


1
2

3
4

5 6



7 7
8 8

9 9

10 10



11

12

13

14

11

12

13

14



15 15

16 16

17 17

18 18





19 19
20 20
21 21



24
25

26







Ignoring Control Flow
r0 (“a”) r1 (“b”) r2 r3 r4

a b

a b pa MSW sign extend a to get pa bits 63-32

a b pb MSW pa MSW sign extend b to get pb bits 63-32

a b b pb MSW pa MSW

a pa MSW b pb MSW pa MSW

p LSW p MSW r0, r1 as two words

p 3rdMSHW p LSHW p MSHW p 2ndMSHW r0, r1 as four half-words

p 3rdMSHW p LSHW p 2ndMSHW 0 shift p MSW left to get lower halfword, 
zero out upper halfword

0 p 3rdMSHW p 2ndMSHW 0 shift p LSW right to get upper halfword, 
zero out lower halfword

p 2ndMSHW p 3rdMSHW p 2ndMSHW 0 OR together results to get middle 32 bits 
of p

Register Contents After Instruction Executes

Arguments longer than 1 word are ordered 
little-endian in registers or memory



Signed 16.16 * 16.16 Explained
• Sign-extension to 64 bits

• a (r0) and b (r1) to 64 bits pa (r4:r0) 
and pb (r3:r2)

• ASRS: arithmetic shift right performs 
sign extension by setting all of upper 
word’s sign bits to match lower word’s 
sign

• Move pa and pb into argument 
registers (r1:r0 and r3:r2) 

• Call __aeabi_lmul for long multiply

• Extract middle 32 bits of result 
• LSLS: logical shift left extracts lower 16 

bits of r1
• LSRS: logical shift right extracts upper 

16 bits of r0
• ORRS: merges together middle 32 bits

r0 r1

r0r1 r2r3

a b

r0r1

__aeabi_lmul

r0

r1

r1

r0r4 r1r3





Simple Control Flow #7 (v1.0): CFG of 
Fault_Fill_Queue
• 2 or 3 basic blocks ok since bl 

osMessageQueuePut may be 
interpreted as ending basic block

• Note that there should not be a 
basic block for the subroutine 
osMessageQueuePut. The call 
instruction (BL) is in the 2nd basic 
block.

1. 0x1418

2. 0x1424

3. 0x1436

1. 0x1418

2. 0x1424

yes-branch

nono

yes-branch

yes-call

BBs no yes-
branch

yes-
call

yes-
return

3 1 1 1 0

2 1 1 0 0



Simple Control Flow #8 (v1.0): CFG of 
Fault_Fill_Queue
• 2 or 3 basic blocks ok since bl 

osMessageQueuePut may be 
interpreted as ending basic block

• Addresses should match basic 
blocks listed in #7, not 
necessarily what’s in this 
diagram.

• Labeled edges connecting basic 
blocks as shown

• Note that there should not be a 
basic block for the subroutine 
osMessageQueuePut. The call 
instruction (BL) is in the 2nd basic 
block.

1. 0x1418

2. 0x1424

3. 0x1436

1. 0x1418

2. 0x1424

AA

A
A

A



Simple Control Flow #7 (v1.1+): CFG of 
Control_DutyCycle_Handler

• Note that there should not be a 
basic block for the subroutine 
PWM_Set_Value. The call 
instruction (BL) is in the 4th basic 
block.

1. 0x10a8

2. 0x10b0

3. 0x10c2

4. 0x10c4

5. 0x10d6

yes-branch

yes-branch

yes-return

no

no or yes-call

BBs no yes-
branch

yes-
call

yes-
return

5 2 2 0 1

5 1 2 1 1



Simple Control Flow #8 (v1.1+): CFG of 
Control_DutyCycle_Handler
• 5 basic blocks, labeled as shown

• Addresses should match basic 
blocks listed in #7, not necessarily 
what’s in this diagram.

• Labeled edges connecting basic 
blocks as shown

• Note that there should not be a 
basic block for the subroutine 
PWM_Set_Value. The call 
instruction (BL) is in the 4th basic 
block.

1. 0x10a8

2. 0x10b0

3. 0x10c2

4. 0x10c4

5. 0x10d6

F

T

F

A

A

T





Complex Control Flow #9

• Should show the right function 
(LCD_Start_Rectangle) using 
this layout

• Text doesn’t have to be legible, 
but basic blocks and control 
flow edges must be visible



Complex Control Flow #11

• Must be from Ghidra for Test_Fault
• May be a different layout from this one
• Must show basic blocks and edges



Complex Control Flow #12



Complex Control Flow #15 (Overview)
• Test case number t (in r0) is decremented by one, since table has 

covers cases 1 through 14. Example: t = 3, so r0 <- 3-1 = 2

• r0 is compared to the largest test case offset 0xd (14–1=13 ), and 
the result determines if bhi branches.

• r0 > 13?
• branch to caseD_e, which is code following last case 

statement, since there is no default case
• r0 <= 13? Ex: r0 = 2 <= 13

• Note: pc is address of cur. instruction + 4. Arm Arch. Ref. 
Manual, DDI 0419C 

• Add pc to r0, so r0 points to …. Ex: r0 <- 2 + (0x2914 + 4) = 
0x2918 + 2 = 0x291a

• Load register r0 with byte from entry in jump table (in 
memory at address r0+4). Ex: r0 <- memory[0x291a+4] = 
memory[0x291e] = 0xd = 13

• Shift r0 left by one bit (multiply by two) to convert offset to 
bytes. Ex: r0 <- 26

• Add r0 to pc, causing the program to jump to that case’s 
code. Ex: pc <- (0x291a + 4) + 26 = 0x291e + 26 = 0x2938 

Jump Table

Address



Complex Control 
Flow #15 (Details)

0
1

2

3

4

5

14

8

6

7

9

11

13

10

15

12

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1

2

3

4

5

14

8

6

7

9

11

13

10

12

0 15
Code after switch (t) { … }

No code for these cases

0x291a + 4 + 2*0xD
= 0x2938



Complex Control Flow #17
ECE 561 only: If the number of test cases don’t match, try to explain why.

• Test cases TR_None (0) and TR_End (15) both do nothing, so there is 
no case code generated for them. 

• Before the jump table, those cases are detected with one test
• They are both handled by this code:

• Subtract 1 from r0
• 0 -> 0xffffffff
• 15 -> 14 (0x0000000e)

• Compare with 0xd (13)
• bhi: Branch if unsigned greater than is true
• Both are higher than 0xd, so branch to caseD_e, which is code which follows 

the switch statement



Complex Control Flow #20. 
ECE 561 only: If the number of test cases ending in infinite loops 
don’t match, try to explain what happened. 

• In source code
• one case ends in explicit infinite loop: high priority thread (10)
• Two cases call subroutine with infinite loop: stack overflow (13), fill queue (14) 

• CFG shows three cases ending in infinite loops, partially matching source code.
• In cases for stack overflow (13/d), fill queue (14/3), 

compiler in-lined calls to subroutines with infinite loops

0
1

2

3

4

5

14

8

6

7

9

11

13

10

15

12



Complex Control Flow #21 (1 of 2)
The control flow for four different cases merges into a single basic block before reaching the basic block with the 
call to osDelay and the pop instruction. Try to explain why the control flow merges for those cases. 

• These four cases merge:

• All four cases are very similar: they 
just write a constant value to 
certain location in memory. To do 
this they need to do the following:

• Put the destination address in a 
pointer register (e.g. r0)

• Put the constant value in a 
register (e.g. r1)

• Store the value to memory STR 
r0, [r1]

• All four cases can use the same 
store instruction: STR r0, [r1]

• For two cases, the value written to 
memory will be 0, so the same 
instruction can move 0 into r0.

• The remaining operations in each 
case different and get their own 
code.

r0 ← &(SIM->SCGC6) r0 ← &(g_set_current) r0 ← &(TPM0->MOD) r0 ← &(g_flash_period)

r1 ← 0 r1 ← 0 r1 ← 23456 r1 ← 100

mem[r1] ← r0 mem[r1] ← r0 mem[r1] ← r0 mem[r1] ← r0



Complex Control Flow #21 (2 of 2)
The control flow for four different cases merges into a single basic block before reaching the basic block with the 
call to osDelay and the pop instruction. Try to explain why the control flow merges for those cases. 

• Each of the four cases gets its 
own code to load non-
common values

• For cases 8 and 2, the value 
written to memory will be 0. 
The common code to load r0 
with 0 is placed in BB 296a

• An instruction to store r1 to 
memory at [r0] is placed in BB 
298e for use by all four cases.

load r1 
with 0

store r1 in memory at 
address r0

3: TR_Flash_Period:
load r0 with address of 
g_flash_period, and r1 
with 0x64 (100)

c (12): TR_Slow_TPM:
BB 298a loads r0 with 
address of TPM0->MOD and 
r1 with the value 23456

2: TR_Setpoint_Zero:
load r0 with address 

of g_set_current

8: TR_Disable_PeriphClocks:
load r0 with the address of 
SIM->SCGC6 (clock gating)



Complex Control Flow #22
Do all the cases end in an infinite loop or a control flow edge to another basic block? 
If not, which one doesn’t, and why not?

• With my code, all cases end in an infinite loop or a control flow edge 
to another block.

• It’s possible that if the compiler didn’t inline a call to a function with 
an infinite loop (stack overflow (13/d), fill queue (14/e)), then the 
basic block would just end in a subroutine call (BL, BLX instruction) 
with no successor BB.







Examining Function Calling 
Behavior #10
• 20%: Root node must be 

ADC0_IRQHandler
• 30%: All direct calls must be 

included (scale proportionally 
for missing or extra function 
nodes)

• 50%: All indirect calls must be 
included (scale proportionally 
for missing or extra function 
nodes)



Examining Function Calling Behavior #11
Use Ghidra to create a function call graph for LCD_Start_Rectangle. Compare it with what you would 
expect from the source code (located in ST7789.c). What are the differences? How do you explain 
them?

• Differences:
• The source code has multiple 

subroutine calls to 
LCD_24S_Write_Command and 
LCD_24S_Write_Data

• The Ghidra function call graph has 
no subroutine calls.

• Explanation: The compiler in-lined 
the function calls when optimizing 
the code (to speed it up).

LCD_Start_Rectangle

LCD_24S_Write_Command LCD_24S_Write_Data



Source Code vs. Decompiled Code #1





Source Code vs. Decompiled 
Code #2 (option 1)
• Either option 1 or 2 (next page) is fine
• In Code Browser, Edit -> Tool Options-> 

Decompiler-> Analysis



Source Code vs. 
Decompiled Code 
#2 (option 2)

• In Code Browser, Edit -> 
Tool Options-> 
Decompiler-> Analysis



Source Code vs. 
Decompiled Code #3
• Each MIN or MAX macro has 

become a compare instruction, a 
conditional branch, and a move 
instruction.



Source Code vs. Decompiled Code #4 
(option 1)
• These are 

addresses that 
correspond to the 
fast GPIO registers 
for FGPIOC 
(Chapter 41 of 
KL25 SF Reference 
Manual, Rev. 3)



Source Code vs. Decompiled Code #5, #6

5. One cast does appear, performing an unsigned extension of a halfword from r3 
into a full word in r5

6. Most of the casts don’t appear in the object code – for example a conditional 
branch is highlighted as implementing the code. The casts are probably in the 
source code to clarify how the comparisons are performed.



Source Code vs. Decompiled Code #7, #8

7. The compiler inlined the function calls. 
This makes the program faster.
8a. Without Respect readonly flags 
checked, the decompiler omits all but the 
last writes to _DAT_f80ff080, 
_DAT_f80ff088, and _DAT_f80ff084 
because it didn’t know they were control 
registers (not regular memory), so each 
write matters. 
8b. With Respect readonly flags checked, 
the decompiler includes all writes to those 
addresses. 


