
1

Power and Energy Optimization

2

Overview

▪ Process

1. Start with a power or energy model

2. Optimize the largest part

3. Update model based on testing

4. GOTO 2

▪ What can you do to minimize power or
energy consumption?
▪ Circuit design

▪ Choose power-efficient parts
▪ Operate at a low voltage
▪ Run at low frequency if dynamic power dominates
▪ Turn off processor and other circuits if static power

dominates

▪ Use low-power modes or shut off parts

▪ Program implementation
▪ Minimize compute cycles needed

▪ Power supply
▪ Use an efficient power supply
▪ Skip the power supply? Use devices which have a

wide operating range

▪ Leverage low-power modes of processor and
peripherals
▪ Group processing together to minimize overhead

of switching between active and idle modes
▪ Use timers and external events to wake up
▪ Use external hardware to reduce CPU on-time

The squeaky wheel gets the grease.

The squeakiest wheel gets the grease first.

3

Voltage Scaling

4

How about Lowering the Operating Voltage?

▪ P aV2 for generic digital logic so this can have a big

impact

▪ Note: we need lower the voltage efficiently, so may want to

use switching converter instead of linear regulator

▪ How low can we go? What stops working as we

lower the supply voltage? Examine operating

voltage ranges

▪ LCD will stop first

▪ LEDs will become dim (first blue & green, then red)

unless we reduce the series resistor

▪ Eventually LEDs will not light at all

▪ KL25Z MCU

▪ 48 MHz at 1.71 V is possible

▪ Impact can be significant

▪ Reduce power and energy by a factor of ???

0

1

2

3

4

5

6

O
p

e
ra

ti
n

g
V

o
lt

ag
e

5

Does the MCU Power Vary Quadratically with Voltage?

▪ Use AD2 to power P3V3 supply rail at an

adjustable voltage

▪ Monitor MCU current via voltage across R81

(J4) (after removing R73)

▪ Adjust voltage from 1.8 to 3.6 V

▪ Power = current * voltage

IKL25Z = VR81/10Ω

PKL25Z = VP3V3_KL25Z*IKL25Z
= VP3V3_KL25Z*VR81/10Ω

+
VP3V3_KL25Z
-

IKL25Z

+ VR81 -

+ VR81 -

+ -

1+ Analog
Input

Ground

V+
(set to 3.3V)

1- Analog
Input

Analog
Discovery

2

6

Does the MCU Power Vary Quadratically with Voltage?

▪ Current is almost constant, depends very

little on voltage

▪ I = 7.57 mA + 0.3887 mA/V

▪ MCU has internal voltage regulator!

▪ Most MCU circuitry runs at fixed voltage,

so current doesn’t vary with voltage

▪ Impact on power

▪ Power rises almost linearly, since current is

almost constant

IKL25Z = 8.40 mA @ 1.85V IKL25Z = 8.92 mA @ 3.5V

7

Minimum Data Retention Voltage

▪ Datasheet says minimum RAM retention voltage = 1.2 V

▪ Extra Credit Project - Verify it works!

▪ What about processor registers? 1.2 V also, or something higher?

▪ How low can we take the MCU supply voltage and have all RAM and registers

retain their values?

8

Voltage and Frequency Scaling

9

Voltage and Frequency Scaling

▪ Ideas

▪ Reduce frequency to ideal frequency for each task

▪ Reduce voltage to minimum needed for that clock frequency

▪ P = SPVCC
2 + CPVCC

2fClock

▪ Circuitry
▪ Clock divider/synthesizer

▪ Variable voltage supply
▪ Efficiency: may need a DC-to-DC converter (switch-mode power supply) to efficiently convert

supply voltage.

▪ Voltage transition rate: need to be able to quickly change output voltage

▪ Transition energy dissipation: want to waste little energy when changing the voltage

10

Evaluating Frequency Scaling

for the KL25 with Run and Very

Low Power Run Modes

11

What is the Impact of Clock Speed on Current?

▪ Current rises with

core clock frequency
▪ What relationship?

▪ Offset due to static

current consumption

▪ Impact of enabling

peripheral clocks

12

Current with Linear Axes

▪ Assumes all

peripherals are

turned off

▪ Current linearly

rises with core

clock frequency

13

What is the Impact of Clock Speed on Power?

▪ Power rises linearly with

core clock frequency

▪ Power is proportional to

voltage*current, and voltage

is fixed here (3.0 V)

▪ 1 MHz is lowest power

point

▪ Compare:

https://ambiq.com/mcu-soc/

https://ambiq.com/mcu-soc/

14

Comparing Power and Energy

▪ MCU Power = 0.246 mW/MHz + 5.5689 mW

▪ Example: Need 1,000,000 cycles of processing per second

▪ Slow option: 1 MHz, always awake

▪ Energy = power integrated over time = shaded area

▪ Fast option: 48 MHz. Can sleep when not needed.

▪ Run for 1/48 second, sleep/deep sleep for rest

Time

P
o
w

e
r

Time

P
o
w

e
r

15

What is the Impact of Clock Speed on Energy?

▪ Energy per clock cycle

is power divided by

clock frequency

▪ 48 MHz is lowest-

energy point

16

Current vs. Clock Speed –VLPR Mode

▪ Now consider VLPR – very

low power run mode

▪ Maximum core frequency is 4

MHz

▪ Still have static current offset

▪ Can see impact of changing

core speed, bus speed, and

providing clock to peripherals

17

VLPR Current with Linear Axes

▪ Current linearly

rises with core

clock frequency

18

VLPR: What is the Impact of Clock Speed on Power?

▪ Power rises linearly

with core clock

frequency

▪ Power is

proportional to

voltage*current, and

voltage is fixed here

(3.0 V)

▪ 1 MHz is lowest

power point

19

VLPR: What is the Impact of Clock Speed on Energy?

▪ Energy per clock cycle is

power divided by clock

frequency

▪ 4 MHz is lowest-energy

point

20

Comparing Energy for Run and VLP Run

▪ Very low power also gives

very low energy!

▪ 4 MHZ VLP Run mode more

energy-efficient than 48 MHz

Run mode

21

Power Management Strategies

22

Application Notes

▪ NXP/Freescale

▪ AN4503

▪ KLQRUG

▪ Microchip

▪ AN1416

23

Power Management for Peripherals

▪ Pick low-power peripherals

▪ Switch them off when not needed
▪ Some have standby or power-down modes

controlled with a pin
▪ Example: Nat. Semiconductor LMV982 Dual 1.8V

Op-Amps with Shutdown
▪ VCC = 1.8 to 5.0 V

▪ Supply current 200 uA

▪ Shutdown current <5 uA

▪ 19 us turn-on time from shutdown

▪ Some accept standby or sleep command
▪ Accelerometer MMA8451Q via I2C

▪ LCD Controller ST7789S via parallel bus

▪ Otherwise have to switch off power
▪ Low-current devices (<10 mA)
▪ Supply power with MCU’s digital output pin(s)

▪ Higher-current devices
▪ Switch power with a transistor or high-side supply

switch driven by an MCU digital output

▪ Example: Vishay SiP4610 Protected 1 Amp High-Side
Load switch

▪ VCC = 2.4 to 5.5 V

▪ 1 amp output

▪ Quiescent current 9 uA

▪ Shutdown current < 1 uA

24

Power Management Options for MCUs

▪ Clock scaling

▪ Slow down the CPU clock if there’s little to do

▪ Sleep

▪ Turn off the processor if there’s nothing to do

▪ Many MCUs have sleep modes which halt instruction execution

and shut off unused portions of the MCU

▪ Can have significant power savings: factor of 1000 or more

▪ Disadvantage: waking up

▪ Need a mechanism such as timer or interrupt

▪ Events you care about must be connected to trigger wake-up

▪ Depth of sleep mode may lead to long wake-up time, reducing

system performance and reducing viable “nap windows”

▪ Both clock scaling and sleep

▪ Many variables!

▪ Not immediately obvious which settings are best

Time

P
o

w
e
r

Time

P
o

w
e
r

25

y = 4.6827x-0.705

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 20 40 60E
n

e
rg

y
 p

e
r

C
lo

c
k
 C

y
c
le

 (
n

J)

Core Frequency (MHz)

Energy per Clock Cycle vs.

Frequency

Clock Scaling – Slow Down

▪ Slowing clock cuts dynamic power used

▪ Eventually reaches limit of about 6 mW - static

(leakage) power

▪ Fewer cycles spent waiting for the next

interrupt or timer event

▪ Actual energy cost per cycle increases

y = 0.246x + 5.5689

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60

P
o
w

e
r

(m
W

)

Core Frequency (MHz)

Power vs. Frequency

26

Slow Down … But To Which Frequency?

▪ Non-real-time systems
▪ Use a governor (feedback system) to set the speed,

trying to keep processor utilization between upper

and lower bounds
▪ If U>Uupper, raise CPU speed and voltage

▪ If U< Ulower, lower CPU speed and voltage

▪ Real-time systems have deadlines
▪ Goal: minimize energy AND meet all deadlines

▪ Can then set speed for each task statically…
▪ Pick the frequency (hence voltage) per task which

minimizes the energy based on the task’s worst-case

execution time and deadline.

▪ One fixed clock frequency per task

▪ Or can set speed for each task dynamically
▪ Pick the frequency (hence voltage) per task which

minimizes the energy based on the task’s past behavior,

current progress, etc. and deadline

▪ Clock frequency varies as task behavior changes

UUpper

ULower

100%

0%

Uunscaled

Uscaled

fCPU

VCPU

PCPU

27

MCU Active Time falls with CPU Clock Frequency

▪ Time for many MCU activities depends directly on

CPU clock frequency fCPU

▪ Code1 needs 20,000 cycles

▪ Code2 needs 10,000 cycles

▪ If code i needs Ci clock cycles, computation time

Ci/fCPU

▪ Others aren’t proportional to fCPU

▪ Wake from sleep: Depends on oscillator (and maybe

its wake time)

▪ I2C communication: Data rate determines time

waiting for next byte

▪ Using ADC: Conversion clock frequency determines

time waiting for conversion to complete

▪ May be able to sleep during some of these?

▪ Time used per wake-up at fCPU

▪ TActive = C/fCPU + Tconst

▪ fCPU = 10 MHz: TActive = 1 + 2 + 4 + 1 ms = 8 ms

▪ fCPU = 20 MHz: TActive = 1 + 1 + 4 + ½ ms = 6.5 ms

▪ Active, sleep times per 1 second

▪ TActive = fWakeup*(C/fCPU + Tconst)

▪ TSleep = 1 – Tactive

W Code1 I2C Code Code2

W Code1 I2C Code Code2

1ms 2 4 1

1ms 1 4 ½

Twakeup = 1/fwakeup = 20 ms

W

W

fCPU = 10 MHz

fCPU = 20 MHz

28

MCU Active Power Use Varies with CPU Frequency

▪ Speed up fCPU from 10 MHz to 20 MHz?

▪ Finish 1.5 ms earlier, but use more power while active.

▪ Is average power higher or lower? Depends

▪ Average MCU Power (Proportional to Energy)

▪ PMCU = DActive *PActive + DSleep* PSleep

▪ PMCU = PActive*(C/fCPU + Tconst) + PSleep*(1 - C/fCPU - Tconst)

fCPU = 10 MHz

fCPU = 20 MHz

W Code1 I2C Code Code2

W Code1 I2C Code Code2

P
o
w

e
r

P
o
w

e
r

PActive =

8 mW

PActive =

10.5 mW

Sleep

Sleep

29

Which Energy Dominates? Active or Sleep?

▪ Hardware and Firmware Issues

in Using Ultra-Low Power

MCUs, Jack Ganssle

▪ Consider fraction of time spent

in sleep mode

▪ 50% asleep

▪ 90% asleep

▪ 99 % asleep

▪ The more the MCU sleeps, the

more sleep power matters

▪ Average MCU Power

(proportional to energy)

▪ PMCU = PActive * DActive + PSleep *

DSleep

▪ PMCU = PActive*(C/fCPU + Tconst)

+ PSleep*(1 - C/fCPU - Tconst)

Active

Energy

Sleep
Energy

50% 50%
10% 90%

1% 99%

Energy = power (gray) within box

50% 50% 10% 90% 1% 99%

P
o
w

e
r

Time

http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html
http://www.ganssle.com/reports/ultra-low-power-design.html

30

The Power of Sleep

▪ The more the MCU sleeps, the more sleep power matters

▪ Optimize active or sleep energy (average power)?

▪ Where is the cross-over point (active energy = sleep energy)?

▪ Example: CPU has D = 1/10

▪ PMCU = 1/10 * PActive + 9/10 * PSleep

▪ Examine point where active and sleep energies (ave. powers) are equal

▪ 0.1 * PActive = 0.9 * PSleep

▪ Rewrite as PActive/PSleep = 0.9/0.1 = 9

▪ Sleep power will dominate energy use (average power) if PSleep > PActive/9

▪ D = 0.001? Cross-over point is PSleep = PActive/999

31

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

Use Both Sleep and Clock Scaling

▪ What average power will be used at a given MCU frequency fCPU?

▪ Weighted sum of power used in active and standby

▪ PMCU = PActive*(C/fCPU + Tconst) + PSleep*(1 - C/fCPU - Tconst)

▪ Use linear model for active MCU power (mW) vs.

frequency (MHz)

▪ P = PActive,Dynamic*fCPU + PActive,Static

▪ P = 0.246 mW/MHz*fCPU + 5.5689 mW

▪ Combine equations

▪ PMCU = (PActive,Dynamic*fCPU + PActive,Static)(C/fCPU + Tconst) +

PSleep*(1 - C/fCPU - Tconst)

▪ Reducing fCPU increases time which CPU must remain active, since must perform C

cycles of computation

32

What is the Optimal Frequency?

▪ Solve for frequency fopt with minimum average power

▪ Differentiate ave. power equation with respect to frequency

▪ Solve for fopt when derivative is 0 (minimum value of power)

𝑓𝑜𝑝𝑡 =
𝐶(𝑃𝐴𝑐𝑡𝑖𝑣𝑒,𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑃𝑆𝑙𝑒𝑒𝑝)

𝑃𝐴𝑐𝑡𝑖𝑣𝑒,𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑇𝐶𝑜𝑛𝑠𝑡

▪ Optimal frequency rises with

▪ More computation

▪ Increasing difference between active static power and sleep power

▪ Optimal frequency falls with

▪ Higher active dynamic power

▪ Longer wakeup overhead, ADC conversion times, communication times

▪ Note: may be able to sleep for some of ADC, comm. times (if long enough)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

33

Factors Affecting Optimal Frequency

▪ Less wake-up overhead? (Tconst↓)

▪ Higher frequency is better

▪ Dropping Tconst from 10 ms to 5 ms raises fopt from 24 MHz to 32 MHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

34

Factors Affecting Optimal Frequency

▪ Less static active power? (PActive,Static↓)

▪ Lower frequency is better

▪ Dropping PActive,Static from 5.5689 mW to 2.75 mW changes fopt from 24 MHz to 16 MHz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

A
ve

ra
ge

 P
o

w
e

r
(m

W
)

MCU Clock Frequency (MHz)

PActive

PSleep

Paverage

35

Factors Affecting Optimal Frequency

▪ Less dynamic active power dependence on frequency? (PActive,Dynamic ↓)

▪ Higher frequency is better

▪ Dropping PActive,Dynamic from 0.246 mW/MHz to 0.123 mW/MHz changes fopt from 24 MHz to 32 MHz

▪ Less standby power? (PSleep↓)

▪ Dropping PSleep from 5.7 uW to 2.85 uW doesn’t change fopt significantly

36

Power Management and

Software Task Schedulers

37

▪ Put CPU to sleep when there is no work

to do

▪ Wake up CPU with interrupt from…

▪ Event occurring: ADC conversion completing,

I2C transmission completing, switch press

▪ Time delay completing: Timer interrupt

▪ How do we know there’s no work to do?

▪ End of loop or function (in simple systems)

▪ Explicit busy-wait delay operations (e.g. delay

for 10 ms)

▪ Scheduler executes idle thread

Basic Concepts

Average Power Use

Instantaneous

Power Use

38

▪ Use low-power timer (LPTMR) to generate

periodic interrupt request

▪ LPTMR operates in all low-power modes

▪ LPTMR ISR (IRQ handler) becomes part of a

simple scheduler – tick management code

▪ Decrements each delay counter

▪ If delay counter reaches 0,

▪ Release task: set task’s run flag

▪ Reload delay counter with period value

▪ Main loop becomes rest of simple scheduler –

task dispatcher

▪ If a task’s run flag is set, then clear the flag and

execute that task

▪ Go back to sleep

No Scheduler or OS?

LPTMR

ISR

main

LPTMR

run_TASK1 run_TASK2

delay_TASK1 delay_TASK2

TASK1 TASK2

39

Code for Timer-Interrupt-Driven Approach

volatile uint8_t run_Read_Accel=0;
volatile uint8t run_Update_LEDs=0;
volatile int delay_Read_Accel =
PERIOD_READ_ACCEL;
volatile int delay_Update_LEDs =
PERIOD_UPDATE_LEDS;

void LPTimer_IRQHandler(void) {
…
delay_Read_Accel--;
if (delay_Read_Accel == 0) {
run_Read_Accel = 1;
delay_Read_Accel=PERIOD_READ_ACCEL;

}
delay_Update_LEDs--;
if (delay_Update_LEDs == 0) {
run_Update_LEDs = 1;
delay_Update_LEDs=PERIOD_UPDATE_LEDS;

}
}

void main (void) {
…
while (1) {
if (run_Read_Accel) {
run_Read_Accel = 0;
Read_Accel();

}
if (run_Update_LEDs) {
run_Update_LEDs = 0;
Update_LEDs();

}
__wfi(); // go to sleep

}

40

CPU Activity Timeline

run_TASK1

run_TASK2

LPTMR ISR

delay_TASK1

delay_TASK2

main

TASK2

TASK1

sleep

LPTMR IRQ

Sc
h
e
d
u
lin

g
V
ar

ia
b
le

s
C

P
U

 A
ct

iv
it
y

2

0

4

0

41

Run-to-Completion Scheduler

▪ Schedulers typically built on periodic timer tick

generated by hardware timer expiring

▪ ISR runs scheduler’s tick update code, which updates

delay counters, releases appropriate tasks (marks tasks

as ready to run)

▪ Scheduler’s dispatcher code actually starts and stops

tasks running

▪ Modify scheduler’s dispatcher to put processor to

sleep when no tasks are ready to run

▪ RTC scheduler

▪ Has loop which runs tasks in priority order

▪ Loop gets to bottom only if no tasks are ready to run

▪ Go to sleep there.

▪ CPU will wake up with next timer tick or other

interrupt

void Run_RTC_Scheduler(void)
{

…
/* Dispatcher loops forever */
while (1) {

/* Check each task */
for (i=0 ; i<MAX_TASKS ; i++) {

/* Run task if ready*/
if (…){

GBL_task_list[i].task();
…

break;
}

}
// no tasks ready to run
__wfi(); // go to sleep

}
}

42

▪ (We are using RTX v5 with a CMSIS-RTOS2 interface)

▪ Scheduler runs idle thread when there is no work -> Put CPU into a sleep mode there

▪ Use WFI (Cortex-M0+) or WFE (Cortex-M3 and others)

▪ CPU will wake up with next timer tick or other interrupt

▪ Details:

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#lowPower

RTX v5 (Preemptive Scheduler)
#include "RTE_Components.h"
#include CMSIS_device_header /* Device definitions */
void osRtxIdleThread (void) {

/* The idle demon is a system thread, running when no other */
/* thread is ready to run. */
for (;;) {

__WFI(); /* Enter sleep mode */
}

}

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#lowPower
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__rtx5__specific__functions.html#gacc47720b9a10fcb7d3412640c8276465

43

▪ What if timer tick wakes up CPU and scheduler

finds no work to do?

▪ CPU goes back to sleep

▪ Waste of time to wake up for a timer tick which

won’t cause anything to run

▪ How about delaying timer tick until the next

scheduled event?

▪ Will eliminate multiple wake-ups

▪ Other interrupts (e.g. UART reception) will still wake

up CPU -> correct operation

▪ To make it work, we need to…

▪ Ask scheduler for how many ticks we can sleep

▪ Reconfigure tick timer period, or use different timer

▪ On wake-up, tell scheduler how long we slept

▪ Easy if awakened by timer

▪ More complex if awakened by non-timer interrupt

Tickless Idle
Wasted Energy

Useful Energy

44

▪ RTX uses SysTick timer to generate

periodic interrupts (scheduler ticks)

▪ Idle thread decides whether to go to sleep

▪ Go to sleep?

▪ Call osKernelSuspend to determine delay (in

ticks) until next scheduled processing

▪ If delay == 0, then stay awake

▪ Going to sleep

▪ Set wake-up timer for that delay

▪ Disable interrupts from SysTick

▪ Go to sleep

▪ Waking up

▪ Caused by wake-up timer or other interrupt

▪ Determine how much time we slept

▪ If not caused by wake-up timer, then not likely

to be the delay we set above

▪ Start scheduler again by calling

osKernelResume, telling it how long we slept

▪ Consider timing error from …

▪ Switching between clocks if not synchronized

▪ Sampling effects of clocks

▪ More at
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/

theory_of_operation.html#TickLess

Tickless Idle for RTX v5

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/theory_of_operation.html#TickLess

45

Design Example with Analysis

46

System Overview – Drift Meter

▪ Drift Meter – find difference between

vehicle heading and actual track to find

effects of crosswinds, skidding, water

currents

▪ Two operating modes

▪ Active: all devices operating

▪ Standby: system mostly off, use accelerometer to

determine orientation and power state

▪ Approach – Analyze consumption, then

start with addressing the worst offender

▪ Consider major operating modes: active,

sleep (“off”)

47

Create Power Model

▪ Start with basic system without premature optimization

▪ No MCU power management - MCU is always on, running at 48 MHz

▪ Minimize number of voltage domains - all devices run at 3.3 V

▪ Duty cycle

▪ Must consider for microSD card due to large variation in current

▪ Max Iwrite @ 3.6 V = 150 mA

▪ Max Istandby @ 3.0 V = 0.25 mA

▪ Start off by assuming 1% duty cycle (1% in write, 99% in standby)

Active Standby

Device

Voltage

(V)

Current

(mA)

Power

(mW)

Current

(mA)

Power

(mW)

Duty

Cycle

Average

Power

(mW)

LCD 3.300 25.600 84.480 100% 84.480

GPS Receiver 3.300 20.000 66.000 100% 66.000

MCU 3.300 5.800 19.140 100% 19.140

MicroSD card 3.300 150.000 495.000 0.250 0.825 1% 5.767

Compass 3.300 0.360 1.188 0.002 100% 1.188

Accelerometer 3.300 0.024 0.079 100% 0.079

48

Battery Characteristics

▪ Use a Lithium-Ion rechargeable cell (e.g. from phone)

▪ Nominal 3.7 V, rated at 1 Amp-Hour

▪ Starts at about 4.2 V

▪ Cuts off about 3.0 V

▪ Total Power
▪ 3.7 V * 1 AH = 3.7 WH

▪ Total Energy

▪ 3.7 V * 1 AH * 3600 sec/H = 13.32kJ

49

Active Power – 100% Efficient Supply

▪ Total power of 176.7 mW

▪ Dominated by LCD and GPS receiver

▪ Battery life = 3.7 WH/0.1767 W =

20.93 H

▪ OK?

▪ We are done!

▪ Not OK?

▪ Increase storage

▪ Use a larger battery

▪ Reduce consumption

▪ Find a more efficient LCD, GPS receiver

0

10

20

30

40

50

60

70

80

90

Po
w

er
 (

m
W

)

Average Power

50

Power Conversion Efficiency

▪ Is voltage regulation needed?

▪ Cell output voltage varies from 3 to 4.2 V

▪ Exceeds maximum voltage for some components (SD, etc.)

▪ Need to regulate or at least limit voltage

▪ Linear regulator – wastes more power if there is a large voltage drop

▪ Freedom KL25Z uses NCP1117

▪ Select regulator with small quiescent current, small dropout voltage

▪ Switching regulator – more efficient

▪ More complex as well

51

Active Power – Linear Voltage Regulator

▪ Add in linear regulator power

▪ PVReg = (Vin-Vout)*(Iout) + Vin*IQuiescent

▪ 43.6 mW

▪ Total power of 220.3 mW

▪ Still dominated by LCD and GPS receiver

▪ Battery life = 3.7 WH/0.2203 W = 16.8 H

▪ Is this OK?

▪ Yes

▪ We are done!

▪ No

▪ Increase storage

▪ Use a larger battery

▪ Reduce consumption

▪ Use lower power LCD (e.g. memory LCD, e-paper, e-ink), GPS receiver, regulator (power converter)

0

10

20

30

40

50

60

70

80

90

Po
w

er
 (

m
W

)

Average Power

52

Standby Power – Linear Voltage Regulator

▪ Disable everything but …

▪ MCU

▪ Accelerometer

▪ LED battery indicator (1%)

▪ Request standby mode

▪ With message

▪ Accelerometer – I2C

▪ Compass – I2C

▪ GPS receiver – UART

▪ microSD card – SPI – GO_IDLE_STATE

command (0)

▪ With logic level signal

▪ MicroSD card – chip select - /CS

▪ Brute force methods

▪ Hold device in reset state

▪ Shut off power

▪ Needed for this LCD module

Standby

Device

Current

(mA)

Power

(mW)

LCD 0.000 0.000

GPS Receiver 0.200 0.660

MCU n/a n/a

MicroSD card 0.250 0.825

Compass 0.002 0.007

Accelerometer n/a n/a

LED Battery Indicator 0 0.000

53

Standby – Linear Voltage Regulator

▪ Results

▪ Average power is 45.5 mW (220.3 mW)

▪ Battery life = 3.7 WH/45.5 mW = 81.2 H

▪ Regulator and MCU now dominate power

▪ What can we do now?

▪ Reduce regulator power

▪ Can we find a more efficient regulator

(with less quiescent current)?

▪ Can we even get rid of the regulator?

▪ All components must be able to handle maximum battery voltage (4.3 V for Li)

0

5

10

15

20

25

30

Po
w

er
 (

m
W

)

Average Power

54

Improving the Linear Voltage Regulator

▪ Select regulator with …

▪ Small quiescent current

▪ Small dropout voltage

▪ Adjustable output voltage

▪ Shutdown control signal

▪ Example: On Semiconductor NCP5500 500 mA

LDO Voltage Regulator

▪ Datasheet: NCP5500/D, April 2013, Rev. 12,

http://onsemi.com

▪ Low quiescent current: 300 uA

▪ Iout up to 500 mA

▪ What’s going on between 2 and 3.3 V?

▪ Extra credit

http://onsemi.com/

55

Resulting Power Use
▪ Good improvement from replacing

voltage regulator!

▪ 24.5 mW average power (was 45.4 mW)

▪ 151.2 hour battery life in sleep mode

▪ Now focus on the MCU

▪ We could lower the operating voltage

▪ But we need efficient power conversion (not a linear

regulator)

▪ Do we really need 48,000,000 cycles of computation per second

while the device is asleep?

▪ If not, we can lower the clock speed or use a sleep mode

0

5

10

15

20

25

Po
w

er
 (

m
W

)

Average Power

56

How Many Compute Cycles per Second?

▪ We don’t know, since we haven’t written the code yet!

▪ Need to estimate it instead

▪ Analyze activity, break down into smaller sub-activities

▪ Estimate computation needed per sub-activity

▪ Sum up computation costs – may need to scale if running at different frequencies

57

Sleep While Idle?

▪ Factors

▪ Estimated C = 240 000 cycles

of computation needed per

second

▪ Tconst needed per second for

constant-time activities

(independent of MCU clock

rate)

▪ E.g. 1 ms per wakeup @ 10 Hz

▪ f is MCU clock speed

▪ Use Low-Leakage Stop

mode

▪ 1.9 uA at 3 V = 5.7 uW

▪ Results

▪ Average MCU power falls to

0.293 mW (from 24.5 mW)

▪ Average system power is

1.336 mW

▪ Battery life = 46.3 days

C 240000cycles

PActive 19.14mW

PSleep 0.0057mW

Tconst 0.01s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Po
w

er
 (

m
W

)

Average Power

58

Review
▪ Process

1. Start with a power or energy model

2. Optimize the largest part

3. Update model

4. GOTO 2

▪ What can you do to minimize power
consumption?
▪ Circuit design

▪ Choose power-efficient parts
▪ Operate at a low voltage
▪ Run at low frequency if dynamic power dominates
▪ Turn off processor and other circuits if static power

dominates

▪ Use low-power modes or shut off parts

▪ Program implementation
▪ Minimize compute cycles needed

▪ Power supply
▪ Use an efficient power supply
▪ Skip the power supply? Use devices which have a

wide operating range

▪ Leverage low-power modes of processor and
peripherals
▪ Group processing together to minimize overhead

of switching between active and idle modes
▪ Use timers and external events to wake up
▪ Use external hardware to reduce CPU on-time

The squeakiest wheel gets the grease first

59

Appendix

60

Estimating Compute Cycles per Second – Energy Lab

▪ What does the CPU do while device is in

sleep mode?

▪ Indicate battery voltage

▪ Read voltage with ADC, flash LED accordingly

▪ Decide based on orientation whether to wake

up or stay asleep

▪ Use accelerometer to measure orientation

▪ Derive rough estimate

▪ Wakes up at 10 Hz

▪ Measures voltage with ADC, does floating point

computation

▪ Duty cycle is about 500 uS/100 ms = 0.5%

▪ Only need about C = 48 MHz * 0.5% =

240 000 cycles per second of processing

▪ What to do about the remaining free

cycles?

▪ Could slow down processor clock

▪ Could use a sleep mode

▪ Could do both

	Slide 1: Power and Energy Optimization
	Slide 2: Overview
	Slide 3: Voltage Scaling
	Slide 4: How about Lowering the Operating Voltage?
	Slide 5: Does the MCU Power Vary Quadratically with Voltage?
	Slide 6: Does the MCU Power Vary Quadratically with Voltage?
	Slide 7: Minimum Data Retention Voltage
	Slide 8: Voltage and Frequency Scaling
	Slide 9: Voltage and Frequency Scaling
	Slide 10: Evaluating Frequency Scaling for the KL25 with Run and Very Low Power Run Modes
	Slide 11: What is the Impact of Clock Speed on Current?
	Slide 12: Current with Linear Axes
	Slide 13: What is the Impact of Clock Speed on Power?
	Slide 14: Comparing Power and Energy
	Slide 15: What is the Impact of Clock Speed on Energy?
	Slide 16: Current vs. Clock Speed – VLPR Mode
	Slide 17: VLPR Current with Linear Axes
	Slide 18: VLPR: What is the Impact of Clock Speed on Power?
	Slide 19: VLPR: What is the Impact of Clock Speed on Energy?
	Slide 20: Comparing Energy for Run and VLP Run
	Slide 21: Power Management Strategies
	Slide 22: Application Notes
	Slide 23: Power Management for Peripherals
	Slide 24: Power Management Options for MCUs
	Slide 25: Clock Scaling – Slow Down
	Slide 26: Slow Down … But To Which Frequency?
	Slide 27: MCU Active Time falls with CPU Clock Frequency
	Slide 28: MCU Active Power Use Varies with CPU Frequency
	Slide 29: Which Energy Dominates? Active or Sleep?
	Slide 30: The Power of Sleep
	Slide 31: Use Both Sleep and Clock Scaling
	Slide 32: What is the Optimal Frequency?
	Slide 33: Factors Affecting Optimal Frequency
	Slide 34: Factors Affecting Optimal Frequency
	Slide 35: Factors Affecting Optimal Frequency
	Slide 36: Power Management and Software Task Schedulers
	Slide 37: Basic Concepts
	Slide 38: No Scheduler or OS?
	Slide 39: Code for Timer-Interrupt-Driven Approach
	Slide 40: CPU Activity Timeline
	Slide 41: Run-to-Completion Scheduler
	Slide 42: RTX v5 (Preemptive Scheduler)
	Slide 43: Tickless Idle
	Slide 44: Tickless Idle for RTX v5
	Slide 45: Design Example with Analysis
	Slide 46: System Overview – Drift Meter
	Slide 47: Create Power Model
	Slide 48: Battery Characteristics
	Slide 49: Active Power – 100% Efficient Supply
	Slide 50: Power Conversion Efficiency
	Slide 51: Active Power – Linear Voltage Regulator
	Slide 52: Standby Power – Linear Voltage Regulator
	Slide 53: Standby – Linear Voltage Regulator
	Slide 54: Improving the Linear Voltage Regulator
	Slide 55: Resulting Power Use
	Slide 56: How Many Compute Cycles per Second?
	Slide 57: Sleep While Idle?
	Slide 58: Review
	Slide 59: Appendix
	Slide 60: Estimating Compute Cycles per Second – Energy Lab

