on each thread’s = Main thread: 128 bytes
maximum stack depth = + Largest IRQ Handler (A): 48 bytes
= Maximum stack depth = + Registers stacked for IRQ handler from

= + Registers stacked for IRQ handler: 32 bytes main thread: 32 bytes

41

Maximum Stack Depths without Nested Handlers

PSP

42

stacked

registers
32 bytes

stacked

registers
32 bytes

NC STATE UNIVERSITY

What was the CPU mode (what was it running)
when the interrupt | exception was requested?

Thread Mode: Handler Mode:

Thread was Handler or
running RTOS was running

stacked

registers
32 bytes

MSP

NC STATE UNIVERSITY

Nested Interrupt/Exception Handlers

ll Stacked Registers |nter'l’upt 2 ‘. Ly .
PSP L' from Context Handler’s “. MSP
“} 3 Switch SW-Stacked “" .0,’
e Registers - LM
i .
Stacked Registers F s
from Context r
Switch ;’ F |
B
Interrupt | g
Handler’s F 4
SW-Stacked Fi

Registers

CPU is running Thread 2 in thread mode, using PSP as SP
Interrupt | is requested

CPU runs Interrupt | handler, using MSP for stack frame

Interrupt 2 is requested, preempts Interrupt |

CPU stacks some of Thread 2’s registers via PSP onto CPU stacks some of Interrupt Handler |’s registers via
Thread 2 stack MSP onto main stack

CPU switches to handler mode, using MSP as SP

CPU runs Interrupt 2 handler, using MSP for stack frame

43

NC STATE UNIVERSITY

REDUCING READ-ONLY MEMORY
REQUIREMENTS

Reducing ROM Requirements

= Conceptual Goals
= Eliminate code for unneeded features
* Implement needed code more efficiently (densely)

= Methods

= Use language support
= Configure compiler and toolchain better

* Write better code with a better design
= Rearchitect software to reduce duplicated or similar code
= Often, seeing the details of the problem make solutions obvious

45

NC STATE UNIVERSITY

Use C Language Support

46

= Enable linker to delete unused code from module

NC STATE UNIVERSITY

= Modify function declaration with static to indicate that no function outside of

the declaring file will call that function

my _file.c

static void read_xyz(void)
{
// sign extend byte to 16 bits.
// need to cast to signed since function
// returns uint8_t which i1s unsigned

acc_X = (1nt8_t) 12c_read_byte(MMA_ADDR, REG_XHI);

Delay(100) ;

acc_Y = (1nt8_t) 12c_read_byte(MMA_ADDR, REG_YHI);

Delay(100) ;

acc_Z = (1nt8_t) 12c_read_byte(MMA_ADDR, REG_ZHI);

NC STATE UNIVERSITY

Configure Compiler and Toolchain

. Options for Target 'KL257 Flash’ H

Device lTarget] Output] Usting] User] C.-"EH] Asm] Unker] Debug] Litilities]

Database: |Generic CPU Data Base =l

Vendor: Freescale Semiconductor
Device: MELZ5Z1 280004

~ Core features S
- 32-bit ARM Cortex-MO+ core (up to 48MHz CPU Clock)

- Mested vectored intermupt contr. (NVIC)

- Async. wake-up intermupt contr. (AWIC)

Debug & trace capahility

- 2-pin seral wire debug (SWD)

- Micro trace buffer (MTE)

- Data watchpoint and trace (DWT)

= Select correct processor type, or else

47

= Compiler may think you have an older processor core...

= ... which lacks certain instructions (but which actually exist in this core) ...

= ... which leads the compiler to link in library code to implement that functionality ...
= ... even though the core supports it with efficient, native instructions!

Configure Compiler and Toolchain

* In Project Options->Target, select MicPoLIB =

48

kA Options for Target 'TFT LCD!

NC STATE UNIVERSITY

Device Target ICILrtert] Usting] |ser] C;’CH] Asm] Unker] Debug] Util'rties]

NXP MKL25Z 128004 {deprecated)

#tal (MHz
Operating system: |None
System Viewer File:

|M|{L252:.s-m

= Highly optimized for code size, unlike default C library

= Warnings

Not ISO C-compliant, some C features missing or slower
No reentrant function variants
No mutex locks provided

Floating point code handles denormalized values differently
from IEEE 754 standard

No OS interaction functions provided

No wide characters or multibyte strings

No file I/O support, just stdin, stdout and stderror.
I/O streams are unbuffered

Code Generation
ARM Compiler: |Llse default compiler version j

[v Use Cross-Module Optimization

W ise MicroLIB: I

= Uses multiple passes to build program, using feedback
to improve performance

Linker Basics

= Basics of sections

= Input Section: For each source module a
compiler processes, it generates up to three
input sections
* RO — read-only
* RW — read/write
= Z| — zero-initialized

= OQutput Section: Linker creates an output
section by contiguously joining multiple input
sections of the same type (RO, RW, or ZI)

= Region: Contiguous sequence of one, two or
three output sections

* Program Segment: Contains one region

49

NC STATE UNIVERSITY

= Main linker optimization is elimination of
unused/unreachable sections

= Linker can only remove completely unused input
sections

= So help linker identify and delete these sections

NC STATE UNIVERSITY

Use Linker Options and Optimizations Cortrs | i | Someh| P

|£] ARM Development Tools
@ MDK-ARM Primer
@ MDK-ARM Plug-n for Eclipse

= Many options available, 2 s Users e Gapanese)
Getting Started with emWin
We I I - d OC u m e nte d @ Intn:u:li:ing the ARM Compiler Toolchain

@ ARM Instruction Set User's Guide
@ Compiler User Guide

Books [| @ Compiler Reference Guide
— @ Assembler User Guide
EI--m pVision ' :
I I iy = ererUserGude
u See LI n I(e r U Se r G U I d e % uVision F{ele.ase Notes =] Converdlens and feedback

E-J{ﬂ Tools User's Guide (£ Owvervieg of the linker

u M D K ARM-> Hel P->Open Books % Release Motes [£3 Linking fhodels supported by amlink

. -ﬂ_*% Complete User's Guide Selection (£ Image sWhcture and generation
W|ndOW @ ARM Compiler v3.03u1 = 43 Using linker optimizations
, . % CMSIS Documentation =] Blimination of common debug sections
= TOOIS User S G u |de'>C0mP|ete % Blimination of common groups or sections

=-flil Device Data Books

3 Hlimination of unused sections

User’s Guide Selection - Data Sheet] Blimination of unused virtual functions
. . - Technical Reference Manual [£] About linker feedback
. Llnker Usel‘ G Ulde'> - Generic User Guide =] Example of using linker feedback
. . . e . £] Abot link-time code generation
USIng LI n ker Optl mizations £] Optimization with RW data compression

a How the linker chooses a compressor

a Cwemiding the compression algorthm used by the
E How compression is applied

£] Warking with RV data compression

% Inlining functions with the: linker

2] Factors that influence function inlining

3 Handling branches that optimize to a NOP

£] About reordering of tail calling sections

3 Restrictions on reordering of tail calling section
j About merging comment sections

[

50

Linker Options

" Linker feedback option — used in cross-
module optimization

= Use --feedback file on compiler and linker
command lines

= Linker creates text file naming the unused and
inlined functions

= Re-compile. Compiler reads the file and rebuilds

objects, moving functions into own sections
= Re-link. Linker can remove functions in own
sections.
* Function inlining
= Controlled with --in1ine, --no_inline

= Replaces calls to a small function with copies of
the called function

= Will save time

51

NC STATE UNIVERSITY

= May or may not save memory — depends on
function body size and work needed to set up
arguments and activation record

* Help the linker by adding compiler option --
split_sections

= Makes compiler generate one section per function
in source file

= Linker can then remove unused sections

= Allow linker to compress initialization (RW)
data sections

= ARMlink enables compression by default, applies it
if it will reduce total size

= ARMlink supports run-length compression (runs of
repeated bytes) and Limpel-Ziv 77 compression
(repeated phrases in buffer)

52

NC STATE UNIVERSITY
Rearchitect Software to Remove Similar or ldentical Code

if(DifferentTalker)
sprintf(buffer, "$APRMC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,”
“w,%05.1f,%04.1f,%061d,%05.1f,w*=", hr, min, sec, lat_deg, lat_min,
lTon_deg, lon_min, speed, track, date, var);

else if(DifferentSenType)
sprintf(buffer, "$GPGLC,%02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,”
"W,%05.1f,%04.1f,%061d,%05.1f,w*", hr, min, sec, lat_deg, lat_min,
lon_deg, lon_min, speed, track, date, var);

else if(I1legalInField)
sprintf(buffer, "$GPRMC,%02d%02d%02d,A,%02d%06.3fa,N,%03d%06.3f,”
"W,%05.1f,%04.1f,%061d,%05.1f,w*", hr, min, sec, lat_deg, lat_min,
lon_deg, lon_min, speed, track, date, var);

else if(I1legalAsField)
sprintf(buffer, "$GPRMC;%02d%02d%02d;A;%02d%06.3f;N;%03d%06.3f;”
"W;%05.1F;%04.1f;%061d;%05.1f;w*", hr, min, sec, lat_deg, lat_min,
lon_deg, lon_min, speed, track, date, var);

" How can we improve this!?

NC STATE UNIVERSITY

Use a Table

53

= Everything is the same except for the format strings

= So put them in a table.

char Formats[13][] = {

" $APRMC, %02ad%02d%02d , A, 9002906 . 3f ,N,%03d%06 . 3f ,w,%05.1f,%04 . 1f,%061d,%05 . 1f,w**,

"$GPGLC,%02d%02d%02d , A, %402cd%406 . 3f ,N,%03d%06 . 3f ,w,%05.1f,%04.1f,%061d,%05 . 1f,w**,

" $GPRMC, %02ad%02d%02d , A, %02d%06 . 3fa,N,%03d%06 . 3f,w,%05.1f,%04 . 1f,%061d,%05 . 1 ,w**,

"' $GPRMC ;9%402d%02d%402d ; A; 24020406 . 3T ;N;%603d%606 . 3 ;W;%05 . 11 ;%04 . 11;%061d;%05 . 1f;w*",
.. (deleted) ..

s

if(DifferentTalker)
format_num = 0; //error 1in talker id - not gps
else if(DifferentSenType)
format_num = 1; //error in sentence type - not gl
else if(I1legalInField)
format_num = 2; //letter in field
else 1f(I1legalAsField)
format_num = 3; //illegal separator
sprintf(buffer, Formats[format_num],
hr, min, sec, lat_deg, lat_min, lon_deg, lon_min, speed, track, date, var);

NC STATE UNIVERSITY

But Don’t Always Use Tables

= Example: Floating point sine function has multiple possible implementations
= Standard C math library

= Lookup table (LUT)
* Polynomial approximation

= Different memory requirements for each - Which is smallest!?
= Standard C math library
= Fixed size - examine map file to determine
* Lookup table
= RO Size = (resolution needed) * (range of input values) * (element size)
= May be able to reduce table size with symmetry, periodicity, interpolation
= Needs mathlib code for floating point add, multiply (and divide?) to perform these operations
* Polynomial approximation
= Needs mathlib code for floating point multiply and addition
= Coefficients use a negligible amount of memory

54

When to Compute Constant Data!?

= At compile/build time?

= Optimizes program execution speed

= Minimizes program initialization time

= Requires ROM section to hold all that data
= At system start-up?

* Increases program initialization time

= Requires RAM to hold table

= Requires ROM to hold code to compute the data values
* When that particular value is needed!?

" [ncreases program execution time

= Useful in some but not all cases

= Could cache the values in RAM as a trade-off

55

NC STATE UNIVERSITY

Example: Printf (scanf is similar)

= Standard printf format string: %[flags][width][.precision][length]specifier

Flags

Left-justify within the given field width;
Right justification is the default (see
width sub-specifier).

+

Forces to precede the result with a plus
or minus sign (+ or -) even for positive
numbers. By default, only negative
numbers are preceded with a -ve sign.

(space)
If no sign is going to be written, a blank
space is inserted before the value.

#

Used with o, x or X specifiers the value
is preceded with 0, Ox or O0X
respectively for values different than
zero. Used with e, E and f, it forces the
written output to contain a decimal
point even if no digits would follow. By
default, if no digits follow, no decimal
point is written. Used with g or G the
result is the same as with e or E but
trailing zeros are not removed.

0

Left-pads the number with zeroes (0)
instead of spaces, where padding is
specified (see width sub-specifier).

Width

(number)

Minimum number of characters
to be printed. If the value to be
printed is shorter than this
number, the result is padded with
blank spaces. The value is not
truncated even if the result is
larger.

&

The width is not specified in the
format string, but as an additional
integer value argument preceding
the argument that has to be
formatted.

Precision

.number

For integer specifiers (d, i, o, u, x, X) —
precision specifies the minimum number
of digits to be written. If the value to be
written is shorter than this number, the
result is padded with leading zeros. The
value is not truncated even if the result is
longer. A precision of 0 means that no
character is written for the value 0. For e,
E and f specifiers — this is the number of
digits to be printed after the decimal
point. For g and G specifiers — This is the
maximum number of significant digits to
be printed. For s — this is the maximum
number of characters to be printed. By
default all characters are printed until the
ending null character is encountered. For
c type — it has no effect. When no
precision is specified, the default is |. If
the period is specified without an explicit
value for precision, 0 is assumed.

*
The precision is not specified in the
format string, but as an additional integer

value argument preceding the argument
that has to be formatted.

Length

h

The argument is interpreted as a
short int or unsigned short int (only
applies to integer specifiers: i, d, o, u,
x and X).

I

The argument is interpreted as a
long int or unsigned long int for
integer specifiers (i, d, o, u, x and X),
and as a wide character or wide
character string for specifiers c and s.

L

The argument is interpreted as a
long double (only applies to floating
point specifiers: ¢, E, f, g and G).

Based on https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

56

NC STATE UNIVERSITY

Specifier
c Character
d Signed decimal integer

I Signed decimal integer

e Scientific notation (mantissa/exponent)
using e character

E Scientific notation (mantissa/exponent)
using E character

f Decimal floating point

g Uses the shorter of %e or %f
G Uses the shorter of %E or %f
o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital
letters)

p Pointer address
n Nothing printed

% Character

Small Printf

= From Georges Menie, https://www.menie.org/georges/embedded/printf.c

Flags

Left-justify within the given field width;
Right justification is the default (see
width sub-specifier).

+

Forces to precede the result with a plus
or minus sign (+ or -) even for positive
numbers. By default, only negative
numbers are preceded with a -ve sign.

(space)
If no sign is going to be written, a blank
space is inserted before the value.

#

Used with o, x or X specifiers the value
is preceded with 0, Ox or O0X
respectively for values different than
zero. Used with e, E and f, it forces the
written output to contain a decimal
point even if no digits would follow. By
default, if no digits follow, no decimal
point is written. Used with g or G the
result is the same as with e or E but
trailing zeros are not removed.

0

Left-pads the number with zeroes (0)
instead of spaces, where padding is
specified (see width sub-specifier).

Width

(number)

Minimum number of characters
to be printed. If the value to be
printed is shorter than this
number, the result is padded with
blank spaces. The value is not
truncated even if the result is
larger.

&

The width is not specified in the
format string, but as an additional
integer value argument preceding
the argument that has to be
formatted.

Precision

.number

For integer specifiers (d, i, o, u, x, X) —
precision specifies the minimum number
of digits to be written. If the value to be
written is shorter than this number, the
result is padded with leading zeros. The
value is not truncated even if the result is
longer. A precision of 0 means that no
character is written for the value 0. For e,
E and f specifiers — this is the number of
digits to be printed after the decimal
point. For g and G specifiers — This is the
maximum number of significant digits to
be printed. For s — this is the maximum
number of characters to be printed. By
default all characters are printed until the
ending null character is encountered. For
c type — it has no effect. When no
precision is specified, the default is |. If
the period is specified without an explicit
value for precision, 0 is assumed.

*
The precision is not specified in the
format string, but as an additional integer

value argument preceding the argument
that has to be formatted.

Length

h

The argument is interpreted as a
short int or unsigned short int (only
applies to integer specifiers: i, d, o, u,
x and X).

I

The argument is interpreted as a
long int or unsigned long int for
integer specifiers (i, d, o, u, x and X),
and as a wide character or wide
character string for specifiers c and s.

L

The argument is interpreted as a
long double (only applies to floating
point specifiers: ¢, E, f, g and G).

Based on https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

57

NC STATE UNIVERSITY

Specifier
c Character
d Signed decimal integer
I Signed decimal integer

e Scientific notation (mantissa/exponent)
using e character

E Scientific notation (mantissa/exponent)
using E character

f Decimal floating point

g Uses the shorter of %e or %f
G Uses the shorter of %E or %f
o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital
letters)

p Pointer address
n Nothing printed

% Character

https://www.menie.org/georges/embedded/printf.c

NC STATE UNIVERSITY

REDUCING READ/WRITE MEMORY
REQUIREMENTS

Reducing RAM Requirements

= Conceptual Goals

= Estimate RAM requirements more
accurately

= Reduce RAM requirements
= Eliminate unneeded data storage
= Improve storage density

" Methods
= Analyze

= Use better stack depth analysis
= Reduce

59

NC STATE UNIVERSITY

= Allocate less space for stacks
= Use language support
= Configure compiler and toolchain better
= Improve storage density
= Pack data
= Compress data
= Better data structures
= Use more memory-efficient algorithms
= Reduce activation record size
= Pass arguments by register, not stack
= Demote costly variables
= Too much scope (static, global)
= Volatile
= Read-only (const)

Minimize Space Allocated to Stack(s)

= Analyze program’s stack use by threads and handlers (including ISRs)

= Set sizes

= Bare metal — no scheduler
= Main thread stack size

= RTOS

= Default stack size
= Thread-specific sizes

60

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Project 1 x |

=23 KL25Z Flash
£-£5 Startup

= Defined in Startup/startup_ MKL25Z74.s [stertup K224

- - [3] system_MKL25Z4.c
=-£3 source
. @~ [#] LD 4bit.c

Setting Stack Memory Size (Bare Metal)

= TWO ed|t|ng 0Pt|0ns main.c mmaBd5i.c LEDs.c startup_MKL25Z4.5 LCD_4bit.c d
. 15 ; <h» 5S5tack Configuration
- SeIeCt USIng bOttom tab 1e E <o> Stack S5ize (in Bytes) <0x0-0xFFFFFFFF: 8>
. 17 : </h>
on IDE source code editor 1s
. 15 Stack S5ize EQU 0x00000400
window 20 B
21 LEEL STACE, NOINIT, READWEITE, ALIGH=3
a1 L 22 St.?c]::_l:![em SPACE Stack Size
53 oo 23 dpnitial s=p
< 74
Text Editor /i, Configuration Wizard {

[#] maine (%] mma8451.c (4] LEDs.c |#] startup MKL25Z4s |

Bpand Al | Collapse All | Hep | T Show Grd
Opticn Value
[=--5tack Configuration
Stack Size (in Bytes) OreD0O00 0400
=--Heap Configuration
Heap Size (in Bytes) Crc0000 0000

6l

NC STATE UNIVERSITY

RTX5 Thread Configuration

62

] RTX Configh] mainc] R Configc] riclib.c 5T X
Expand Al | | Collapse Al | Help W Show Grd
. Option Value
= Default thread stack sizes - System Configuration 5
Global Dynarnic Memory size [bytes] 4096
" ldle thread KemeiTickFrequency bl [
- Othel‘ th I"eadS B--Round-Robin T.hrea.cl switching |_
Round-Reobin Timeout 3
Event Recording
ISR FIFO Cueue 16 entries
= Support for monitoring stack size 5 Thread Configuratior
Object specific Mernory allocation [
= Overflow (Qverrun) detection Default Thread Stack size [bytes] 200
Idle Thread 5Stack size [bytes] 200
= Watermark |n|t|allzat|0n Stack overrun checking [v
Stack usage watermark [
Processor mode for Thread execution Privileged mode
Tirner Configuration
Event Flags Configuration
Mutex Configuration b
Semaphore Configuration
Mernory Pool Configuration
Message Queue Configuration ﬂ
Kernel Tick Frequency [Hz]
Defines base time unit for delays and timeouts.
Default: 1000 (1ms tick)
WCﬂnﬁgurﬂﬁnn Wizard I.-'r

NC STATE UNIVERSITY

CMSIS-RTOS2: Setting a Custom Stack Size for a Thread

/// BAttributes structure for thread.
typedef struct {

const char *name; ///< name of the thread

uint3Z t attr bits; ///< attribute bits

vold *cb mem; ///< memory for control block

uint32 t cb size; ///< size of provided memory for control block

void *stack mem; ///< memory for stack

uint3Z t stack size; ///< size of stack

osPriority t priority; ///< initial thread priority (default: osPriorityNormal)
TZ ModuleId t tz module; ///< TrustZone module identifier

uint32 t reserved; ///< reserved (must be 0)

i GsThreEﬂEttr_t;

osThreadId_t osThreadNew { osThreadFunc_t func,

= Declare a structure “attr’” of type
os ThreadAttr t
= |nitialize it
= attr.stack _mem to point to custom stack space

= attr.stack_size to size of custom stack space
= Clear unused attributes to NULL

= Call osThreadNew(my_thread, &argument, &attr);

63

)

void * argument,
const osThreadAttr_t * attr

NC STATE UNIVERSITY

Use Toolchain Support

= Maximize optimization for size = If speed is also important, take advantage
of the “80/20” rule
= Select smallest feasible memory model, if = Most programs spend about 80% of their time in
applicable 20% of the code

= Shortens addresses = Can specify different optimizations per module

= Simplifies their calculation and use
= Apply different optimizations for the
= If possible, use library versions optimized different parts of the code
for less RAM = Optimize time-critical modules for speed
= Optimize remaining modules for size

64

NC STATE UNIVERSITY

Use Different Algorithms

= Example: sorting n data items " Quick sort

= Merge sort = Data stays in place
= Divide and conquer approach uses recursion,

requiring O(n) stack space and O(n) data storage,

= Can reduce to O(log n) stack space with special
tricks (Sedgewick’s method)

= Typical implementation does not sort in place,
needs an extra O(n) RAM space

= Possible to reduce space overhead O(n/2), but
makes coding more complicated, slows sorting
operation

= Possible to reduce space requirement to O(n),
but requires recursion (so need more stack
space) and makes coding more complicated

65

NC STATE UNIVERSITY

Use Different Algorithms

= Bubble sort = Heap sort
* |s an in-place sort, so no extra memory needed = Uses a binary tree
(actually, need to store one element to perform = |If explicitly implemented as a tree, extra memory
the swap) (O(n)) is needed
= |s slow - O(n?) = |If binary tree is implemented in an array, no extra
= Shell sort memory is needed but coding is more complex

= Speed is O(n log n)
" |n-place sort

= Not recursive, so stack is not used

= Speed is typically O(n log n), worst case is O(n?)

= Sometimes used to implement C’s gsort library
function

66

NC STATE UNIVERSITY

Reduce Activation Record Size

= Use smallest practical automatic variables = Limit number of arguments to a function
= Remember ARM calling convention = Make function result fit within two registers
= First four arguments can be passed in registers r0O-r3
* Remaining arguments will go on the stack = Do NOT convert automatic variables to statics or
globals
= Use smallest practical arguments = Automatics reuse memory space, releasing their
= Pass pointers to large data rather than data itself memory when the scope (e.g. function) ends
= Group related items together in a structure and passa " Each global or static variable uses its memory for the
pointer full lifetime of the program

= Note that arguments passed on stack are word-aligned,
so a one-byte argument will take four bytes

67

NC STATE UNIVERSITY

Example Source Code

sprintf(buffer,

"$APRMC, %02d%02d%02d,A,%02d%06.3f,N,%03d%06.3f,w,%05.1f,%04.1f,%061d,%05
Af,w*", hr, min, sec, lat_deg, lat_min,

lon_deg, lon_min, speed, track, date, var);

= What does the object code look like?

68

Object Code for Call to Sprintf

69

BL

MOV
MOV
STR
BL

STR
MOV
MOV
BL

MOV
MOV
LDR
BL

STR
STR
LDR
BL

MOV
MOV
LDR
LDR

__aeabi_f2d
r7,r0

ro,r4

rl, [sp,#0x2c]
__aeabi_f2d
ro, [sp,#0x28]
ro,rl

ro,r4
__aeabi_f2d
r4,ro0

rs5,rl

ro, [sp,#0xc]
__aeabi_f2d
ro, [sp,#0x10]
rl, [sp,#0x18]
ro, [sp,#8]
__aeabi_f2d
r3,rl

r2,ro0

ro, [sp,#0x40]
rl, [sp,#0x2c]

STR
STR
STR
STR
LDR
STR
LDR
STR
STR
LDR
STR
STR
STR
STR
LDR
ADD
LDR
LDR
BL

rl, [sp,#0x3c]
re, [sp,#0x2c]
ro, [sp,#0x30]
r7,[sp,#0x38]
rl, [sp,#0x18]
r5, [sp,#0x24]
ro, [sp,#0x10]
rl, [sp,#0x1c]
ro, [sp,#0x18]
ro, [sp,#0x44]
r4,[sp,#0x20]
r3, [sp,#0xc]
r2,[sp,#8]
ro, [sp,#0x10]
rl, |L1.204|
ro,sp,#0x48
r3, [sp,#0x34]
r2,[sp,#0x14]
__2sprintf

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Why So Much Code?

= |3 arguments!
= Can only pass first four in registers
= Remaining arguments go on stack

= Compiler must move each argument from memory (automatic variables in
activation record) to memory (argument space in activation record)

70

NC STATE UNIVERSITY

Use Stack-Friendly Functions

= Printf, scanf provide many features but use much stack space (or even heap, depending
on implementation)

= Use other functions (itoa, ftoa, atoi, atof, etc.)

* Look for other lightweight functions when possible, or write your own

71

NC STATE UNIVERSITY

Demote Costly Variables

= Too much scope
= Static variables (including globals) always use RAM, eliminating reuse
= Reduce scope of variables by declaring them within function (or even block {})
= Enables RAM reuse by placing variables on stack

= Volatile

= Compiler must allocate space in memory for a volatile variable, can’t optimize it into only a
register

= Read-only (const)

= Some data is only read, never written
= Store this data in ROM rather than RAM

= Use const to modify variable type, indicating variable goes in ROM
const int lookup_table[256] = {234, 234, 345, 252, .. };

72

NC STATE UNIVERSITY

OPTIMIZATION FOR MULTITASKING
SYSTEMS

NC STATE UNIVERSITY

Key Optimizations for Multitasking Systems

= ROM = Only needs enough stack space for the largest stack

f all the task
= Configure RTOS to include only necessary ot all the tasks

= Retain some preemption, but reduce number of
features

| ired
= Share read-only resources (code, RO data) Stacks require

)) = Combine independent run-to-completion tasks with
between threads if possible P P

a mini-scheduler (state machine)

= RAM = Note: combined tasks must not block!
= Improve the accuracy of stack depth estimates * Use preemption threshold scheduling
= Tighter bounds enable safe reduction in stack space = Configure RTOS
allocated = Do not over-provision (e.g. # tasks, # mutexes, queue
= Acquire tool to analyze stack depth from object sizes, etc.)
code = Use safe dynamic memory allocation to reuse
= Set up test harness to perform automated stack resources

depth measurement

= Use a non-preemptive scheduler

74

NC STATE UNIVERSITY

MEMORY SIZE OPTIMIZATION
EXAMPLE:FILE SYSTEM

76

NC STATE UNIVERSITY

NC STATE UNIVERSITY

MEMORY SIZE OPTIMIZATION
EXAMPLE: SHIELD CODE

78

NC STATE UNIVERSITY

NC STATE UNIVERSITY

APPENDIX

NC STATE UNIVERSITY

Maximum Stack Use - Threaded

] . . .
Use information for thread root functions Init LCD (Thumb, 110 bytes, Stack size 16 bytes,

= Also need to consider other kernel led_4bit.o(text))
threads (idle thread, event timer thread, [Stack]
etc.)

e Max Depth = 64
e Call Chain=Init LCD = lcd write_ cmd =
wait_while busy = lcd read status = Delay

[Calls]

>> Delay

>> led init_port

>> led write_cmd
>> lcd write 4bit

[Called By]

e >> main

80

	Default Section
	Slide 1: Memory Size Analysis and Optimization
	Slide 2: MCUs and Memory
	Slide 3: Memory Expansion Feature
	Slide 4: Motivation

	Memory Requirements
	Slide 5: Understanding Memory requirements
	Slide 6: What Memory Does a Program Need?
	Slide 7: What Memory Does a Program Need?
	Slide 8: What Memory Does a Program Need?
	Slide 9: Program Memory Use
	Slide 10: Executable File Sections
	Slide 11: Summary of Stack Memory Use
	Slide 12: Data Alignment and Packing
	Slide 13: Data Alignment and Packing
	Slide 14: Data Alignment and Packing - ARMCC
	Slide 15: Data Alignment and Packing – ARMCLANG (AC6)

	Toolchain Support
	Slide 16: Toolchain support for analysis of Memory use
	Slide 17: Linker can Generate a “Map File”
	Slide 18: Map File Contents
	Slide 19: Per-Module Information
	Slide 20: Summary Size Information
	Slide 21: Automation!
	Slide 22: More Automation
	Slide 23: Results
	Slide 24: Stack Size Analysis
	Slide 25: Summary of Stack Memory Use
	Slide 26: Stack Memory Size Estimation
	Slide 27: Experimental Stack Memory Size Estimation
	Slide 28: Analytical Stack Depth Bounding
	Slide 29: Static Call Graph
	Slide 30: Graphical Call Graph Generator Tool
	Slide 31: Maximum Stack Depth Use – Main (non-threaded)
	Slide 32: Improving Stack Depth Bounding
	Slide 33: What about Interrupts?
	Slide 34: Which Stack? Main or Process?
	Slide 35: Handler Stack Usage without RTOS
	Slide 36: Stack Depth (MSP) for Single-Threaded System
	Slide 37: Maximum Stack Depth for Single-Threaded System (MSP Only)
	Slide 38: What if Interrupts can be Interrupted in Single-Threaded System?
	Slide 39: Stacks in Multi-Threaded Systems (with RTOS)
	Slide 40: Handler Stack Usage with RTOS
	Slide 41: Stack Depths for Multi-Threaded System
	Slide 42: Maximum Stack Depths without Nested Handlers
	Slide 43: Nested Interrupt/Exception Handlers

	Reducing ROM
	Slide 44: Reducing Read-Only Memory Requirements
	Slide 45: Reducing ROM Requirements
	Slide 46: Use C Language Support
	Slide 47: Configure Compiler and Toolchain
	Slide 48: Configure Compiler and Toolchain
	Slide 49: Linker Basics
	Slide 50: Use Linker Options and Optimizations
	Slide 51: Linker Options
	Slide 52: Rearchitect Software to Remove Similar or Identical Code
	Slide 53: Use a Table
	Slide 54: But Don’t Always Use Tables
	Slide 55: When to Compute Constant Data?
	Slide 56: Example: Printf (scanf is similar)
	Slide 57: Small Printf

	Reducing RAM
	Slide 58: Reducing Read/Write Memory Requirements
	Slide 59: Reducing RAM Requirements
	Slide 60: Minimize Space Allocated to Stack(s)
	Slide 61: Setting Stack Memory Size (Bare Metal)
	Slide 62: RTX5 Thread Configuration
	Slide 63: CMSIS-RTOS2: Setting a Custom Stack Size for a Thread
	Slide 64: Use Toolchain Support
	Slide 65: Use Different Algorithms
	Slide 66: Use Different Algorithms
	Slide 67: Reduce Activation Record Size
	Slide 68: Example Source Code
	Slide 69: Object Code for Call to Sprintf
	Slide 70: Why So Much Code?
	Slide 71: Use Stack-Friendly Functions
	Slide 72: Demote Costly Variables

	Multithreaded Systems
	Slide 73: Optimization for multitasking systems
	Slide 74: Key Optimizations for Multitasking Systems
	Slide 75: Memory Size Optimization Example: File System
	Slide 76
	Slide 77: Memory Size Optimization Example: Shield Code
	Slide 78
	Slide 79: Appendix
	Slide 80: Maximum Stack Use - Threaded

