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EXAMINING OUR SIMPLIFICATIONS
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A Closer Look at Our Assumptions - w%[ca)*_>
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" How close is the edge!? = Constant task execution time C.
= Assumed no overhead 2 = If range of times possible, use largest for safety
= Instant switching to/from interrupt handler * What if average is much shorter?
= Ignores register stacking, vector fetching = Still need processor fast enough for worst case
= Could add in 15 cycles to each C,z = Processor will have lots of idle time. Could have

) bought something slower and cheaper.
= Instant context switch C., ...csnirch = O 8 5 P

= Task state must be saved and restored = Constant task release PeriOd ]7
= Could estimate a bound for number of context = If range of periods possible, model 7. =
switches, add in n*C_,,exswircn SOMeWhere min( 7, ,erarrival i
= |Instant scheduling decision. = Again is pessimistic — designs for worst-case.
= EDF requires sorted list of ready tasks. Safe but may be wasteful.
= Other OS activities take no time = Single CPU

= Multiprocessor scheduling extensions exist
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ANALYSIS OF ISRAND KERNEL
OVERHEADS
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ISR Latency Times

= These take non-zero time = Cortex-M improvements
= Delay response = Tail-Chaining
= Reduce available CPU time for application, = For back-to-back exceptions: skip state restore
especially for high-frequency interrupts (Pop 8 registers) and save (push 8 registers)

= ISR/Exception handler latency

= Hardware activities o
= Save some state by stacking 8 registers * Late-Arriving Interrupts
= Stacked registers: RO-R3,R12, LR, PC, xPSR = First interrupt request arrives, hardware starts

= 8 cycles stacking registers

= Higher-priority interrupt arrives while stacking
registers,

= Fetch interrupt vector from table
= Fetch first instruction of interrupt handler
= For Cortex MO+ in KL25Z, typically takes 15

cycles from request to It instruction in
handler/ISR

= At 48 MHz, this is about 313 ns

= Fetch higher-priority interrupt’s vector (not first
interrupt’s)

= First interrupt will be handled after higher-priority
interrupt completes



T¢ Time to suspend thread

RTOS Overhead, Including Context Switch Times
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* Will measure in lab using thread visualizer and logic analyzer

= Thread visualizer code switches GPIOs

= Suspend thread: preemption

= Suspend thread: blocking

= Resume thread

= |dle thread toggles own output
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Assemble Times for RT Xvb Activities
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ESTIMATING
WORST-CASE EXECUTIONTIME



Task Execution Time

" We need task execution time C. to
analyze response time and schedulability

= What aspects of execution time do we
care about?
= Average — what’s the typical performance?
= Worst-case — must meet deadlines

= Best-case — too fast might cause race
conditions or other problems

= Distribution and variability
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= Sources of execution time variations

= Software

= Different input data may trigger different
control flow behavior

= Non-trivial software leads to state-space
explosion

= Hardware

= Instruction execution times may depend on
data

= DMA activity may slow or delay task execution
= Pipelines may stall

= Branch target buffers may miss

= Caches may miss

= Non-trivial hardware leads to state-space
explosion
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Basic ldeas

Correct
Better Experimental Measurements WCET Better Static Timing Analysis
Ci
Py
E
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Execution Time
= Consider task’s possible execution time = Experimental approach
= Need WCET (worst-case execution time) for = Measures actual code execution time for that input
scheduling analysis data

= Analytical approach (prediction) * May not be worst-case

= Series of worst-case assumptions leads to WCET
overestimate

= So usually is an underestimate of WCET
= Improve estimate by adding more test cases

= Better analysis may rule out impossible cases,
tightening estimate
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STATICTIMING ANALYSIS
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Static Analysis: Predicting Task Execution Time

= "Prediction is extremely difficult. Especially = Recall sources of timing variations

about the future.” = Software

— Niels Bohr = Different input data may trigger different control
flow behavior

= Non-trivial software leads to state-space

* Prediction Techniques explosion
= Manual estimate based on databook = Hardware
= Use a processor simulator = Instruction execution times may depend on data

= Measure a real system = DMA activity may slow or delay task execution

H M ° u Po |. II
= System is built of abstractions ipelines may sta

= containing abstractions...
= containing abstractions...

= Branch target buffers may miss
= Caches may miss

= Non-trivial hardware leads to state-space

. . : .
containing abstractions... explosion

= containing abstractions...
containing abstractions...
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Examining Object Code

* High-level languages hide implementation details
= This abstraction obscures what assembly code will be generated for a C statement,
and how long it will take to execute
= a = b*c[i+]] depends on
= data types of a, b, ¢, i, j:int? float? double? long?

= |nstruction Set Architecture (ISA) and MCU implementation
= multiply instruction for the data type
= advanced addressing modes suitable for array indexing

= Examining the object code generated by the compiler is the only way to get an

accurate picture of what will happen
= |t gets ugly very quickly (“does not scale well”)

= Use representations which reflect program structure in order to simplify the analysis
= BTW, compilers and other tools use these representations to analyze and optimize the
code automatically
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How Long Do Instructions Take on the Cortex-M0+?

= Details in Cortex-MO+ Technical Reference = Conditional branch

Manual (DDI0484B) = Not taken: | cycle
= Taken: 2 cycles

= Other branches
= Unconditional, exchange, link & exchange: 2
cycles
= Link: 3 cycles

= Read and write special registers

= Most instructions take | cycle

" Loads and stores
= | cycle: to single-cycle 1/O port (FPT)
= 2 cycles: to AHB interface or SCS
= |+N cycles: load multiple, store multiple, push,

pop (N registers) " 3 cycles
= Any instruction writing to PC * Multiply
= 2 Cycles = | or 32 cycles, depending on type of

multiplier in CPU
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Control Flow Graphs and Call Graphs

\ /
= Control flow graph (CFG) [ _timeﬂ'_&sr
= A flow chart which shows the execution sequence of the =
program (LO _time I:D'I sr_0

= Each node is a basic block (sequence of instructions, \/

potentially with conditional jump at end) v
= Create one CFG per subroutine or interrupt service < retara
routine

\% /',_{ { jTSQ‘ ‘ .
= Call graph == LETH

/\
= A hierarchical (tree) form which shows the nesting o W

SEUbEOUtEe,CaIIS brouti Init_MCuU Read_ Process | |Refresh_
ach node is a subroutine | S e R [ Display
= Going down an arrow indicates calling a subroutine
= Going up an arrow (backwards)

indicates returning from that subroutine Linearize .| Resample

= Create one call graph per program
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CFG Formation Rules

= A CFG consists of basic blocks (BB) joined by directed edges

= Basic block: a sequence of consecutive instructions such that each instruction is executed
exactly once if the basic block is executed.
= This implies
= the flow of control begins at the entry and leaves at the exit

= there is no conditional branching except potentially at the end.
= no instructions can be skipped within a basic block

= conditional branch (+skip) instruction effectively ends the basic block
= a jump/branch into a BB will split it into two
= a subroutine call ends the basic block
= Relationships with other BBs
= Predecessors: all basic blocks which can execute immediately before the given basic block.
= Successors: all basic blocks which can execute immediately after the given basic block.
" For our purposes, a new label starts a new basic block (except in the case of

consecutive labels, in which case the basic block is assigned the first label).
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Call Graph Details

= Each subroutine is represented by a node
= Each potential call from subroutine A to B is represented by a directed edge from A to B

= Each ISR has a node, but it is not called by any other code (except if software interrupts
are supported)

= Operations not supported by ISA (e.g. modulo (%)) may be implemented with
subroutine linked in from a C library, leading to a deeper call graph than expected



Static Timing Analysis Procedure

= Compile source code Q{P\
= Examine assembly code @(\m
* Form basic blocks

* Form control flow graph from basic blocks

* Determine duration per basic block by
adding instruction durations
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1l
ACTy B
= Evaluate paths through function

= Best and worst-case times for function

= Deal with control-flow complexity

= For code in conditional region (if-then-else),

= If control-flow path is known, calculate exact time
for path

= |If control-flow path is unknown, bound the time:
choose the larger time for WCET, the smaller for
BCET
= For code in loop, use the exact number of
iterations (if known) or else try to derive a bound
(minimum and maximum)



Static Timing Analysis of SIMD-Optimized Write Pixels Function

void LCD Write Rectangle N Quad Pixel Components( o o
uint32_t_* aR,_uintszit * aG, uIntsz_E * EB, u Stal’t Wlth CFG Of funCtlon (e.g. from
int32_t n) {

uint8 t bl, b2;

uint8_t i;

uint32_t R, G, B, GH, GL, W1, W2;

Ghidra)

= Function behavior
= Loop

= Load R, G and B data (8:8:8) for four consecutive
pixels

= Mask off extra RGB bits (3:2:3)
= Pack into words W1,W2 (5:6:5)
" Loop
= Select bytes bl, b2 from W1,W2
= Write bl, b2 to LCD controller

e ]

do {
R = *aR++;
G = *aG++;
B = *aB++;

R &= 0xf8f8f8f8;

GH = (G&0xe0e0e0e0)>>5;
GL = (G&0Oxlclclclc)>>2;
B = (B&0xf8f8f8f8)>>3;

Wl = R | GH;

2 =GL | B;

for (i=0; i<4; i++) {
bl = Wl & 0x000000ff;
b2 = W2 & 0x000000ff;
LCD 24S Write Data(bl);
LCD 24S Write Data(b2);
Wl >>= §8;
W2 >>=

o |
Ne N

}
while
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Static Timing Analysis of SIMD-Optimized Write Pixels Function

= First impressions
* Inner loop dominates execution time: ~19 cycles
per pixel
= QOuter loop: additional ~38 cycles per four pixels
— 8.5 cycles per pixel
= Execution cycle count model:
= n =argument. Number of pixels/4
= C=16+n*(31+4*18+ (4-1)*146) + (n-1)*1 + 7
= C=23+n*(112)+(n-1)
= C=22+113*n
= At 48 MHz, t = 0.458 ps + n*2.354 ps

= |s this accurate? Must verify by measuring
real system.

20

|[BE6B636 ~1cD_Write_Rectangle_N_Qusd_pixel_Compo .. i * s 71
oid __stdcall LCD_Write Rectangle N Quad i

16 cycles

31 cycles
1 cycle. Branch
18 cycles taken on all but
last iteration of
— inner loop.
6 cycles iz i |
ez et.. 1 cycle. Branch taken

of outer loop.
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EXPERIMENTAL TIMING ANALYSIS



Time Measurement Methods

= Use analysis tools

= Logic analyzer or oscilloscope looks for special
events (e.g. on debug pins)

= Set up GPIO port to set output bit upon entering
routine, clear it upon exiting

= [nstruction trace

= Search for start and end addresses of task in
instruction trace

= Calculate time based on when those instruction
addresses were executed

= Some Cortex-M CPUs provide compressed
instruction trace on SWV

22
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= Use code to read high-resolution timer in
MCU
= Configure as cycle counter

= Can select prescaled clock source if needed to
increase time range

= Make its ISR increment a counter variable
(volatile!) when it overflows



Repeatability

IR 5
ﬁLt__%ED

" How good are your measurements?

* Does the same input lead to the same
output, or are other factors in the
system affecting the computation?

23

min
max
for
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OXFFFFFFFFl;
O-

(1=0; 1<3000; i++) {

Clear_Ticks();
sqrt(37/100.0);
Get_Ticks(Q;

MINCt, min);
MAX(t, max);



Timing Data Analysis

} =
i | I

= Statistics can be helpful
= Minimum, maximum

= Mean: sum total time and divide by
number of measurements

* What if the max time is much larger
than the mean time?

24

#define
#define
#define
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MIN(a,b) (C(Ca)<(b))? (a):(b))
MAX(a,b) (C(Ca)>(b))? (a):(b))
NUM_TESTS (300)

unsigned long t=0, min, max;

float
min =
max =

sum=0.0;
Oxffffffffl;
O.

for (i=0; i<NUM_TESTS: i++) {
Clear_Ticks(Q);

tan(i/100.0);

Get_Ticks(Q);

= MIN(t, min);
= MAX(t, max);
+= T;



Histogram Shows Distribution of Execution Times

#define HIST_SIZE 10
int hist[HIST_SIZE];
for (i=0; i<HIST_SIZE; i++)
hist[i] = O;
for (i=0; 1<300; i++) {
Clear_Ticks(Q);
f = sqrt(i/100.0);
t = Get_Ticks(Q);
min = MIN(t, min);
max = MAX(t, max);
n = (unsigned) (t/250);
Measured Value hist[min(n, HIST_SIZE-1)]++;
= Horizontal axis: range of values of measured variable (bins)  }

Count

= Vertical axis: number of times (frequency) variable had that
value

25
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Code Coverage of Test Cases e

= Did all the code run in the tests!? = Measure code coverage
= Code coverage: Which basic blocks were = Try to ensure that all basic blocks are executed

executed at least once

= Some tools measure code coverage

= |00% code coverage still doesn’t consider

= A basic block which wasn’t executed...

= Isn’t included in the test, increasing the odds .
that the timing measurement is too low everything
= Loop iteration counts of | and 1,000 have same
100% code coverage

26
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Real-World Timing Analysis Complications

= Disruptions to task timing measurements = DMA transfers

= Handling interrupts = If possible, disable DMA transfers
= DMA transfers = Else measure time used by DMA transfers and
= Task preemption subtract.
= Other kernel activities = Task preemption
* Need to stabilize timing to improve = Each preemption (and resumption) introduces

accuracy two context switches and scheduler overhead

= Disable preemption of task to measure

" Interrupts o
= Lock scheduler when task starts running (if no

= If possible, disable interrupts blocking possible)
= Else measure time used by interrupts and = Give task the highest priority

subtract from task timing measurement. = Configure scheduler to use non-preemptive
= Consider kernel activities triggered by scheduling

interrupts = Other kernel activities?

27
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“OPTIMIZING” RESPONSE TIME
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Evaluating Responsiveness

Interrupt

B
ISR — L

A 4

Task 1 - >

Task 2

A\ 4

v

Time

= Assumption
= ISR or task signals next task after its critical work is completed
= Three important types of critical path
= T,:From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.
= T,:From ISR to user task running and completing critical work. Uses OS signaling.
= T;: From one user task to another user task running and completing critical work. Uses OS signaling.

29
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Approaches to Improving Responsiveness

= Use ISRs better = Minimize blocking and interrupt lock-out
= Move critical work in — faster response time
= Move non-critical work out — less blocking = Shorten critical sections
* Improve task scheduling = Use mutexes, priority ceiling protocol
= Add task prioritization = Disable the fewest interrupts for the least time
= Change task priorities (utilization vs. = Tolerate bad responsiveness by buffering
responsiveness) data

= If non-preemptive, break long tasks into states
with FSM

= Add preemption
= Use RTOS better

= Consider how to use faster or fewer services

= Use hardware better
= DMA transfer

= Special peripheral features (ADC averaging,
windowed interrupts, I?C address match, etc.)

* Inter-peripheral communications (core-
independent peripherals)

30
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REDUCING BLOCKING DELAYS
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Preemption and a Peripheral: SPl and a uSD Card

Preemption gives interleaved task execution

= Example: Two tasks can access SD card via SPI

Block N = Possible failure:
Block M i = starts reading data from SD card block N but is
switched out by scheduler before finishing

Block N = Task 2 starts writing new data to SD card block M
Block M F = Scheduler switches out Task 2 to run

- resumes reading from SD card, sending OxFF to clock
Block N | out data. SD Card interprets OxFF as data to write to block M.
Block M [N i finishes and is switched out

= Task 2 resumes and tries to complete by writing rest of data,
Block N but will not succeed.
Block v NN = Result:Task 2’s SD card block is corrupted, with some blocks

a

overwritten by OxFF. And SD card controller is probably stuck.

32
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Improving Responsiveness for SPl and SD Card

High 4" . .
E‘ J = Simple solution: Don’t let any tasks preempt each other
2 = Disadvantage: All higher priority tasks have to wait longer and finish
al later

Low

= Slightly better solution: Don’t let tasks which might use the SD
Card preempt each other

= Disadvantage: Higher priority tasks which use SD Card have to wait
longer and finish later

= Better solution: Let tasks preempt each other, but they must yield

control sometimes when sharing using the SD Card
F = |If gold task wants to use SD Card now and it preempted blue task
when it was using the SD Card, let blue task finish using the SD Card,
I and then let gold task use the SD Card
= Higher priority tasks finish sooner, as we want

33
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Solution: Task Locks Resource(s) When in Use

Block N
Block M

Block N
Block M

Block N
Block M

Block N
Block M

34

SD Card SD mutex

M

m = SD_mutex is initially unlocked
= Task | locks SD_mutex

= Task | starts updating SD card

m = Task 2 preempts Task |, starts running
x<_.— = Task 2 tries to lock SD_mutex but fails and blocks
= Scheduler switches back to Task |

= Task | finishes updating SD card

m = Task | unlocks SD_mutex

= Scheduler switches context to Task 2
= Task 2 locks SD _mutex
- _ = Task 2 updates SD card

= Task 2 unlocks SD_mutex

= Task 2 completes and blocks
= Task | finishes other (non-SD Card) work




NC STATE UNIVERSITY

ANALYZING PRIORITY INVERSION



Task Interactions and Blocking

= “No task is an island, entire of itself”

= Basic model assumes tasks are completely
independent -- very limiting!

= Real tasks may interact (signaling events,
sharing data)

= Mutex, semaphore, message, event flag...

= Blocking may interfere with priorities

36

NC STATE UNIVERSITY




NC STATE UNIVERSITY

Priority Inversion

L=

|. Low priority task L is running and locks 5. Task H’s priority has effectively fallen to
resource R below that of task L

2. Medium priority task M preempts L = H will not get the resource and resume

3 High priority task H preempts M execution until L releases R, which is after
' M finishes

4. Task H requests resource R, so it blocks Red line shows response time for task H
and M resumes. L resumes after M.
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Solutions to Priority Inversion

................................................................ ’
4 H .
= Solutions — temporarily raise priority of lower- = RTOS mutexes typically use Priority Inheritance
priority task = CMSIS-RTOS2 supports Priority Inheritance Protocol,
[ Priority Inheritance include OSMUteXPriOInherit in attr_bits
= Priority Ceiling const osMutexAttr t Thread Mutex attr = {
. . "myThreadMutex", // human readable mutex name
= Response time for task H is shortened and only osMutexPrioInherit, // attr_bits
d d itical . d . f NULL, // memory for control block
epends on critical section duration of resources =) 77 size for comtrol block

shared with lower-priority tasks ¥

38


https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga40fba270cb31a977b3bd551d41eb9599
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Timing Analysis of Priority Inheritance

>N
Rt
= Task p (e.g.L) holding resource k ... 5
= temporarily inherits priority ... a

Q.

kY

<

=

= of highest-priority task g (e.g. H) currently blocking
on resource k ...

= (if higher than own priority)

= Blocking time: time which a task waits for a lower-priority task Time
= Bound (limit): K

B; = usage(k,i) Cj critsect k
k=1

= K = number of resources
= usage(k,i) = | if resource k is used by at least one process with priority < P. and at least one process with
priority >= P.
® G crisect k = WOrst-case execution time of task j's critical section for k
= Updated response time algorithm

R;
Ri — Ci + Bi + z F C]
jerp ()
= Problems: allows deadlock, is pessimistic, and allows chains of transitive blocking

39
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Timing Analysis of Priority Ceiling

foy I
= Task p (e.g. L) holding resource k... 5 , !
= temporarily inherits priority... o I :
= of highest-priority task which could possibly block _'8 : :
on that resource... (e.g. H) ... 4 + -
= (if higher than own priority) = Time

* Improvements
= A high-priority task can be blocked at most once during its execution by a lower-priority task
= Deadlocks and transitive blocking are prevented
= Mutual exclusive access to resources is ensured
* Immediate Ceiling Priority Protocol:
= Assign each process a static default priority
= Assign each resource a static ceiling value = max priority of processes which may use it
= Process’s dynamic priority = max(static priority, static ceiling value of any of its locked resources)

B; = maxyy (usage(k, i)Cj CritSect k)

= Implemented as Priority Protect Protocol in POSIX, Priority Ceiling Emulation in Real-Time Java

= Blocking:

40
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Fixed vs. Dynamic Task Priorities

* Fixed priority scheduling suffers priority = = Stack Resource Protocol (Baker) works for

inversion, while EDF suffers deadline EDF
inversion = Assign each task a static preemption level based
on deadline

= Assign each resource a ceiling based on

* EDF has dynamic priority relationships maximum preemption level of tasks which use it

since they depend on deadlines and hence - Upon release, a task can only preempt the
release times. Need to analyze entire current task if its deadline is shorter and its

hyperperiod! preemption level is higher than all currently
locked resources

= Behaves same as ICPP

41
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TOLERATING DELAYS BY
BUFFERING DATA
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Double Buffering (Ping-Pong Buffers) for DMA + DAC Output

a._-?—-‘—
\\ ; __
’D\'\P\@i‘) ._.__._.—.
vp\ ._‘—-._*—
._"h-
! holds ., ! Tty !
DHC oldf Dea)l‘acﬁ
otpd Reé\%ﬁr £l Fest

G “ Sa e \©n
release ref red buffer
{ ('feb W‘- .
ai) shact Tawe @UFQ(SLZ&Q

(§ “cvai
read g
9(‘66‘\ \)L;QQV n,\% \M§
—
= Add second buffer * Deadline is now Tg, . *(Buffer Size + 1),
= Alternate between two buffers was T, before
= Write to red while reading from green = Need to preload first buffer with data

= Write to green while reading from red before starting output playback
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Generalizing Data Buffering to Tolerate Delayed Response
-
Data Arrivals ——4— ““H;l;'lﬁ T R
r’fj
= -
Data Processing ~~c~oooAe V\/\/WMJ—mevw«ﬂrl—ﬂ

)DAﬂf €> p\“ﬁ‘\ jolZ 9fﬁ“> }f op()sjec}

= Buffer size required depends on multiple factors = How long can data processing task be delayed?

WIS

Buffer Used

* How quickly can input data arrive!? = Scheduler: evaluate worst-case response time of
= Periodic? Data arrival rate processing task. Depends on priority and blocking.
= Aperiodic? Minimum inter-arrival period = So, how much buffer space is needed?
= Burst lengths? = Worst case! Consider extremes

= How quickly can data be processed? = Probabilistic? Consider distributions apply queueing

= Constant time? theory

= May depend on data itself

44
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SCHEDULABILITY AND TIMING ANALYSIS
FOR NON-PREEMPTIVE SYSTEMS



Why Consider Non-Preemptive Scheduling?

= Much easier to write and debug
scheduler
* No need for context switches

" Less RAM required for call stacks

= Nonpreemptive — just need enough space
for worst-case stack of any one task

= Preemptive scheduling — need enough
space for worst case stacks of all tasks
simultaneously

* However, tasks must be designed
without blocking operations. Use FSM

46

Non-preemptive
Dynamic

Task 2 Max Stack
Task 3 Max Stack
Task 4 Max Stack

_ |

Task 2 Statics
Task 3 Statics
Task 4 Statics

E JNIVERSITY

Task 3 Max St

Preemptive
Dynamic

Task 2

Task 2 Statics

Task 3 Statics
Task 4 Statics
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Changing to Non-Preemptive Scheduling

= Fewer scheduling points (where scheduler
can run a different task)
= After task completes, blocks or yields.

= Interrupts still work, but they can’t trigger
context switches.

= More blocking and priority inversion likely

= What if the longest task has just started
running? We can’t preempt it.

= Worse responsiveness, so less attractive
for research, and less understood

47



ldling and Non-ldling Schedulers

= Add idle time!?

= Lack of preemption means we might be able to
improve the schedule by inserting a little bit of
idle time at just the right times.

= Finding just the right times is a very difficult
problem mathematically (NP-complete)

= So we will only consider non-idling
schedulers — feasible but generally not optimal

= Slight change in time frame to examine

= With task preemption possible, examine what
happens from task t; release until it finishes
executing

= Task t; can’t be preempted, so examine what
happens before release until it starts
executing

48
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Optimal Non-Idling Priority Assignments

= Dynamic priority = Fixed priority
= General case: EDF is optimal for all task sets = General case: Can compute an optimal
(deadlines not related to periods) priority assignment using Audsley’s method
(O(n?)

= D, <T; Deadline monotonic is no longer optimal
without preemption

* D;<T;and D, < D; => C; < C;:Deadline
monotonic is still optimal without preemption if
for all pairs of tasks i and j, task i with the
shorter deadline does not require more
computation than task j

49



Schedulability Tests

= Dynamic priority
= D=T: No utilization-based test, but an exact
(necessary and sufficient) analytical test exists

= General case: No utilization-based test, but an
inexact (sufficient but not necessary) analytical
test exists

50
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= Fixed priority
= No utilization-based test exists

= So, must calculate worst-case response time for
each task and verify all deadlines are met
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Worst-Case Response Time Analysis

= Dynamic priority

= Start with analysis for preemptive case, considering all possible releases over hyperperiod
= Also consider that:

= A task with a later deadline could cause deadline inversion (~priority inversion)
= Analysis focuses on time before task execution start, not completion

* Fixed priority

= General case: similar to preemptive case, but also include blocking B, from longest lower-priority task

B, = max ; . fp{i){Cj}

q=0..9 je hp(i) I';

. B w. T
r; = max {w; .+ C;—qT;} where Wig = qCit Z { =
J
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Exact speedup factors and sub-optimality for

non-preemptive scheduling

Robert L. Davis'@ - Abhilash Thekkilakattil* - o

Oliver Gettings! - Radu Dobrin® - %z

Sasikumar Punnekkat® - Jian-Jia Chen® =~
@)
pd

= |f | switch to a non-preemptive scheduler, how

much faster must the computer run to meet all
its deadlines!?

= Speed-up factor =S =Time_,/Time,,

= Ix = no speed-up

= “We derive the exact processor speed-up factor

5

S required to guarantee the feasibility under FP-NP
(i.e. schedulability assuming an optimal priority

assignment) of any task set that is feasible under
EDF-P”

NC STATE UNIVERSITY

Fixed Priority Dynamic Priority
< )
O Dominance EDF-P
9 FP-P K——————— — — — — .
Q (Optimal)
5 |
0 -7 |
Q_ . e - |
Incomparability Dominance Dominance
c s d - :
2 P |
_g_ N
Domi
o FPNP k————— =" ___ EDF-NP
&

= “We derive the exact speed-up factor required to
guarantee the FP-NP feasibility of any FP-P feasible
task set.”

= “Further, we derive the exact speed-up factor
required to guarantee FP-P feasibility of any
constrained-deadline FP-NP feasible task set.”
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|. Comparing Fixed vs. Dynamic Priority (EDF)

(Optimal)

_ |
// I
= Dynamic priority dominates fixed priority. Dynamic (EDF) can -, S
- |
always schedule a workload which is feasible with fixed priority 7 :
tasks. FP-NP || Dominance EDF-NP

Table 1 Speedup factors for FP-P v. EDF-P and FP-NP v. EDF-NP

FP-P v EDF-P FP-NP v. EDF-NP
Task set class

Lower Bound | Upper Bound || Lower Bound | Upper Bound

1/in(2) ~ 1.44269
Cup of 617%

Implicit—deadline (LIU. and Layland 1973) 1/9 ~ 176322
D =T .
i I (D&ViS et al. 20093) (DaVlS et al. 2010)
~ (von der Bruggen et al. 2015)
Constrained-deadline 1/ Qm? }_F?gz?(%
D, <T, (Davis et al. 2009a)
2 2

Arbitrary-deadline

(Davis et al. 2015a) (Davis et al. 2015a)




2. Comparing Dynamic Preemptive (EDF-P) with Non-Preemptive

Dominance _
FP-P (——————— — — — — EDF-P
(Optimal)

= EDF-P dominates non-preemptive approaches. EDF-P can always  mompnbiy Dggfficc  Domffonce
schedule a workload which is feasible with non-preemptive
approaches (fixed or dynamic task priority). I FDFAP

Table 2 Speedup factors for FP-NP v. EDF-P and EDF-NP v. EDF-P

FP-NP v EDF-P EDF-NP v. EDF-P
Task set class

Lower Bound | Upper Bound | Lower Bound | Upper Bound

D =T
Implicit- deadhne<T' 14 :,,:::; 91 ,,;?:; ;
Constrained-deadline’ 1+ Dmin

Arbitrary-deadline 2 4 Dma:c

TrL 7 T2
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Understanding the C,.. /Dy, Term

NC STATE UNIVERSITY

Exec. Sped-Up
Time | Deadline | Exec.Time
i| cC D, et C/S
| 9 A7) 1.937 / 15445
2D @ 72 904| 2\ - - - 1T
o — — 2z |- - ;;Efj__(g]ﬂ
>_3/ éé > 77 — :C} PAL—AA—-»
2
2 Tirme 7 z?
Cwee Y& N
M\“ B 177 Z 647" 24y
2 = gy7
2*/%& - H‘ [77
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Comparing Preemption for Fixed Priority Tasks o oot [ e
T . l
- |
= There is no dominance relationship between preemptive and i mpmb“lty Dominaice  Dominance
non-preemptive fixed priority tasks | L i
Table 3 Speedup factors for FP-NP v. FP-P and FP-P v. FP-NP FPNP - PR BDRNP
FP-NP v FP-P FP-P v. FP-NP
Task set class
Lower Upper Lower Bound Upper Bound
Bound Bound
Implicit-deadline 1 4+ Cmas ~ 1.4 V2 D, =T,
D.=T Pmin (Davis et al. 2015b)
D; <[l Constrained-deadline V2 D.<T
: . C 2
Arbitrary-deadline 2 4 praz V2
(Davis et al. 2015a)
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Closing Comment: Schedulability Tests and Automotive Applications

58

Journal of Systems Architecture 59 (2013) 341-350

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

On the gap between schedulability tests and an automotive task model

Saoussen Anssi®*, Stefan Kuntz?, Sébastien GérardP, Francois Terrier”

# Continental Automotive France SAS, PowerTrain E IPP, 1 Avenue Paul Ourliac, BP 83649, Toulouse Cedex 31036, France
Y CEA LIST, Laboratory of Model Driven Engineering for Embedded Systems, Point Courrier 94, Gif-sur-Yvette F-91191, France

In this paper, we study the adequacy of available schedulability tests for monoprocessor fixed-priority
systems to enable performing scheduling analysis for automotive applications. We show that, in spite
of the work carried out during the last decade to enhance these tests in order to support more realistic
task model, a gap still exists between the task model considered in these tests and the usual automotive
task model. However, we claim that an extension of these tests is possible to support some of the uncov-
ered automotive features. The aim of this study is to raise discussion and make researchers involved in
the development of such schedulability tests be aware of the effort needed to bridge the gap between cur-
rent schedulability tests and automotive task model mostly used. The study is illustrated by showing the
concrete challenges faced when applying scheduling analysis to a case study derived from a real engine
control application.
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