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Overview
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* Process

= [k\ Mo

Start with a power or energy model
Optimize the largest part

Update model based on testing
GOTO 2 The squeaky wheel gets the grease.

The squeakiest wheel gets the grease first.

W N —

* What can you do to minimize power or

energy consumption!? = Power supply

= Circuit design = Use an efficient power supply
= Choose power-efficient parts = Skip the power supply? Use devices which have a
= Operate at a low voltage wide operating range

= Run at low frequency if dynamic power dominates . Leverage Iow-power modes of processor and
= Turn off processor and other circuits if static power

dominates peripherals

= Use low-power modes or shut off parts - Gfrou!:) pr.ocessing togeth.er to m?nimize overhead
= Program implementation of switching between active and idle modes

- Minimize compute cycles needed = Use timers and external events to wake up
= Use external hardware to reduce CPU on-time



NC STATE UNIVERSITY

Voltage Scaling
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How about Lowering the Operating Voltage!

= P V2 for generic digital logic so this can have a big 6
impact
= Note: we need lower the voltage efficiently, so may want to 5

use switching converter instead of linear regulator
= How low can we go? What stops working as we
lower the supply voltage? Examine operating
voltage ranges
= LCD will stop first

= LEDs will become dim (first blue & green, then red)
unless we reduce the series resistor

S

N

Operating Voltage
w

= Eventually LEDs will not light at all 1
= KL25Z MCU
= 48 MHz at .71V is possible 0 ' ' ' ' ' ' |
= Impact can be significant @05 b\i& & e& @Q’}"} Q@*b S
= Reduce power and energy by a factor of ??? &’/\/ & @Q’e » é)}e*o @\é&’




Does the MCU Power Vary Quadratically with Voltage!?

= Use AD2 to power P3V3 supply rail at an

adjustable voltage

= Monitor MCU current via voltage across R8|

(J4) (after removing R73)
= Adjust voltage from 1.8 to 3.6V

= Power = current * voltage
P3V3
—_—
J4
HDR 1X2 TH
= =

P3V3 KL25Z
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Does the MCU Power Vary Quadratically with Voltage!?

= Current is almost constant, depends very
little on voltage

= | =7.57 mA + 0.3887 mA/V 35
= MCU has internal voltage regulator!

KL25Z MCU Current vs. Supply Voltage

30 y =0.8484x? +4.9023x +3.717
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10 y =0.3887x+7.5739
& Ty S Ty ) —— . T
= Most MCU circuitry runs at fixed voltage, . A'
so current doesn’t vary with voltage Lys, = 8.40 mA @ 1.85V lizsy = 8.92 MA @ 3.5V
= Impact on power 0
1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5

= Power rises almost linearly, since current is

Supply Voltage
almost constant

—0— | MCU  —O—P_MCU  sseeeeess Linear (I_MCU)  sseeseess Poly. (P_MCU)



Minimum Data Retention Voltage

Table 1. Voltage and current operating requirements (continued)

NC STATE UNIVERSITY

Symbol | Description Min. Max. Unit Motes
Vuys Input hysterasis 0.06 = Voo — W
licoio Digital pin negative DC injection current — single pin 1
e Vpy < Vgs0.3V ® - mA
licaio Analog? pin DC injection current — single pin 3
* Vi < Vgs-0.3V (Negative currant injection) mA
* Vi > Vpp+0.3V (Positive current injection) 5 o
— +5
liccant Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
« Negative current injection 25 o mA
+ Positive current injection o +25
Vaan  |Vpp voltage required to retain RAM 1.2 — v

= Datasheet says minimum RAM retention voltage = 1.2V
= Extra Credit Project - Verify it works!

= What about processor registers? 1.2V also, or something higher?

= How low can we take the MCU supply voltage and have all RAM and registers

retain their values?
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Voltage and Frequency Scaling
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Voltage and Frequency Scaling
>

" |deas

= Reduce frequency to ideal frequency for each task ? 3

= Reduce voltage to minimum needed for that clock frequency

" P=5Vee? + CoVecHeiou Q
= Circuitry L C <O

= Clock divider/synthesizer — ‘.\fl/L/

= Variable voltage supply
= Efficiency: may need a DC-to-DC converter (switch-mode power supply) to efficiently convert

supply voltage.
= Voltage transition rate: need to be able to quickly change output voltage

= Transition energy dissipation: want to waste little energy when changing the voltage
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Evaluating Frequency Scaling
for the KL25 with Run and Very
Low Power Run Modes
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What is the Impact of Clock Speed on Current!?

Current Consumption on Vop(A)
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4.00E03
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2.00E03 -
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000.00E+00

Run Mode Current Vs Core Frequency

Temperature = 25, Vjp = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE

All Peripheral CLK Gates

—o— All Off
=== All On
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-1

12

1-1

24

CLK Ratio
Flash-Core
48 Core Freq (MHz)

= Current rises with

core clock frequency
* What relationship?

= Offset due to static
current consumption

= Impact of enabling
peripheral clocks



Current with Linear Axes

Current (mA)
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= Assumes all
peripherals are
turned off

= Current linearly
rises with core
clock frequency
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What is the Impact of Clock Speed on Power?

Power vs. Frequency

y = 0.246x + 5.5689

+»

0 10 20 30 40 50

Core Frequency (MHz)

60

* Power rises linearly with
core clock frequency

= Power is proportional to

voltage®current, and voltage
is fixed here (3.0V)

= | MHz is lowest power
point
= Compare:
https://ambig.com/mcu-soc/



https://ambiq.com/mcu-soc/

Comparing Power and Energy

= MCU Power = 0.246 mW/MHz + 5.5689 mW
= Example: Need 1,000,000 cycles of processing per second
= Slow option: | MHz, always awake
); s
Time

= Energy = power integrated over time = shaded area

= Fast option: 48 MHz. Can sleep when not needed.
= Run for 1/48 second, sleep/deep sleep for rest

Power
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Power vs. Frequency

y=0.246x + 55689 s
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What is the Impact of Clock Speed on Energy!?

Energy per Clock Cycle (nJ)
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Energy per Clock Cycle vs. Frequency
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= Energy per clock cycle
is power divided by
clock frequency

= 48 MHz is lowest-
energy point



Current vs. Clock Speed —VLPR Mode

VLPR Mode Current Vs Core Frequency
Temperature = 25, Voo = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE

= Now consider VLPR — very
low power run mode

35000506 = Maximum core frequency is 4
/ MHz
30000506 // Still have static current offset
25000506 Can see impact of changing
-\‘/// All Peripheral CLK Gates core speed, bus speed, and
200.00E06 G

—_— . — —— AlOff providing clock to peripherals

400.00E-06

Current Consumption on Voo (A)

=@ AllOn
15000506
10000506
50.005:06
i 141 12 12 14 CLK Ratio
Flash-Core

1 2 4 Core Freq (MHz)



VLPR Current with Linear Axes

Current (mA)
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= Current linearly
rises with core
clock frequency
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VLPR:What is the Impact of Clock Speed on Power?
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= Power rises linearly
with core clock
frequency

= Power is
proportional to
voltage®current, and

voltage is fixed here
(3.0V)

= | MHz is lowest
power point



NC STATE UNIVERSITY

VLPR:What is the Impact of Clock Speed on Energy?

Energy per Clock Cycle (nJ)
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Energy per Clock Cycle vs. Frequency

\\ y = 0.5672x0697
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Core Frequency (MHz)

= Energy per clock cycle is
power divided by clock

frequency

= 4 MHz is lowest-energy

point



Comparing Energy for Run and VLP Run

Energy per Clock Cycle (nJ)
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= Very low power also gives
very low energy!

= 4 MHZVLP Run mode more
energy-efficient than 48 MHz
Run mode
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Power Management Strategies



Application Notes

NXP/Freescale

AN4503
KLQRUG

= Microchip

22

AN1416

o

MICROCHIP

from:
—

Freescale Semiconductor
Users Guide

Kinetis L. Peripheral Module

Quick Reference

A Compilation of Demonstration Software for Kinetis L Series Modules

This collection of code examples. useful tips, and quick
reference material has been created to help you speed the
development of your applications. Most chapters in this
document contain examples that can be modified to work
with Kinetis MCU Family members. When you're
developing your application. consult your device data
sheet and reference manual for part-specific information.
such as which features are supported on your device.

Sample code can be found at KL25_SC.exe, available

AN1416

Low-Power Design Guide

Authors: Brant Ivey

Microchip Technology Inc.

INTRODUCTION

Low-power applications represent a significant portion
of the future market for embedded systems. Every
year, more designers are required to make designs
portable, wireless and energy efficient. This document
seeks to simplify the transition to low-power applica-
tions by providing a single location for the foundations
of low-power design for embedded systems. The
examples discussed in this document will focus on

Main Sources of Power Consumption

In CMOS devices, such as microcontrollers, the total
power consumption can be broken down into two broad
categories: dynamic power and static power. Dynamic
power is the power consumed when the microcontroller
is running and performing its programmed tasks. Static
power is the power consumed, when not running code,
that occurs simply by applying voitage to a device.

DYNAMIC POWER

Dynamic power consumption is the current which is
consumed during the normal operation of an MCU. It
includes the power lost in switching CMOS circuits and

Freescale Semiconductor
Application Note

NC STATE UNIVERSITY

Dacument Number: AN4503
Rev. 1, 11/2012

Power Management for Kinetis and

ColdFire+ MCUs

When and how to use low-power modes

by: Philip Drake

1 Introduction

Applications strive for high performance within constrained
energy budgets, which continue to play a significant role in
determining embedded designs. Increasing requirements do
not allow for compromises on performance and continue to
push for low energy budgets.

The Kinetis and ColdFire+ microcontroller families include
internal power management features that can be used to
control the microcontroller’s power usage. This application
note discusses how to use the power management systems,
provides use case examples, and shows real-time current
measurement results for these use cases.

Also included is a discussion of the differences between power

management features on the various microcontrollers, along
with drivers demonstrating the low-power features. Tips are
given for using each of the power modes.

Power management methods discussed here do not include

=]

W g el

Contents
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Power Management for Peripherals

. . 241055V O * IN ouT * Load
= Pick low-power peripherals 1. L.,

_ SiP4610A/B — Cour

e S

RseT

= Switch them off when not needed
= Some have standby or power-down modes

controlled with a pin oo o T ¢ o
= Example: Nat. Semiconductor LMV982 Dual 1.8V -
Op-Amps with Shutdown = Otherwise have to switch off power
= Vec=1.8t0 5.0V = Low-current devices (<10 mA)
= Supply current 200 uA = Supply power with MCU’s digital output pin(s)
* Shutdown current <5 uA = Higher-current devices
= 19 us turn-on time from shutdown .

Switch power with a transistor or high-side supply
switch driven by an MCU digital output

= Some accept standby or sleeb command = Example:Vishay SiP46 10 Protected | Amp High-Side
P Y P Load switch
= Accelerometer MMA8451Q via 12C " Vee=24t055V
= LCD Controller ST7789S via parallel bus = | amp output

= Quiescent current 9 uA
= Shutdown current < | uA

23
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Power vs. Frequency

Power Management Options for MCUs

. 18.00 y =0.246x + 5.5689
= Clock scaling 1600 7
) , L s, P 4
= Slow down the CPU clock if there’s little to do g0 Y
2 500 e V4
= Sleep £ 600 s ,/
= Turn off the processor if there’s nothing to do o f

= Many MCUs have sleep modes which halt instruction execution
and shut off unused portions of the MCU

T I T i
0 10 30 40 50
Core Frequency (MHz)

= Can have significant power savings: factor of 1000 or more

Power

= Disadvantage: waking up
= Need a mechanism such as timer or interrupt
= Events you care about must be connected to trigger wake-up

= Depth of sleep mode may lead to long wake-up time, reducing
system performance and reducing viable “nap windows”

Power

= Both clock scaling and sleep

Time

= Many variables!

= Not immediately obvious which settings are best
24



Clock Scaling — Slow Down

20
18
16
S 14
12

Power (mW
o

oON MO

= Slowing clock cuts dynamic power used

= Eventually reaches limit of about 6 mWV - static

Power vs. Frequency

y = 0.246x + 5.5689 _4

/

0/

/

/

P

0 20 40 60

Core Frequency (MHz)

(leakage) power

25
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Energy per Clock Cycle vs.
Frequency

y = 4.6827x:0705

N .

0 20 40 60
Core Frequency (MHz)

= Fewer cycles spent waiting for the next
interrupt or timer event

= Actual energy cost per cycle increases
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Slow Down ... But To Which Frequency!?

100%
Ubpper * Non-real-time systems
U = Use a governor (feedback system) to set the speed,
UZ:I:ed 77 trying to keep processor utilization between upper
and lower bounds
ULowerL = IfU>U,,.., raise CPU speed and voltage
0% = If U< U, lower CPU speed and voltage

= Real-time systems have deadlines

(
3% ( ! o . Goal: minimize energy AND meet all deadlines
ferlf "*% 9‘\‘&"""/- Can then set speed for each task statically. ..
g —lk___—-J bﬂ = Pick the frequency (hence voltage) per task which
{ [ minimizes the energy based on the task’s worst-case
[ ( execution time and deadline.

Veru — —f = One fixed clock frequency per task
! \
( NS e ?ﬁﬁ‘fiﬁ%{ = Or can set speed for each task dynamically
| l ar? Pl = Pick the frequency (hence voltage) per task which
minimizes the energy based on the task’s past behavior,
P l‘\ current progress, etc. and deadline

= Clock frequency varies as task behavior changes

26
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=20 ms

MCU Active Time falls with CPU Clock Frequency

fCPU =10 MHz Twakeu
I ms 2 4 I °

w Codel I2C Code Code2

A 4

= 1/f

wakeup

I ms | 4 '

W COde I |2C COde Code2 n

= Time for many MCU activities depends directly on = Using ADC: Conversion clock frequency determines
CPU clock frequency fep, time waiting for conversion to complete
= Codel needs 20,000 cycles = May be able to sleep during some of these?
= Code2 needs 10,000 cycles = Time used per wake-up at fp
= If code i needs C, clock cycles, computation time " Tacive = ClHepy + Teonse
Cilfcpu = fpy=IOMHz: T, .. =1 +2+4+ | ms=8ms
= Others aren’t proportional to f-p * fpu=20MHz: T, . =1 + 1 +4+ 2 ms=65ms

= Wake from sleep: Depends on oscillator (and maybe = Active, sleep times per | second

its wake time — *
) 8 TActive - fWakeup (C/ fCPU + Tconst)
= |2C communication: Data rate determines time " T = | =T,
eep active

waiting for next byte



MCU Active Power Use Varies with CPU Frequency

Power vs. Frequency

F>Active = 18.00 y = 0.246x + 5.5689

I2C Code 8mW .

+

foy = 10 MHz

Power

o BN 0 0 B A 2 ——— 2 0'00 ) 4 v
W Codel |2 de = Code2 ] B i T | | |
C CO 0 10 20 30 40 50

Core Frequency (MHz)

Power

Sleep

v

= Speed up fep, from 10 MHz to 20 MHz!

= Finish 1.5 ms earlier, but use more power while active.
= [s average power higher or lower? Depends

= Average MCU Power (Proportional to Energy)

- s
8 IDMCU Active IDActive + DSIeep>’< IDSIeep
— * (| - -
* Pucu = Pacive (Clfcpu F Teons) + Psjeep (1 - Clfcpy - T

COhSt)

28



Which Energy Dominates? Active or Sleep!?

= Hardware and Firmware Issues
in Using Ultra-Low Power

MCUs, Jack Ganssle

= Consider fraction of time spent
in sleep mode
= 50% asleep

= 90% asleep
= 99 % asleep
= The more the MCU sleeps, the
more sleep power matters

= Average MCU Power
(proportional to energy)

= b S E S
8 IDMCU - I:)Ac'cive DActive + I:)Sleep
DSIeep
= E S
- IDMCU IDActive (C/ fCPU +Tconst)

t Poeep (1 - Clfcpy - T

COhSt)

29

Power

A
Ei

50%

50%

NC STATE UNIVERSITY

50% 50%
10% 90%
| % 99%
ctive
nergy
Sleep
Energy
Time

10%

90% | % 99%

Energy = power (gray) within box


http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html
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The Power of Sleep

= The more the MCU sleeps, the more sleep power matters

= Optimize active or sleep energy (average power)?

= Where is the cross-over point (active energy = sleep energy)?
Example: CPU has D = 1/10
Pyvcy = 1/10°% P +9/10* P

Active Sleep
= Examine point where active and sleep energies (ave. powers) are equal
= 0.1 * Paiive = 0.9 * Py,
" Rewrite as Py /Pgjeep = 0.9/0.1 = 9
= Sleep power will dominate energy use (average power) if Pg .o, > Pacive/?
= D =0.001? Cross-over point is Pgee, = Pacyive/ 999

30



Use Both Sleep and Clock Scaling

What average power will be used at a given MCU frequency fp?
= Weighted sum of power used in active and standby

- I:’MCU = Active*(C/fCPU +Tconst) + I:’Sleep*(l - C/fCPU -T

COﬂSt)

= Use linear model for active MCU power (mW) vs.

NC STATE UNIVERSITY

Power vs. Frequency

y =0.246x + 5.5689

0 10 20 30 40 50 60
Core Frequency (MHz)

=
)]

frequency (MHz) le

g
>
|

=
N
Il
I

=== PActive

e PS|eep

= *
= P IDActive,Dynamic fCPU + IDActive,Static

|

Paverage

« P =0.246 mW/MHZ¥p, + 5.5689 mW

Average Power (mW)
© o o
(o)}

>

o]
| |
P

= Combine equations

= b
- IDMCU (PActive,Dynamic fCPU + PActive,Static)(C/ fCPU +Tconst) +

10

20 30 40 50
MCU Clock Frequency (MHz)

IDSIeep*(I - C/'FCPU -T

const)

= Reducing fp increases time which CPU must remain active, since must perform C

cycles of computation

31




What is the Optimal Frequency? \/

= Solve for frequency f,,, with minimum average power = ™

o
1.4 +- 9— PActive

= Differentiate ave. power equation with respect to frequency i -

Paverage

[
|

= Solve for f,,, when derivative is 0 (minimum value of power)

C(PActive,Static T PSleep)

fopt =

Average Power (mW)
o
[0

PActive,DynamicTCOnst

= Optimal frequency rises with

H 0 10 20 30 40 50
" More comPUtatlon MCU Clock Frequency (MHz)

= Increasing difference between active static power and sleep power
= Optimal frequency falls with
= Higher active dynamic power

= Longer wakeup overhead, ADC conversion times, communication times

= Note: may be able to sleep for some of ADC, comm. times (if long enough)

32



Factors Affecting Optimal Frequency

1.6
1.4 == PActive
1.2 PSleep

1 e Paverage

|

o
o))

A\

Average Power (mW)
o
0]

o
~

0.2 e e et oo sssssosooe

10

20 30 40 50
MCU Clock Frequency (MHz)

NC STATE UNIVERSITY

$

= Less wake-up overhead? (T._,.!)
= Higher frequency is better
= Dropping T, from 10 ms to 5 ms raises f,,, from 24 MHz to 32 MHz

33
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Factors Affecting Optimal Frequency

1.6 0.8
14 == PActive 0.7 == PActive
1.2 PSleep s 0.6 PSleep

1 = Paverage £

— 05
2 .t
Q
0.6 ® 0.3
\ S
>
0.4 \T < 0.2 w

0 10 20 30 40 50 0 10 20 30 40 50
MCU Clock Frequency (MHz) MCU Clock Frequency (MHz)

= Paverage

Average Power (mW)
o
[0}

= Less static active power? (P,

= Lower frequency is better

* Dropping Py gye static from 5.5689 mW to 2.75 mW changes f . from 24 MHz to 16 MHz

ctive,Static l)

34
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Factors Affecting Optimal Frequency

* Less dynamic active power dependence on frequency? (Pacve bynamic 1)

= Higher frequency is better

* Dropping P, from 0.246 mW/MHz to 0.123 mW/MHz changes f,,, from 24 MHz to 32 MHz

ctive,Dynamic

* Less standby power? (Pgeepl)
from 5.7 uW to 2.85 uW doesn’t change f__, significantly

opt

8 Dropping IDSIeep

35
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Power Management and
Software Task Schedulers



Basic Concepts

Ave rage Power Use fsssssssssssssnngnnnenns

= Put CPU to sleep when there is no work
to do
= Wake up CPU with interrupt from...

= Event occurring: ADC conversion completing,
|2C transmission completing, switch press

= Time delay completing: Timer interrupt

37
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= How do we know there’s no work to do!?
= End of loop or function (in simple systems)

= Explicit busy-wait delay operations (e.g. delay
for 10 ms)

= Scheduler executes idle thread
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LPTMR

No Scheduler or OS?

= Use low-power timer (LPTMR) to generate
periodic interrupt request
= LPTMR operates in all low-power modes
= LPTMR ISR (IRQ handler) becomes part of a
simple scheduler — tick management code

* Decrements each delay counter

= If delay counter reaches 0,
= Release task: set task’s run flag main

* Reload delay counter with period value

= Main loop becomes rest of simple scheduler —

task dispatcher

» [f a task’s run flag is set, then clear the flag and
execute that task

= Go back to sleep

38



Code for Timer-Interrupt-Driven Approach

volatile uint8_t run_Read_Accel=0;
volatile uint8t run_Update_LEDs=0;
volatile int delay_Read_Accel =
PERIOD_READ_ACCEL;

volatile int delay_Update_LEDs =
PERIOD_UPDATE_LEDS;

void LPTimer_IRQHandler(void) {

}

39

ae1ay_Read_Acce1——;
if (delay_Read_Accel == 0) {

}

run_Read_Accel = 1;
delay_Read_Accel=PERIOD_READ_ACCEL;

delay_uUpdate_LEDs--;
if (delay_Update_LEDs == 0) {

}

run_Update_LEDs = 1;
delay_Update_LEDS=PERIOD_UPDATE_LEDS;

void main (void) {

while (1) {

if (run_Read_Accel) {
run_Read_Accel = 0;
Read_Accel () ;

}

if (run_update_LEDs) {
run_Update_LEDs = O;
Update_LEDs();

}

_wfiQ; // go to sleep

NC STATE UNIVERSITY
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CPU Activity Timeline

Scheduling Variables

CPU Activity

40
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LPTMR RQ 4 4 4 ) ¢

TASKI

TASK2

main

LPTMR ISR

sleep
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Run-to-Completion Scheduler

= Schedulers typically built on periodic timer tick
generated by hardware timer expiring

ISR runs scheduler’s tick update code, which updates
delay counters, releases appropriate tasks (marks tasks
as ready to run)

Scheduler’s dispatcher code actually starts and stops
tasks running

Modify scheduler’s dispatcher to put processor to

sleep when no tasks are ready to run

41

RTC scheduler

Has loop which runs tasks in priority order
Loop gets to bottom only if no tasks are ready to run
Go to sleep there.

CPU will wake up with next timer tick or other
interrupt

NC STATE UNIVERSITY

void Run_RTC_Scheduler(void)

{

/* Dispatcher loops forever */
while (1) {

}

/
.F

}
/

* Check each task */
or (1=0 ; 1<MAX_TASKS ; 1++) {
/* Run task if ready¥*/
if (D1
GBL_task_1list[i1].task();

b;éak;

}

/ no tasks ready to run
wfi(); // go to sleep



RTX v5 (Preemptive Scheduler)

#include "RTE_Components.h"
#include CMSIS_device_header /* Device definitions */
void osRtxIdleThread (void) {

42

/* The 1dle demon 1s a system thread, running when no other */
/* thread 1s ready to run. */

for (53) {
_WFI(Q; /* Enter sleep mode */
}

(We are using RTX v5 with a CMSIS-RTOS2 interface)

Scheduler runs idle thread when there is no work -> Put CPU into a sleep mode there
Use WFI (Cortex-M0+) or WFE (Cortex-M3 and others)

CPU will wake up with next timer tick or other interrupt

Details:

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory of operation.html#lowPower

NC STATE UNIVERSITY


http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#lowPower
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__rtx5__specific__functions.html#gacc47720b9a10fcb7d3412640c8276465
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Wasted Energy

Tickless ldle

Useful Energy

= What if timer tick wakes up CPU and scheduler = = How about delaying timer tick until the next

finds no work to do!? scheduled event!?
= CPU goes back to sleep = Will eliminate multiple wake-ups
= Waste of time to wake up for a timer tick which = Other interrupts (e.g. UART reception) will still wake
won’t cause anything to run up CPU -> correct operation

= To make it work, we need to...
= Ask scheduler for how many ticks we can sleep
= Reconfigure tick timer period, or use different timer
= On wake-up, tell scheduler how long we slept
= Easy if awakened by timer
= More complex if awakened by non-timer interrupt
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Tickless Idle for RTX v5

= RTX uses SysTick timer to generate = Waking up
periodic interrupts (scheduler ticks) = Caused by wake-up timer or other interrupt

Idle thread decides whether to go to sleep = Determine how much time we slept
= If not caused by wake-up timer, then not likely

to be the delay we set above

Go to sleep!?

= Call osKernelSuspend to determine delay (in

ticks) until next scheduled processing " Start scheduler again by calling

osKernelResume, telling it how long we slept
= |f delay == 0, then stay awake

= Consider timing error from ...

Going to slee
3 P = Switching between clocks if not synchronized

= Set wake-up timer for that delay _
. , . = Sampling effects of clocks
= Disable interrupts from SysTick

= More at
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/
theory of operation.html#TicklLess

= Go to sleep
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https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess

45

NC STATE UNIVERSITY

Design Example with Analysis
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System Overview — Drift Meter

‘ . .
- ¢ - -
) \ -
a

P g o o

=y

= Drift Meter — find difference between = Approach —Analyze consumption, then
vehicle heading and actual track to find start with addressing the worst offender
effects of crosswinds, skidding, water = Consider major operating modes: active,
currents sleep (“of ”)

= Two operating modes

= Active: all devices operating

= Standby: system mostly off, use accelerometer to

determine orientation and power state
46



Create Power Model

NC STATE UNIVERSITY

Active Standby
Average

Voltage Current Power Current Power Duty Power
Device (V) (mA) (mW) (mA) (MW) Cycle (MW)
LCD 3.300 25.600 84.480 100% 84.480
GPS Receiver 3.300 20.000 66.000 100% 66.000
MCU 3.300 5.800 19.140 100% 19.140
MicroSD card 3.300 150.000 495.000 0.250 0.825 1% 5.767
Compass 3.300 0.360 1.188  0.002 100% 1.188
Accelerometer 3.300 0.024 0.079 100% 0.079

= Start with basic system without premature optimization
= No MCU power management - MCU is always on, running at 48 MHz
= Minimize number of voltage domains - all devices run at 3.3V
= Duty cycle
= Must consider for microSD card due to large variation in current
= Max |, .. @ 3.6V =150 mA
" Max | g @ 3.0V = 0.25 mA
= Start off by assuming |% duty cycle (1% in write, 99% in standby)

write
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Battery Characteristics

48

Use a Lithium-lon rechargeable cell (e.g. from phone)

Nominal 3.7V, rated at | Amp-Hour
= Starts at about 4.2V
= Cuts off about 3.0V

Total Power
= 3.7V*|AH=3.7WH

Total Energy
= 3.7V * | AH * 3600 sec/H = 13.32kJ

NC STATE UNIVERSITY




Active Power — 100% Efficient Supply

Total power of 176.7 mW
* Dominated by LCD and GPS receiver

Battery life = 3.7WH/0.1767 W = 80
2093 H
= OK?
= WVe are done!
Not OK?

Average Power

~
o

(o))
o

o
o

w
o

Power (mW)

|
N
o

= Increase storage

=
o

o

= Use a larger battery

= Reduce consumption N
)
= Find a more efficient LCD, GPS receiver ¥
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Power Conversion Efficiency

= |s voltage regulation needed!?
= Cell output voltage varies from 3 to 4.2V

= Exceeds maximum voltage for some components (SD, etc.)

* Need to regulate or at least limit voltage

= Linear regulator — wastes more power if there is a large voltage drop
* Freedom KL25Z uses NCPI 117
= Select regulator with small quiescent current, small dropout voltage

= Switching regulator — more efficient

= More complex as well

50
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Active Power — Linear Voltage Regulator

= Add in linear regulator power
" Py = VirVoud (o) +Violouiscen _ Pverage Power
"= 43.6 mW 20
= Total power of 220.3 mW S Zg :
= Still dominated by LCD and GPS receiver £ .
= Battery life = 3.7 WH/0.2203W = 16.8 H g “ |
= |s this OK? & 20 -
= Yes 18 I m
. -N c\)Ne are done! »@@&\A"} @(p 0(900 ?}600@&6‘) \O@é@} e@@é
= Increase storage & @é vée}@ N

= Use a larger battery
= Reduce consumption

= Use lower power LCD (e.g. memory LCD, e-paper, e-ink), GPS receiver, regulator (power converter)
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Standby Power — Linear Voltage Regulator

= Disable everything but ...
= MCU

= Accelerometer
= LED battery indicator (|%)

= Request standby mode

= With message
= Accelerometer — 12C
= Compass — 12C
=  GPS receiver — UART

= microSD card — SPI — GO_IDLE_STATE
command (0)

= With logic level signal
= MicroSD card — chip select - /CS

52

Device

LCD

GPS Receiver

MCU

MicroSD card
Compass
Accelerometer

LED Battery Indicator

= Brute force methods
= Hold device in reset state

= Shut off power
= Needed for this LCD module

NC STATE UNIVERSITY

Standby
Current Power
(mA)  (mW)

0.000 0.000
0.200 0.660
n/a n/a
0.250 0.825
0.002 0.007
n/a n/a

0 0.000



Standby — Linear Voltage Regulator

Results

= Average power is 45.5 mVWV (220.3 mW)

= Battery life = 3.7WH/45.5 mW =8I1.2 H
= Regulator and MCU now dominate power

= What can we do now!

= Reduce regulator power

= Can we find a more efficient regulator
(with less quiescent current)?

= Can we even get rid of the regulator?

NC STATE UNIVERSITY

Power (mW)

30

= RN
o U1 O

Average Power
Q S > S < < <
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(3 @ é’e &Q}
¥ o
QQD
N

= All components must be able to handle maximum battery voltage (4.3 V for Li)
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NCP5500 NCP5501
NCV5500 NCV5501

Vin Vou‘t

Cin u

Improving the Linear Voltage Regulator

= Select regulator with ...

= Small quiescent current Enablo v NGO
= Small dropout voltage _oFF[on ano]
= Adjustable output voltage )

= Shutdown control signal 5 —

= Example: On Semiconductor NCP5500 500 mA
LDO Voltage Regulator

= Datasheet: NCP5500/D, April 2013, Rev. 12,
http://onsemi.com

lanp, GROUND CURRENT (mA)
(W3]
i\

= Low quiescent current: 300 uA 1 / \
up to 500 mA °

0 1 2 3 4 5 B 7
= What’s going on between 2 and 3.3 V? Vi, INPUT VOLTAGE (V)

= Extra credit

out
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Resulting Power Use

= Good improvement from replacing
voltage regulator!

= 24.5 mWV average power (was 45.4 mW)

= 151.2 hour battery life in sleep mode

= Now focus on the MCU

= We could lower the operating voltage

= But we need efficient power conversion (not a linear

regulator)
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* Do we really need 48,000,000 cycles of computation per second

while the device is asleep!?

= |f not, we can lower the clock speed or use a sleep mode
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How Many Compute Cycles per Second!?

= We don’t know, since we haven’t written the code yet!

* Need to estimate it instead
= Analyze activity, break down into smaller sub-activities
= Estimate computation needed per sub-activity
= Sum up computation costs — may need to scale if running at different frequencies
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Sleep While Idle?

C 240000 cycles
= Factors = Use Low-Leakage Stop PActive 19.14mW
. PSleep 0.0057 mW
= Estimated C = 240 000 cycles mode Teonct 0.01's

of computation needed per = |9uAat3V=57uW

second « Results Average Power
" Teonst need.ed per.sc.aco:ond for = Average MCU power falls to 12

constant-time activities 0.293 mW (from 245 mW) g 12

(independent of MCU clock £ 1.0

= Average system power is

rate)

.336 mW 2 06
= E.g. | ms per wakeup @ 10 Hz Battery life = 46.3 d 3 04
= fis MCU clock speed attery fiie = 5.3 days 02 -
0.0 - -~
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Review

" Process
|. Start with a power or energy model
Optimize the largest part

Update model
GOTO 2

B W N

* What can you do to minimize power

consumption?
= Circuit design
= Choose power-efficient parts
= Operate at a low voltage
= Run at low frequency if dynamic power dominates

= Turn off processor and other circuits if static power
dominates

= Use low-power modes or shut off parts

= Program implementation
= Minimize compute cycles needed

58
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The squeakiest wheel gets the grease first

= Power supply

Use an efficient power supply
Skip the power supply? Use devices which have a
wide operating range

= Leverage low-power modes of processor and
peripherals

Group processing together to minimize overhead
of switching between active and idle modes

Use timers and external events to wake up

Use external hardware to reduce CPU on-time
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Estimating Compute Cycles per Second — Energy Lab

= What does the CPU do while device is in = Only need about C = 48 MHz * 0.5% =

sleep mode? 240 000 cycles per second of processing
* Indicate battery voltage * What to do about the remaining free
= Read voltage with ADC, flash LED accordingly cycles?

= Decide based on orientation whether to wake

= Could slow down processor clock
up or stay asleep

= Could use a sleep mode
= Could do both

= Use accelerometer to measure orientation
= Derive rough estimate
= Wakes up at 10 Hz

= Measures voltage with ADC, does floating point
computation

= Duty cycle is about 500 uS/100 ms = 0.5%
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