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Advanced Responsiveness 

Analysis and Optimization
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EXAMINING OUR SIMPLIFICATIONS



3

A Closer Look at Our Assumptions

▪ How close is the edge?

▪ Assumed no overhead

▪ Instant switching to/from interrupt handler

▪ Ignores register stacking, vector fetching

▪ Could add in 15 cycles to each CISR i

▪ Instant context switch CContextSwitch = 0

▪ Task state must be saved and restored

▪ Could estimate a bound for number of context 

switches, add in n*CContextSwitch somewhere

▪ Instant scheduling decision. 

▪ EDF requires sorted list of ready tasks.

▪ Other OS activities take no time

▪ Constant task execution time Ci

▪ If range of times possible, use largest for safety

▪ What if average is much shorter?

▪ Still need processor fast enough for worst case

▪ Processor will have lots of idle time. Could have 

bought something slower and cheaper. 

▪ Constant task release period Ti

▪ If range of periods possible, model Ti = 

min(TInterarrival i)

▪ Again is pessimistic – designs for worst-case. 

Safe but may be wasteful.

▪ Single CPU

▪ Multiprocessor scheduling extensions exist



4

ANALYSIS OF ISR AND KERNEL 

OVERHEADS
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ISR Latency Times

▪ These take non-zero time

▪ Delay response 

▪ Reduce available CPU time for application, 

especially for high-frequency interrupts

▪ ISR/Exception handler latency

▪ Hardware activities

▪ Save some state by stacking 8 registers 

▪ Stacked registers: R0-R3, R12, LR, PC, xPSR

▪ 8 cycles

▪ Fetch interrupt vector from table

▪ Fetch first instruction of interrupt handler

▪ For Cortex M0+ in KL25Z, typically takes 15 

cycles from request to 1st instruction in 

handler/ISR

▪ At 48 MHz, this is about 313 ns

▪ Cortex-M improvements

▪ Tail-Chaining

▪ For back-to-back exceptions: skip state restore 

(pop 8 registers) and save (push 8 registers)

▪ Late-Arriving Interrupts

▪ First interrupt request arrives, hardware starts 

stacking registers 

▪ Higher-priority interrupt arrives while stacking 

registers, 

▪ Fetch higher-priority interrupt’s vector (not first 

interrupt’s)

▪ First interrupt will be handled after higher-priority 

interrupt completes
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RTOS Overhead, Including Context Switch Times

▪ Will measure in lab using thread visualizer and logic analyzer

▪ Thread visualizer code switches GPIOs

▪ Suspend thread: preemption

▪ Suspend thread: blocking

▪ Resume thread

▪ Idle thread toggles own output

TR Time to resume thread

TS Time to suspend thread
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Assemble Times for RTXv5 Activities

Handler 
(DMA IRQ)

Thread A 
(e.g. Idle)

Thread B 
(e.g. Refill 

Sound 
Buffer)

TCSP Context Switch 
from Preemption

TR Thread 
resume

TS Thread 
suspend

TCSB Context Switch 
from Blocking

TR Thread 
resume

TS Thread 
suspend

THTTCS Handler to 
Thread with Context 

Switch

TR Thread 
resume

TTTH Thread 
to Handler

THTT Handler to 
Thread (no 

Context Switch)

TR Time to resume thread

TS Time to suspend thread
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ESTIMATING 

WORST-CASE EXECUTION TIME
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Task Execution Time

▪ We need task execution time Ci to 

analyze response time and schedulability

▪ What aspects of execution time do we 

care about?

▪ Average – what’s the typical performance?

▪ Worst-case – must meet deadlines

▪ Best-case – too fast might cause race 

conditions or other problems

▪ Distribution and variability

▪ Sources of execution time variations

▪ Software

▪ Different input data may trigger different 

control flow behavior

▪ Non-trivial software leads to state-space 

explosion

▪ Hardware

▪ Instruction execution times may depend on 

data

▪ DMA activity may slow or delay task execution

▪ Pipelines may stall

▪ Branch target buffers may miss

▪ Caches may miss

▪ Non-trivial hardware leads to state-space 

explosion
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Basic Ideas

▪ Consider task’s possible execution time

▪ Need WCET (worst-case execution time) for 

scheduling analysis 

▪ Analytical approach (prediction)

▪ Series of worst-case assumptions leads to WCET 

overestimate

▪ Better analysis may rule out impossible cases, 

tightening estimate

▪ Experimental approach 

▪ Measures actual code execution time for that input 

data

▪ May not be worst-case

▪ So usually is an underestimate of WCET

▪ Improve estimate by adding more test cases

Execution Time
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Better Experimental Measurements Better Static Timing Analysis
Correct 

WCET 

Ci
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STATIC TIMING ANALYSIS
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Static Analysis: Predicting Task Execution Time

▪ "Prediction is extremely difficult. Especially 

about the future.” 

– Niels Bohr

▪ Prediction Techniques

▪ Manual estimate based on databook

▪ Use a processor simulator

▪ Measure a real system

▪ System is built of abstractions

▪ containing abstractions…

▪ containing abstractions…

▪ containing abstractions…

▪ containing abstractions…

◦ containing abstractions…

▪ Recall sources of timing variations 

▪ Software

▪ Different input data may trigger different control 

flow behavior

▪ Non-trivial software leads to state-space 

explosion

▪ Hardware

▪ Instruction execution times may depend on data

▪ DMA activity may slow or delay task execution

▪ Pipelines may stall

▪ Branch target buffers may miss

▪ Caches may miss

▪ Non-trivial hardware leads to state-space 

explosion
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Examining Object Code

▪ High-level languages hide implementation details

▪ This abstraction obscures what assembly code will be generated for a C statement, 

and how long it will take to execute
▪ a = b*c[i+j] depends on

▪ data types of a, b, c, i, j: int? float? double? long?

▪ Instruction Set Architecture (ISA) and MCU implementation
▪ multiply instruction for the data type

▪ advanced addressing modes suitable for array indexing

▪ Examining the object code generated by the compiler is the only way to get an 

accurate picture of what will happen
▪ It gets ugly very quickly (“does not scale well”)

▪ Use representations which reflect program structure in order to simplify the analysis

▪ BTW, compilers and other tools use these representations to analyze and optimize the 

code automatically
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How Long Do Instructions Take on the Cortex-M0+?

▪ Details in Cortex-M0+ Technical Reference 

Manual (DDI0484B)

▪ Most instructions take 1 cycle

▪ Loads and stores
▪ 1 cycle: to single-cycle I/O port (FPT)

▪ 2 cycles: to AHB interface or SCS

▪ 1+N cycles: load multiple, store multiple, push, 

pop (N registers)

▪ Any instruction writing to PC
▪ 2 Cycles

▪ Conditional branch
▪ Not taken: 1 cycle

▪ Taken: 2 cycles

▪ Other branches
▪ Unconditional, exchange, link & exchange: 2 

cycles

▪ Link: 3 cycles

▪ Read and write special registers

▪ 3 cycles

▪ Multiply

▪ 1 or 32 cycles, depending on type of 

multiplier in CPU
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Control Flow Graphs and Call Graphs

▪ Control flow graph (CFG)
▪ A flow chart which shows the execution sequence of the 

program

▪ Each node is a basic block (sequence of instructions, 

potentially with conditional jump at end)

▪ Create one CFG per subroutine or interrupt service 

routine

▪ Call graph
▪ A hierarchical (tree) form which shows the nesting of 

subroutine calls

▪ Each node is a subroutine
▪ Going down an arrow indicates calling a subroutine

▪ Going up an arrow (backwards) 

indicates returning from that subroutine

▪ Create one call graph per program

_timer_isr

L0

L1

_timer_isr_0

main

Init_MCU Read_
Switches

Process Refresh_
Display

Linearize Resample
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CFG Formation Rules

▪ A CFG consists of basic blocks (BB) joined by directed edges
▪ Basic block: a sequence of consecutive instructions such that each instruction is executed 

exactly once if the basic block is executed. 

▪ This implies
▪ the flow of control begins at the entry and leaves at the exit 
▪ there is no conditional branching except potentially at the end.

▪ no instructions can be skipped within a basic block

▪ conditional branch (+skip) instruction effectively ends the basic block
▪ a jump/branch into a BB will split it into two
▪ a subroutine call ends the basic block

▪ Relationships with other BBs
▪ Predecessors: all basic blocks which can execute immediately before the given basic block.
▪ Successors: all basic blocks which can execute immediately after the given basic block.  

▪ For our purposes, a new label starts a new basic block (except in the case of 
consecutive labels, in which case the basic block is assigned the first label).



17

Call Graph Details

▪ Each subroutine is represented by a node

▪ Each potential call from subroutine A to B is represented by a directed edge from A to B

▪ Each ISR has a node, but it is not called by any other code (except if software interrupts 

are supported)

▪ Operations not supported by ISA (e.g. modulo (%)) may be implemented with 

subroutine linked in from a C library, leading to a deeper call graph than expected
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Static Timing Analysis Procedure

▪ Compile source code

▪ Examine assembly code

▪ Form basic blocks

▪ Form control flow graph from basic blocks

▪ Determine duration per basic block by 

adding instruction durations

▪ Evaluate paths through function

▪ Best and worst-case times for function 

▪ Deal with control-flow complexity

▪ For code in conditional region (if-then-else), 

▪ If control-flow path is known, calculate exact time 

for path

▪ If control-flow path is unknown, bound the time: 

choose the larger time for WCET, the smaller for 

BCET

▪ For code in loop, use the exact number of 

iterations (if known) or else try to derive a bound 

(minimum and maximum)
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Static Timing Analysis of SIMD-Optimized Write Pixels Function

▪ Start with CFG of function (e.g. from 

Ghidra)

▪ Function behavior

▪ Loop

▪ Load R, G and B data (8:8:8) for four consecutive 

pixels

▪ Mask off extra RGB bits (3:2:3)

▪ Pack into words W1, W2 (5:6:5)

▪ Loop

▪ Select bytes b1, b2 from W1, W2

▪ Write b1, b2 to LCD controller

void LCD_Write_Rectangle_N_Quad_Pixel_Components(

uint32_t * aR, uint32_t * aG, uint32_t * aB,

int32_t n) {

uint8_t b1, b2;

uint8_t i;

uint32_t R, G, B, GH, GL, W1, W2;

do {

R = *aR++;

G = *aG++;

B = *aB++;

R &= 0xf8f8f8f8;

GH = (G&0xe0e0e0e0)>>5;

GL = (G&0x1c1c1c1c)>>2;

B = (B&0xf8f8f8f8)>>3;

W1 = R | GH;

W2 = GL | B;

for (i=0; i<4; i++) {

b1 = W1 & 0x000000ff;

b2 = W2 & 0x000000ff;

LCD_24S_Write_Data(b1);

LCD_24S_Write_Data(b2);

W1 >>= 8;

W2 >>= 8;

}

} while (--n>0);

}
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Static Timing Analysis of SIMD-Optimized Write Pixels Function

▪ First impressions

▪ Inner loop dominates execution time: ~19 cycles 

per pixel

▪ Outer loop: additional ~38 cycles per four pixels 

→ 8.5 cycles per pixel

▪ Execution cycle count model:
▪ n = argument. Number of pixels/4

▪ C = 16 + n*(31 + 4*18 + (4-1)*1+6) + (n-1)*1 + 7

▪ C = 23 + n*(112)+(n-1)

▪ C = 22 + 113*n

▪ At 48 MHz, t = 0.458 µs + n*2.354 µs

▪ Is this accurate? Must verify by measuring 
real system.

31 cycles

18 cycles

6 cycles
1 cycle. Branch taken 

on all but last iteration 

of outer loop.

1 cycle. Branch 

taken on all but 

last iteration of 

inner loop.

16 cycles

7 cycles
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EXPERIMENTAL TIMING ANALYSIS
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▪ Use analysis tools

▪ Logic analyzer or oscilloscope looks for special 

events (e.g. on debug pins)

▪ Set up GPIO port to set output bit upon entering 

routine, clear it upon exiting

▪ Instruction trace

▪ Search for start and end addresses of task in 

instruction trace

▪ Calculate time based on when those instruction 

addresses were executed

▪ Some Cortex-M CPUs provide compressed 

instruction trace on SWV

▪ Use code to read high-resolution timer in 

MCU

▪ Configure as cycle counter 

▪ Can select prescaled clock source if needed to 

increase time range

▪ Make its ISR increment a counter variable 

(volatile!) when it overflows

Time Measurement Methods
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Repeatability

▪ How good are your measurements?

▪ Does the same input lead to the same 

output, or are other factors in the 

system affecting the computation?

min = 0xffffffffl;

max = 0;

for (i=0; i<3000; i++) {

Clear_Ticks();

f = sqrt(37/100.0);

t = Get_Ticks();

min = MIN(t, min);

max = MAX(t, max);

}
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Timing Data Analysis

▪ Statistics can be helpful

▪ Minimum, maximum

▪ Mean: sum total time and divide by 

number of measurements

▪ What if the max time is much larger 

than the mean time?

#define MIN(a,b)    (((a)<(b))? (a):(b))
#define MAX(a,b)    (((a)>(b))? (a):(b))
#define NUM_TESTS   (300)

unsigned long t=0, min, max;
float sum=0.0;
min = 0xffffffffl;
max = 0;
for (i=0; i<NUM_TESTS; i++) {

Clear_Ticks();
f = tan(i/100.0);
t = Get_Ticks();
min = MIN(t, min);
max = MAX(t, max);
sum += t;

}
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Histogram Shows Distribution of Execution Times

▪ Horizontal axis: range of values of measured variable (bins)

▪ Vertical axis: number of times (frequency) variable had that 

value

#define HIST_SIZE 10

int hist[HIST_SIZE];

for (i=0; i<HIST_SIZE; i++)

hist[i] = 0;

for (i=0; i<300; i++) {

Clear_Ticks();

f = sqrt(i/100.0);

t = Get_Ticks();

min = MIN(t, min);

max = MAX(t, max);

n = (unsigned) (t/250);

hist[min(n, HIST_SIZE-1)]++;

}

Measured Value

C
o
u
n
t
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Code Coverage of Test Cases

▪ Did all the code run in the tests?

▪ Code coverage:  Which basic blocks were 

executed

▪ A basic block which wasn’t executed… 

▪ Isn’t included in the test, increasing the odds 

that the timing measurement is too low

▪ Measure code coverage

▪ Try to ensure that all basic blocks are executed 

at least once

▪ Some tools measure code coverage

▪ 100% code coverage still doesn’t consider 

everything

▪ Loop iteration counts of 1 and 1,000 have same 

100% code coverage



27

Real-World Timing Analysis Complications

▪ Disruptions to task timing measurements 

▪ Handling interrupts

▪ DMA transfers

▪ Task preemption 

▪ Other kernel activities

▪ Need to stabilize timing to improve 

accuracy

▪ Interrupts

▪ If possible, disable interrupts

▪ Else measure time used by interrupts and 

subtract from task timing measurement. 

▪ Consider kernel activities triggered by 

interrupts

▪ DMA transfers

▪ If possible, disable DMA transfers

▪ Else measure time used by DMA transfers and 

subtract. 

▪ Task preemption

▪ Each preemption (and resumption) introduces 

two context switches and scheduler overhead

▪ Disable preemption of task to measure

▪ Lock scheduler when task starts running (if no 

blocking possible)

▪ Give task the highest priority

▪ Configure scheduler to use non-preemptive 

scheduling

▪ Other kernel activities? 
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“OPTIMIZING” RESPONSE TIME
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Evaluating Responsiveness

▪ Assumption

▪ ISR or task signals next task after its critical work is completed

▪ Three important types of critical path

▪ T1: From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.

▪ T2: From ISR to user task running and completing critical work. Uses OS signaling.

▪ T3: From one user task to another user task running and completing critical work. Uses OS signaling.

Time

Interrupt

Task_2

T1ISR

T2
Task_1

T3
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Approaches to Improving Responsiveness

▪ Use ISRs better

▪ Move critical work in – faster response

▪ Move non-critical work out – less blocking

▪ Improve task scheduling

▪ Add task prioritization

▪ Change task priorities (utilization vs. 

responsiveness) 

▪ If non-preemptive, break long tasks into states 

with FSM

▪ Add preemption

▪ Use RTOS better

▪ Consider how to use faster or fewer services

▪ Minimize blocking and interrupt lock-out 

time

▪ Shorten critical sections

▪ Use mutexes, priority ceiling protocol

▪ Disable the fewest interrupts for the least time

▪ Tolerate bad responsiveness by buffering 

data

▪ Use hardware better

▪ DMA transfer

▪ Special peripheral features (ADC averaging, 

windowed interrupts, I2C address match, etc.)

▪ Inter-peripheral communications (core-

independent peripherals)
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REDUCING BLOCKING DELAYS
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▪ Example: Two tasks can access SD card via SPI

▪ Possible failure:

▪ Task 1 starts reading data from SD card block N but is 

switched out by scheduler before finishing

▪ Task 2 starts writing new data to SD card block M

▪ Scheduler switches out Task 2 to run Task 1

▪ Task 1 resumes reading from SD card, sending 0xFF to clock 

out data. SD Card interprets 0xFF as data to write to block M.

▪ Task 1 finishes and is switched out

▪ Task 2 resumes and tries to complete by writing rest of data, 

but will not succeed.

▪ Result: Task 2’s SD card block is corrupted, with some blocks 

overwritten by 0xFF. And SD card controller is probably stuck.

Preemption and a Peripheral: SPI and a µSD Card

Preemption gives interleaved task execution

??

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M
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▪ Simple solution: Don’t let any tasks preempt each other

▪ Disadvantage: All higher priority tasks have to wait longer and finish 

later

▪ Slightly better solution: Don’t let tasks which might use the SD 

Card preempt each other

▪ Disadvantage: Higher priority tasks which use SD Card have to wait 

longer and finish later

▪ Better solution: Let tasks preempt each other, but they must yield 

control sometimes when sharing using the SD Card

▪ If gold task wants to use SD Card now and it preempted blue task 

when it was using the SD Card, let blue task finish using the SD Card, 

and then let gold task use the SD Card

▪ Higher priority tasks finish sooner, as we want

Improving Responsiveness for SPI and SD Card

SD

S D

SD

SD

SD

SD
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Low

High
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▪ SD_mutex is initially unlocked

▪ Task 1 locks SD_mutex

▪ Task 1 starts updating SD card

▪ Task 2 preempts Task 1, starts running

▪ Task 2 tries to lock SD_mutex but fails and blocks

▪ Scheduler switches back to Task 1

▪ Task 1 finishes updating SD card

▪ Task 1 unlocks SD_mutex

▪ Scheduler switches context to Task 2

▪ Task 2 locks SD_mutex

▪ Task 2 updates SD card

▪ Task 2 unlocks SD_mutex

▪ Task 2 completes and blocks

▪ Task 1 finishes other (non-SD Card) work

Solution: Task Locks Resource(s) When in Use

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

SD Card SD_mutex
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ANALYZING PRIORITY INVERSION
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Task Interactions and Blocking

▪ “No task is an island, entire of itself”

▪ Basic model assumes tasks are completely 

independent -- very limiting!

▪ Real tasks may interact (signaling events, 

sharing data)

▪ Mutex, semaphore, message, event flag…

▪ Blocking may interfere with priorities
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M

Priority Inversion

1. Low priority task L is running and locks 

resource R

2. Medium priority task M preempts L

3. High priority task H preempts M

4. Task H requests resource R, so it blocks 

and M resumes. L resumes after M.

5. Task H’s priority has effectively fallen to 

below that of task L 

▪ H will not get the resource and resume 

execution until L releases R, which is after

M finishes

Red line shows response time for task H

L

M

H

L

H

1

2

3 4

5

R

R

L
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Solutions to Priority Inversion

▪ Solutions – temporarily raise priority of lower-

priority task

▪ Priority Inheritance

▪ Priority Ceiling

▪ Response time for task H is shortened and only 

depends on critical section duration of resources 

shared with lower-priority tasks

▪ RTOS mutexes typically use Priority Inheritance

▪ CMSIS-RTOS2 supports Priority Inheritance Protocol, 

include osMutexPrioInherit in attr_bits

M

L

M

H

L

H

1

2

3 4

5

R

R

L

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga40fba270cb31a977b3bd551d41eb9599
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▪ Task p (e.g. L) holding resource k … 

▪ temporarily inherits priority …

▪ of highest-priority task q (e.g. H) currently blocking 

on resource k … 

▪ (if higher than own priority)

▪ Blocking time: time which a task waits for a lower-priority task
▪ Bound (limit): 

▪ K = number of resources

▪ usage(k,i) = 1 if resource k is used by at least one process with priority < Pi and at least one process with 

priority >= Pi

▪ Cj CritSect k = worst-case execution time of task j’s critical section for k

▪ Updated response time algorithm

▪ Problems: allows deadlock, is pessimistic, and allows chains of transitive blocking

Timing Analysis of Priority Inheritance

𝐵𝑖 = ෍

𝑘=1

𝐾

𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖) 𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘

𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑇𝑗

𝐶𝑗

Time

T
as

k
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▪ Task p (e.g. L) holding resource k…

▪ temporarily inherits priority… 

▪ of highest-priority task which could possibly block 

on that resource… (e.g. H) …

▪ (if higher than own priority) 

▪ Improvements

▪ A high-priority task can be blocked at most once during its execution by a lower-priority task

▪ Deadlocks and transitive blocking are prevented

▪ Mutual exclusive access to resources is ensured

▪ Immediate Ceiling Priority Protocol:

▪ Assign each process a static default priority

▪ Assign each resource a static ceiling value = max priority of processes which may use it

▪ Process’s dynamic priority = max(static priority, static ceiling value of any of its locked resources)

▪ Blocking: 

▪ Implemented as Priority Protect Protocol in POSIX, Priority Ceiling Emulation in Real-Time Java

Timing Analysis of Priority Ceiling

𝐵𝑖 = max∀𝑘 𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖)𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘

Time
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Fixed vs. Dynamic Task Priorities

▪ Fixed priority scheduling suffers priority 

inversion, while EDF suffers deadline 

inversion

▪ EDF has dynamic priority relationships 

since they depend on deadlines and hence 

release times. Need to analyze entire 

hyperperiod!

▪ Stack Resource Protocol (Baker) works for 

EDF

▪ Assign each task a static preemption level based 

on deadline 

▪ Assign each resource a ceiling based on 

maximum preemption level of tasks which use it

▪ Upon release, a task can only preempt the 

current task if its deadline is shorter and its 

preemption level is higher than all currently 

locked resources

▪ Behaves same as ICPP
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TOLERATING DELAYS BY 

BUFFERING DATA
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Double Buffering (Ping-Pong Buffers) for DMA + DAC Output

▪ Add second buffer

▪ Alternate between two buffers

▪ Write to red while reading from green

▪ Write to green while reading from red

▪ Deadline is now TSample*(Buffer Size + 1), 

was TSample before

▪ Need to preload first buffer with data 

before starting output playback

DMA

DAC
Refill 

Sound 

Buffer

DMA 

IRQ 

Handler
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Generalizing Data Buffering to Tolerate Delayed Response

▪ Buffer size required depends on multiple factors

▪ How quickly can input data arrive?

▪ Periodic? Data arrival rate

▪ Aperiodic? Minimum inter-arrival period

▪ Burst lengths?

▪ How quickly can data be processed?

▪ Constant time?

▪ May depend on data itself 

▪ How long can data processing task be delayed?

▪ Scheduler: evaluate worst-case response time of 

processing task. Depends on priority and blocking.

▪ So, how much buffer space is needed?

▪ Worst case? Consider extremes

▪ Probabilistic? Consider distributions apply queueing 

theory

Data Arrivals

Data Processing

Buffer Used
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SCHEDULABILITY AND TIMING ANALYSIS 

FOR NON-PREEMPTIVE SYSTEMS
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Why Consider Non-Preemptive Scheduling?

▪ Much easier to write and debug 

scheduler

▪ No need for context switches

▪ Less RAM required for call stacks

▪ Nonpreemptive – just need enough space 

for worst-case stack of any one task

▪ Preemptive scheduling – need enough 

space for worst case stacks of all tasks 

simultaneously

▪ However, tasks must be designed 

without blocking operations. Use FSM

Non-preemptive 
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Changing to Non-Preemptive Scheduling

▪ Fewer scheduling points (where scheduler 

can run a different task) 

▪ After task completes, blocks or yields.

▪ Interrupts still work, but they can’t trigger 

context switches.

▪ More blocking and priority inversion likely

▪ What if the longest task has just started 

running? We can’t preempt it.

▪ Worse responsiveness, so less attractive 

for research, and less understood
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Idling and Non-Idling Schedulers

▪ Add idle time?

▪ Lack of preemption means we might be able to 

improve the schedule by inserting a little bit of 

idle time at just the right times. 

▪ Finding just the right times is a very difficult 

problem mathematically (NP-complete)

▪ So we will only consider non-idling 

schedulers – feasible but generally not optimal

▪ Slight change in time frame to examine

▪ With task preemption possible, examine what 

happens from task ti release until it finishes 

executing

▪ Task ti can’t be preempted,  so examine what 

happens before release until it starts 

executing
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Optimal Non-Idling Priority Assignments

▪ Dynamic priority

▪ General case: EDF is optimal for all task sets 

(deadlines not related to periods)

▪ Fixed priority

▪ General case: Can compute an optimal 

priority assignment using Audsley’s method 

(O(n2))

▪ Di ≤ Ti: Deadline monotonic is no longer optimal 

without preemption

▪ Di ≤ Ti and Di < Dj => Ci ≤ Cj : Deadline 

monotonic is still optimal without preemption if 

for all pairs of tasks i and j, task i with the 

shorter deadline does not require more 

computation than task j
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Schedulability Tests

▪ Dynamic priority

▪ D=T: No utilization-based test, but an exact 

(necessary and sufficient) analytical test exists

▪ General case: No utilization-based test, but an 

inexact (sufficient but not necessary) analytical 

test exists

▪ Fixed priority

▪ No utilization-based test exists

▪ So, must calculate worst-case response time for 

each task and verify all deadlines are met



51

Worst-Case Response Time Analysis

▪ Dynamic priority

▪ Start with analysis for preemptive case, considering all possible releases over hyperperiod

▪ Also consider that:

▪ A task with a later deadline could cause deadline inversion (~priority inversion)

▪ Analysis focuses on time before task execution start, not completion

▪ Fixed priority

▪ General case: similar to preemptive case, but also include blocking Bi from longest lower-priority task
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Recent Work Simplifying Analysis

▪ If I switch to a non-preemptive scheduler, how 

much faster must the computer run to meet all 

its deadlines?

▪ Speed-up factor = S = Timeold/Timenew

▪ 1x = no speed-up

▪ “We derive the exact processor speed-up factor 

S required to guarantee the feasibility under FP-NP 

(i.e. schedulability assuming an optimal priority 

assignment) of any task set that is feasible under 

EDF-P.”

▪ “We derive the exact speed-up factor required to 

guarantee the FP-NP feasibility of any FP-P feasible 

task set.”

▪ “Further, we derive the exact speed-up factor 

required to guarantee FP-P feasibility of any 

constrained-deadline FP-NP feasible task set.”

Fixed Priority Dynamic Priority

N
o 
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m
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m
p
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1. Comparing Fixed vs. Dynamic Priority (EDF)

▪ Dynamic priority dominates fixed priority. Dynamic (EDF) can 

always schedule a workload which is feasible with fixed priority 

tasks.

Di = Ti

Di ≤Ti
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2. Comparing Dynamic Preemptive (EDF-P) with Non-Preemptive

▪ EDF-P dominates non-preemptive approaches. EDF-P can always 

schedule a workload which is feasible with non-preemptive 

approaches (fixed or dynamic task priority).

Di = Ti

Di ≤Ti
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Understanding the CMax/DMin Term

Time

i

Exec. 

Time 

Ci

Deadline  

Di

Sped-Up 

Exec. Time 

Ci/S

I 9 17 1.937

2 42 72 9.04

3 45 88 9.7
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Comparing Preemption for Fixed Priority Tasks

▪ There is no dominance relationship between preemptive and 

non-preemptive fixed priority tasks

Di = Ti

Di ≤Ti

Di = Ti

Di ≤Ti
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▪Giorgio C. Buttazzo, Hard Real-Time 

Computing Systems: Predictable 

Scheduling Algorithms and Applications, 

Third Edition, Springer, ISSN 1867-321X, e-

ISSN 1867-3228

Recommended Further Reading
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Closing Comment: Schedulability Tests and Automotive Applications
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Examining Times for RTXv5 Activities

▪ You’ll measure these times in Lab

Handler 
(DMA IRQ)

Thread A 
(e.g. Idle)

Thread B 
(e.g. Refill 

Sound 
Buffer)

TCSP Context Switch 
from Preemption

TR Thread 
resume

TS Thread 
suspend

TCSB Context Switch 
from Blocking

TR Thread 
resume

TS Thread 
suspend

THTTCS Handler to 
Thread with Context 

Switch

TR Thread 
resume

TTTH Thread 
to Handler

THTT Handler to 
Thread (no 

Context Switch)
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