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Power and Energy Optimization
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Overview

▪ Process

1. Start with a power or energy model

2. Optimize the largest part

3. Update model based on testing

4. GOTO 2

▪ What can you do to minimize power or 
energy consumption?
▪ Circuit design

▪ Choose power-efficient parts
▪ Operate at a low voltage
▪ Run at low frequency if dynamic power dominates
▪ Turn off processor and other circuits if static power 

dominates

▪ Use low-power modes or shut off parts

▪ Program implementation
▪ Minimize compute cycles needed

▪ Power supply
▪ Use an efficient power supply
▪ Skip the power supply? Use devices which have a 

wide operating range

▪ Leverage low-power modes of processor and 
peripherals
▪ Group processing together to minimize overhead 

of switching between active and idle modes
▪ Use timers and external events to wake up
▪ Use external hardware to reduce CPU on-time

The squeaky wheel gets the grease.

The squeakiest wheel gets the grease first.



3

Voltage Scaling
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How about Lowering the Operating Voltage?

▪ P aV2 for generic digital logic so this can have a big 

impact

▪ Note: we need lower the voltage efficiently, so may want to 

use switching converter instead of linear regulator

▪ How low can we go? What stops working as we 

lower the supply voltage? Examine operating 

voltage ranges

▪ LCD will stop first

▪ LEDs will become dim (first blue & green, then red) 

unless we reduce the series resistor

▪ Eventually LEDs will not light at all

▪ KL25Z MCU

▪ 48 MHz at 1.71 V is possible

▪ Impact can be significant

▪ Reduce power and energy by a factor of ???
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Does the MCU Power Vary Quadratically with Voltage?

▪ Use AD2 to power P3V3 supply rail at an 

adjustable voltage

▪ Monitor MCU current via voltage across R81 

(J4) (after removing R73)

▪ Adjust voltage from 1.8 to 3.6 V

▪ Power = current * voltage

IKL25Z = VR81/10Ω

PKL25Z = VP3V3_KL25Z*IKL25Z
= VP3V3_KL25Z*VR81/10Ω

+
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Does the MCU Power Vary Quadratically with Voltage?

▪ Current is almost constant, depends very 

little on voltage

▪ I = 7.57 mA + 0.3887 mA/V

▪ MCU has internal voltage regulator!

▪ Most MCU circuitry runs at fixed voltage, 

so current doesn’t vary with voltage

▪ Impact on power

▪ Power rises almost linearly, since current is 

almost constant

IKL25Z = 8.40 mA @ 1.85V IKL25Z = 8.92 mA @ 3.5V
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Minimum Data Retention Voltage

▪ Datasheet says minimum RAM retention voltage = 1.2 V

▪ Extra Credit Project - Verify it works!

▪ What about processor registers? 1.2 V also, or something higher?

▪ How low can we take the MCU supply voltage and have all RAM and registers 

retain their values?
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Voltage and Frequency Scaling
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Voltage and Frequency Scaling

▪ Ideas

▪ Reduce frequency to ideal frequency for each task

▪ Reduce voltage to minimum needed for that clock frequency

▪ P = SPVCC
2 + CPVCC

2fClock

▪ Circuitry
▪ Clock divider/synthesizer

▪ Variable voltage supply
▪ Efficiency: may need a DC-to-DC converter (switch-mode power supply) to efficiently convert 

supply voltage.

▪ Voltage transition rate: need to be able to quickly change output voltage

▪ Transition energy dissipation: want to waste little energy when changing the voltage
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Evaluating Frequency Scaling 

for the KL25 with Run and Very 

Low Power Run Modes
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What is the Impact of Clock Speed on Current?

▪ Current rises with 

core clock frequency
▪ What relationship?

▪ Offset due to static 

current consumption

▪ Impact of enabling 

peripheral clocks
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Current with Linear Axes

▪ Assumes all 

peripherals are 

turned off

▪ Current linearly 

rises with core 

clock frequency
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What is the Impact of Clock Speed on Power?

▪ Power rises linearly with 

core clock frequency

▪ Power is proportional to 

voltage*current, and voltage 

is fixed here (3.0 V)

▪ 1 MHz is lowest power 

point

▪ Compare: 

https://ambiq.com/mcu-soc/

https://ambiq.com/mcu-soc/
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Comparing Power and Energy

▪ MCU Power = 0.246 mW/MHz + 5.5689 mW

▪ Example: Need 1,000,000 cycles of processing per second

▪ Slow option: 1 MHz, always awake

▪ Energy = power integrated over time = shaded area 

▪ Fast option: 48 MHz. Can sleep when not needed.

▪ Run for 1/48 second, sleep/deep sleep for rest
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What is the Impact of Clock Speed on Energy?

▪ Energy per clock cycle 

is power divided by 

clock frequency

▪ 48 MHz is lowest-

energy point
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Current vs. Clock Speed –VLPR Mode

▪ Now consider VLPR – very 

low power run mode 

▪ Maximum core frequency is 4 

MHz

▪ Still have static current offset

▪ Can see impact of changing 

core speed, bus speed, and 

providing clock to peripherals
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VLPR Current with Linear Axes

▪ Current linearly 

rises with core 

clock frequency
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VLPR: What is the Impact of Clock Speed on Power?

▪ Power rises linearly 

with core clock 

frequency

▪ Power is 

proportional to 

voltage*current, and 

voltage is fixed here 

(3.0 V)

▪ 1 MHz is lowest 

power point
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VLPR: What is the Impact of Clock Speed on Energy?

▪ Energy per clock cycle is 

power divided by clock 

frequency

▪ 4 MHz is lowest-energy 

point



20

Comparing Energy for Run and VLP Run

▪ Very low power also gives 

very low energy!

▪ 4 MHZ VLP Run mode more 

energy-efficient than 48 MHz 

Run mode
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Power Management Strategies
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Application Notes

▪ NXP/Freescale

▪ AN4503

▪ KLQRUG

▪ Microchip

▪ AN1416
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Power Management for Peripherals

▪ Pick low-power peripherals

▪ Switch them off when not needed
▪ Some have standby or power-down modes 

controlled with a pin
▪ Example: Nat. Semiconductor LMV982 Dual 1.8V 

Op-Amps with Shutdown
▪ VCC = 1.8 to 5.0 V 

▪ Supply current 200 uA

▪ Shutdown current <5 uA

▪ 19 us turn-on time from shutdown

▪ Some accept standby or sleep command
▪ Accelerometer MMA8451Q via I2C

▪ LCD Controller ST7789S via parallel bus

▪ Otherwise have to switch off power
▪ Low-current devices (<10 mA)
▪ Supply power with MCU’s digital output pin(s)

▪ Higher-current devices
▪ Switch power with a transistor or high-side supply 

switch driven by an MCU digital output

▪ Example: Vishay SiP4610 Protected 1 Amp High-Side 
Load switch

▪ VCC = 2.4 to 5.5 V

▪ 1 amp output

▪ Quiescent current 9 uA

▪ Shutdown current < 1 uA
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Power Management Options for MCUs

▪ Clock scaling

▪ Slow down the CPU clock if there’s little to do

▪ Sleep

▪ Turn off the processor if there’s nothing to do

▪ Many MCUs have sleep modes which halt instruction execution 

and shut off unused portions of the MCU

▪ Can have significant power savings: factor of 1000 or more

▪ Disadvantage: waking up

▪ Need a mechanism such as timer or interrupt

▪ Events you care about must be connected to trigger wake-up

▪ Depth of sleep mode may lead to long wake-up time, reducing 

system performance and reducing viable “nap windows”

▪ Both clock scaling and sleep

▪ Many variables!

▪ Not immediately obvious which settings are best
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y = 4.6827x-0.705
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Clock Scaling – Slow Down

▪ Slowing clock cuts dynamic power used

▪ Eventually reaches limit of about 6 mW - static 

(leakage) power

▪ Fewer cycles spent waiting for the next 

interrupt or timer event

▪ Actual energy cost per cycle increases

y = 0.246x + 5.5689
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Slow Down … But To Which Frequency?

▪ Non-real-time systems
▪ Use a governor (feedback system) to set the speed, 

trying to keep processor utilization between upper 

and lower bounds
▪ If U>Uupper, raise CPU speed and voltage

▪ If U< Ulower, lower CPU speed and voltage

▪ Real-time systems have deadlines  
▪ Goal: minimize energy AND meet all deadlines

▪ Can then set speed for each task statically…
▪ Pick the frequency (hence voltage) per task which 

minimizes the energy based on the task’s worst-case 

execution time and deadline.

▪ One fixed clock frequency per task

▪ Or can set speed for each task dynamically
▪ Pick the frequency (hence voltage) per task which 

minimizes the energy based on the task’s past behavior, 

current progress, etc. and deadline

▪ Clock frequency varies as task behavior changes

UUpper

ULower

100%

0%

Uunscaled

Uscaled

fCPU

VCPU

PCPU
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MCU Active Time falls with CPU Clock Frequency

▪ Time for many MCU activities depends directly on 

CPU clock frequency fCPU

▪ Code1 needs 20,000 cycles

▪ Code2 needs 10,000 cycles

▪ If code i needs Ci clock cycles, computation time 

Ci/fCPU

▪ Others aren’t proportional to fCPU

▪ Wake from sleep: Depends on oscillator (and maybe 

its wake time)

▪ I2C communication: Data rate determines time 

waiting for next byte 

▪ Using ADC: Conversion clock frequency determines 

time waiting for conversion to complete

▪ May be able to sleep during some of these?

▪ Time used per wake-up at fCPU

▪ TActive = C/fCPU + Tconst

▪ fCPU = 10 MHz:  TActive = 1 + 2 + 4 + 1 ms = 8 ms

▪ fCPU = 20 MHz:  TActive = 1 + 1 + 4 + ½ ms = 6.5 ms

▪ Active, sleep times per 1 second

▪ TActive = fWakeup*(C/fCPU + Tconst)

▪ TSleep = 1 – Tactive

W Code1 I2C Code Code2

W Code1 I2C Code Code2

1ms 2 4 1

1ms 1 4 ½

Twakeup = 1/fwakeup = 20 ms

W

W

fCPU = 10 MHz

fCPU = 20 MHz
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MCU Active Power Use Varies with CPU Frequency

▪ Speed up fCPU from 10 MHz to 20 MHz? 

▪ Finish 1.5 ms earlier, but use more power while active. 

▪ Is average power higher or lower? Depends

▪ Average MCU Power (Proportional to Energy)

▪ PMCU = DActive *PActive + DSleep* PSleep

▪ PMCU = PActive*(C/fCPU + Tconst) + PSleep*(1 - C/fCPU - Tconst)

fCPU = 10 MHz

fCPU = 20 MHz

W Code1 I2C Code Code2

W Code1 I2C Code Code2
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Which Energy Dominates? Active or Sleep?

▪ Hardware and Firmware Issues 

in Using Ultra-Low Power 

MCUs, Jack Ganssle

▪ Consider fraction of time spent 

in sleep mode

▪ 50% asleep

▪ 90% asleep

▪ 99 % asleep

▪ The more the MCU sleeps, the 

more sleep power matters

▪ Average MCU Power 

(proportional to energy)

▪ PMCU = PActive * DActive + PSleep * 

DSleep

▪ PMCU = PActive*(C/fCPU + Tconst) 

+ PSleep*(1 - C/fCPU - Tconst)

Active

Energy

Sleep
Energy

50%        50%
10%        90%

1%          99%

Energy = power (gray) within box

50%        50% 10%        90% 1%          99%
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http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html
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The Power of Sleep

▪ The more the MCU sleeps, the more sleep power matters

▪ Optimize active or sleep energy (average power)? 

▪ Where is the cross-over point (active energy = sleep energy)?

▪ Example: CPU has D = 1/10

▪ PMCU = 1/10 * PActive + 9/10 * PSleep

▪ Examine point where active and sleep energies (ave. powers) are equal 

▪ 0.1 * PActive = 0.9 * PSleep

▪ Rewrite as PActive/PSleep = 0.9/0.1 = 9

▪ Sleep power will dominate energy use (average power) if PSleep > PActive/9

▪ D = 0.001? Cross-over point is PSleep = PActive/999



31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r 
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

Use Both Sleep and Clock Scaling

▪ What average power will be used at a given MCU frequency fCPU?

▪ Weighted sum of power used in active and standby

▪ PMCU = PActive*(C/fCPU + Tconst) + PSleep*(1 - C/fCPU - Tconst)

▪ Use linear model for active MCU power (mW) vs. 

frequency (MHz)

▪ P = PActive,Dynamic*fCPU + PActive,Static

▪ P = 0.246 mW/MHz*fCPU + 5.5689 mW

▪ Combine equations

▪ PMCU = (PActive,Dynamic*fCPU + PActive,Static)(C/fCPU + Tconst) + 

PSleep*(1 - C/fCPU - Tconst)

▪ Reducing fCPU increases time which CPU must remain active, since must perform C 

cycles of computation
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What is the Optimal Frequency?

▪ Solve for frequency fopt with minimum average power 

▪ Differentiate ave. power equation with respect to frequency 

▪ Solve for fopt when derivative is 0 (minimum value of power)

𝑓𝑜𝑝𝑡 =
𝐶(𝑃𝐴𝑐𝑡𝑖𝑣𝑒,𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑃𝑆𝑙𝑒𝑒𝑝)

𝑃𝐴𝑐𝑡𝑖𝑣𝑒,𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑇𝐶𝑜𝑛𝑠𝑡

▪ Optimal frequency rises with 

▪ More computation

▪ Increasing difference between active static power and sleep power

▪ Optimal frequency falls with 

▪ Higher active dynamic power 

▪ Longer wakeup overhead, ADC conversion times, communication times

▪ Note: may be able to sleep for some of ADC, comm. times (if long enough)
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Factors Affecting Optimal Frequency

▪ Less wake-up overhead? (Tconst↓)

▪ Higher frequency is better

▪ Dropping Tconst from 10 ms to 5 ms raises fopt from 24 MHz to 32 MHz
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Factors Affecting Optimal Frequency

▪ Less static active power? (PActive,Static↓)

▪ Lower frequency is better

▪ Dropping PActive,Static from 5.5689 mW to 2.75 mW changes fopt from 24 MHz to 16 MHz
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Factors Affecting Optimal Frequency

▪ Less dynamic active power dependence on frequency? (PActive,Dynamic ↓)

▪ Higher frequency is better

▪ Dropping PActive,Dynamic from 0.246 mW/MHz to 0.123 mW/MHz changes fopt from 24 MHz to 32 MHz

▪ Less standby power? (PSleep↓)

▪ Dropping PSleep from 5.7 uW to 2.85 uW doesn’t change fopt significantly



36

Power Management and 

Software Task Schedulers
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▪ Put CPU to sleep when there is no work 

to do

▪ Wake up CPU with interrupt from…

▪ Event occurring: ADC conversion completing, 

I2C transmission completing, switch press

▪ Time delay completing: Timer interrupt

▪ How do we know there’s no work to do?

▪ End of loop or function (in simple systems)

▪ Explicit busy-wait delay operations (e.g. delay 

for 10 ms)

▪ Scheduler executes idle thread

Basic Concepts

Average Power Use

Instantaneous 

Power Use
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▪ Use low-power timer (LPTMR) to generate 

periodic interrupt request

▪ LPTMR operates in all low-power modes

▪ LPTMR ISR (IRQ handler) becomes part of a 

simple scheduler – tick management code

▪ Decrements each delay counter 

▪ If delay counter reaches 0, 

▪ Release task: set task’s run flag

▪ Reload delay counter with period value

▪ Main loop becomes rest of simple scheduler –

task dispatcher

▪ If a task’s run flag is set, then clear the flag and 

execute that task

▪ Go back to sleep

No Scheduler or OS?

LPTMR 

ISR

main

LPTMR

run_TASK1 run_TASK2

delay_TASK1 delay_TASK2

TASK1 TASK2
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Code for Timer-Interrupt-Driven Approach

volatile uint8_t run_Read_Accel=0; 
volatile uint8t run_Update_LEDs=0;
volatile int delay_Read_Accel = 
PERIOD_READ_ACCEL;
volatile int delay_Update_LEDs = 
PERIOD_UPDATE_LEDS;

void LPTimer_IRQHandler(void) {
…
delay_Read_Accel--;
if (delay_Read_Accel == 0) {
run_Read_Accel = 1;
delay_Read_Accel=PERIOD_READ_ACCEL;

}
delay_Update_LEDs--;
if (delay_Update_LEDs == 0) {
run_Update_LEDs = 1;
delay_Update_LEDs=PERIOD_UPDATE_LEDS;

}
}

void main (void) {
…
while (1) {
if (run_Read_Accel) {
run_Read_Accel = 0;
Read_Accel();

}
if (run_Update_LEDs) {
run_Update_LEDs = 0;
Update_LEDs();

}
__wfi(); // go to sleep

}
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CPU Activity Timeline
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Run-to-Completion Scheduler

▪ Schedulers typically built on periodic timer tick 

generated by hardware timer expiring

▪ ISR runs scheduler’s tick update code, which updates 

delay counters, releases appropriate tasks (marks tasks 

as ready to run)

▪ Scheduler’s dispatcher code actually starts and stops 

tasks running

▪ Modify scheduler’s dispatcher to put processor to 

sleep when no tasks are ready to run

▪ RTC scheduler 

▪ Has loop which runs tasks in priority order

▪ Loop gets to bottom only if no tasks are ready to run

▪ Go to sleep there. 

▪ CPU will wake up with next timer tick or other

interrupt

void Run_RTC_Scheduler(void)
{

…
/* Dispatcher loops forever */
while (1) {

/* Check each task */
for (i=0 ; i<MAX_TASKS ; i++) {

/* Run task if ready*/
if (…){

GBL_task_list[i].task();
…

break;
} 

}
// no tasks ready to run
__wfi(); // go to sleep

}
}
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▪ (We are using RTX v5 with a CMSIS-RTOS2 interface)

▪ Scheduler runs idle thread when there is no work -> Put CPU into a sleep mode there

▪ Use WFI (Cortex-M0+) or WFE (Cortex-M3 and others)

▪ CPU will wake up with next timer tick or other interrupt

▪ Details: 

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#lowPower

RTX v5 (Preemptive Scheduler)
#include "RTE_Components.h"
#include CMSIS_device_header /* Device definitions */
void osRtxIdleThread (void) {

/* The idle demon is a system thread, running when no other */
/* thread is ready to run. */
for (;;) {

__WFI(); /* Enter sleep mode */
}

}

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#lowPower
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__rtx5__specific__functions.html#gacc47720b9a10fcb7d3412640c8276465
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▪ What if timer tick wakes up CPU and scheduler 

finds no work to do?

▪ CPU goes back to sleep

▪ Waste of time to wake up for a timer tick which 

won’t cause anything to run

▪ How about delaying timer tick until the next 

scheduled event?

▪ Will eliminate multiple wake-ups

▪ Other interrupts (e.g. UART reception) will still wake 

up CPU -> correct operation

▪ To make it work, we need to…

▪ Ask scheduler for how many ticks we can sleep

▪ Reconfigure tick timer period, or use different timer

▪ On wake-up, tell scheduler how long we slept 

▪ Easy if awakened by timer

▪ More complex if awakened by non-timer interrupt

Tickless Idle
Wasted Energy

Useful Energy
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▪ RTX uses SysTick timer to generate 

periodic interrupts (scheduler ticks)

▪ Idle thread decides whether to go to sleep

▪ Go to sleep?

▪ Call osKernelSuspend to determine delay (in 

ticks) until next scheduled processing

▪ If delay == 0, then stay awake

▪ Going to sleep

▪ Set wake-up timer for that delay

▪ Disable interrupts from SysTick

▪ Go to sleep

▪ Waking up

▪ Caused by wake-up timer or other interrupt

▪ Determine how much time we slept

▪ If not caused by wake-up timer, then not likely 

to be the delay we set above

▪ Start scheduler again by calling 

osKernelResume, telling it how long we slept

▪ Consider timing error from …

▪ Switching between clocks if not synchronized

▪ Sampling effects of clocks

▪ More at 
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/

theory_of_operation.html#TickLess

Tickless Idle for RTX v5

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess
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Design Example with Analysis
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System Overview – Drift Meter

▪ Drift Meter – find difference between 

vehicle heading and actual track to find 

effects of crosswinds, skidding, water 

currents 

▪ Two operating modes

▪ Active: all devices operating

▪ Standby: system mostly off, use accelerometer to 

determine orientation and power state

▪ Approach – Analyze consumption, then 

start with addressing the worst offender

▪ Consider major operating modes: active, 

sleep (“off”)
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Create Power Model

▪ Start with basic system without premature optimization

▪ No MCU power management - MCU is always on, running at 48 MHz

▪ Minimize number of voltage domains - all devices run at 3.3 V

▪ Duty cycle

▪ Must consider for microSD card due to large variation in current

▪ Max Iwrite @ 3.6 V = 150 mA

▪ Max Istandby @ 3.0 V = 0.25 mA

▪ Start off by assuming 1% duty cycle  (1% in write, 99% in standby)

Active Standby

Device

Voltage 

(V)

Current 

(mA)

Power 

(mW)

Current 

(mA)

Power 

(mW)

Duty 

Cycle

Average 

Power 

(mW)

LCD 3.300 25.600 84.480 100% 84.480

GPS Receiver 3.300 20.000 66.000 100% 66.000

MCU 3.300 5.800 19.140 100% 19.140

MicroSD card 3.300 150.000 495.000 0.250 0.825 1% 5.767

Compass 3.300 0.360 1.188 0.002 100% 1.188

Accelerometer 3.300 0.024 0.079 100% 0.079
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Battery Characteristics

▪ Use a Lithium-Ion rechargeable cell (e.g. from phone)

▪ Nominal 3.7 V, rated at 1 Amp-Hour

▪ Starts at about 4.2 V

▪ Cuts off about 3.0 V

▪ Total Power
▪ 3.7 V * 1 AH = 3.7 WH

▪ Total Energy

▪ 3.7 V * 1 AH * 3600 sec/H = 13.32kJ
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Active Power – 100% Efficient Supply

▪ Total power of 176.7 mW

▪ Dominated by LCD and GPS receiver

▪ Battery life = 3.7 WH/0.1767 W = 

20.93 H

▪ OK?

▪ We are done!

▪ Not OK?

▪ Increase storage

▪ Use a larger battery

▪ Reduce consumption

▪ Find a more efficient LCD, GPS receiver
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Power Conversion Efficiency

▪ Is voltage regulation needed?

▪ Cell output voltage varies from 3 to 4.2 V

▪ Exceeds maximum voltage for some components (SD, etc.)

▪ Need to regulate or at least limit voltage

▪ Linear regulator – wastes more power if there is a large voltage drop

▪ Freedom KL25Z uses NCP1117

▪ Select regulator with small quiescent current, small dropout voltage

▪ Switching regulator – more efficient

▪ More complex as well
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Active Power – Linear Voltage Regulator

▪ Add in linear regulator power

▪ PVReg = (Vin-Vout)*(Iout) + Vin*IQuiescent

▪ 43.6 mW

▪ Total power of 220.3 mW

▪ Still dominated by LCD and GPS receiver

▪ Battery life = 3.7 WH/0.2203 W = 16.8 H

▪ Is this OK?

▪ Yes

▪ We are done!

▪ No

▪ Increase storage

▪ Use a larger battery

▪ Reduce consumption

▪ Use lower power LCD (e.g. memory LCD, e-paper, e-ink), GPS receiver, regulator (power converter)
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Standby Power – Linear Voltage Regulator

▪ Disable everything but …

▪ MCU

▪ Accelerometer

▪ LED battery indicator (1%)

▪ Request standby mode

▪ With message

▪ Accelerometer – I2C

▪ Compass – I2C

▪ GPS receiver – UART

▪ microSD card – SPI – GO_IDLE_STATE 

command (0)

▪ With logic level signal

▪ MicroSD card – chip select - /CS 

▪ Brute force methods

▪ Hold device in reset state

▪ Shut off power

▪ Needed for this LCD module

Standby

Device

Current 

(mA)

Power 

(mW)

LCD 0.000 0.000

GPS Receiver 0.200 0.660

MCU n/a n/a

MicroSD card 0.250 0.825

Compass 0.002 0.007

Accelerometer n/a n/a

LED Battery Indicator 0 0.000
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Standby – Linear Voltage Regulator

▪ Results

▪ Average power is 45.5 mW (220.3 mW)

▪ Battery life = 3.7 WH/45.5 mW = 81.2 H

▪ Regulator and MCU now dominate power

▪ What can we do now?

▪ Reduce regulator power

▪ Can we find a more efficient regulator 

(with less quiescent current)?

▪ Can we even get rid of the regulator?

▪ All components must be able to handle maximum battery voltage (4.3 V for Li)
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Improving the Linear Voltage Regulator

▪ Select regulator with …

▪ Small quiescent current

▪ Small dropout voltage

▪ Adjustable output voltage

▪ Shutdown control signal

▪ Example: On Semiconductor NCP5500 500 mA 

LDO Voltage Regulator

▪ Datasheet: NCP5500/D, April 2013, Rev. 12, 

http://onsemi.com

▪ Low quiescent current: 300 uA

▪ Iout up to 500 mA

▪ What’s going on between 2 and 3.3 V?

▪ Extra credit

http://onsemi.com/
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Resulting Power Use
▪ Good improvement from replacing 

voltage regulator!

▪ 24.5 mW average power (was 45.4 mW)

▪ 151.2 hour battery life in sleep mode

▪ Now focus on the MCU

▪ We could lower the operating voltage 

▪ But we need efficient power conversion (not a linear 

regulator)

▪ Do we really need 48,000,000 cycles of computation per second 

while the device is asleep?

▪ If not, we can lower the clock speed or use a sleep mode
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How Many Compute Cycles per Second? 

▪ We don’t know, since we haven’t written the code yet!

▪ Need to estimate it instead

▪ Analyze activity, break down into smaller sub-activities

▪ Estimate computation needed per sub-activity

▪ Sum up computation costs – may need to scale if running at different frequencies
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Sleep While Idle?

▪ Factors

▪ Estimated C = 240 000 cycles 

of computation needed per 

second 

▪ Tconst needed per second for 

constant-time activities 

(independent of MCU clock 

rate)

▪ E.g. 1 ms per wakeup @ 10 Hz

▪ f is MCU clock speed

▪ Use Low-Leakage Stop 

mode

▪ 1.9 uA at 3 V = 5.7 uW

▪ Results

▪ Average MCU power falls to 

0.293 mW (from 24.5 mW)

▪ Average system power is 

1.336 mW

▪ Battery life = 46.3 days

C 240000cycles

PActive 19.14mW

PSleep 0.0057mW

Tconst 0.01s
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Review
▪ Process

1. Start with a power or energy model

2. Optimize the largest part

3. Update model

4. GOTO 2

▪ What can you do to minimize power 
consumption?
▪ Circuit design

▪ Choose power-efficient parts
▪ Operate at a low voltage
▪ Run at low frequency if dynamic power dominates
▪ Turn off processor and other circuits if static power 

dominates

▪ Use low-power modes or shut off parts

▪ Program implementation
▪ Minimize compute cycles needed

▪ Power supply
▪ Use an efficient power supply
▪ Skip the power supply? Use devices which have a 

wide operating range

▪ Leverage low-power modes of processor and 
peripherals
▪ Group processing together to minimize overhead 

of switching between active and idle modes
▪ Use timers and external events to wake up
▪ Use external hardware to reduce CPU on-time

The squeakiest wheel gets the grease first
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Appendix
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Estimating Compute Cycles per Second – Energy Lab 

▪ What does the CPU do while device is in 

sleep mode?

▪ Indicate battery voltage 

▪ Read voltage with ADC, flash LED accordingly

▪ Decide based on orientation whether to wake 

up or stay asleep

▪ Use accelerometer to measure orientation

▪ Derive rough estimate

▪ Wakes up at 10 Hz

▪ Measures voltage with ADC, does floating point 

computation

▪ Duty cycle is about 500 uS/100 ms = 0.5%

▪ Only need about C = 48 MHz * 0.5% = 

240 000 cycles per second of processing

▪ What to do about the remaining free 

cycles?

▪ Could slow down processor clock

▪ Could use a sleep mode

▪ Could do both
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