
1

Advanced Responsiveness

Analysis and Optimization

2

EXAMINING OUR SIMPLIFICATIONS

3

A Closer Look at Our Assumptions

▪ How close is the edge?

▪ Assumed no overhead

▪ Instant switching to/from interrupt handler

▪ Ignores register stacking, vector fetching

▪ Could add in 15 cycles to each CISR i

▪ Instant context switch CContextSwitch = 0

▪ Task state must be saved and restored

▪ Could estimate a bound for number of context

switches, add in n*CContextSwitch somewhere

▪ Instant scheduling decision.

▪ EDF requires sorted list of ready tasks.

▪ Other OS activities take no time

▪ Constant task execution time Ci

▪ If range of times possible, use largest for safety

▪ What if average is much shorter?

▪ Still need processor fast enough for worst case

▪ Processor will have lots of idle time. Could have

bought something slower and cheaper.

▪ Constant task release period Ti

▪ If range of periods possible, model Ti =

min(TInterarrival i)

▪ Again is pessimistic – designs for worst-case.

Safe but may be wasteful.

▪ Single CPU

▪ Multiprocessor scheduling extensions exist

4

ANALYSIS OF ISR AND KERNEL

OVERHEADS

5

ISR Latency Times

▪ These take non-zero time

▪ Delay response

▪ Reduce available CPU time for application,

especially for high-frequency interrupts

▪ ISR/Exception handler latency

▪ Hardware activities

▪ Save some state by stacking 8 registers

▪ Stacked registers: R0-R3, R12, LR, PC, xPSR

▪ 8 cycles

▪ Fetch interrupt vector from table

▪ Fetch first instruction of interrupt handler

▪ For Cortex M0+ in KL25Z, typically takes 15

cycles from request to 1st instruction in

handler/ISR

▪ At 48 MHz, this is about 313 ns

▪ Cortex-M improvements

▪ Tail-Chaining

▪ For back-to-back exceptions: skip state restore

(pop 8 registers) and save (push 8 registers)

▪ Late-Arriving Interrupts

▪ First interrupt request arrives, hardware starts

stacking registers

▪ Higher-priority interrupt arrives while stacking

registers,

▪ Fetch higher-priority interrupt’s vector (not first

interrupt’s)

▪ First interrupt will be handled after higher-priority

interrupt completes

6

RTOS Overhead, Including Context Switch Times

▪ Will measure in lab using thread visualizer and logic analyzer

▪ Thread visualizer code switches GPIOs

▪ Suspend thread: preemption

▪ Suspend thread: blocking

▪ Resume thread

▪ Idle thread toggles own output

TR Time to resume thread

TS Time to suspend thread

7

Assemble Times for RTXv5 Activities

Handler
(DMA IRQ)

Thread A
(e.g. Idle)

Thread B
(e.g. Refill

Sound
Buffer)

TCSP Context Switch
from Preemption

TR Thread
resume

TS Thread
suspend

TCSB Context Switch
from Blocking

TR Thread
resume

TS Thread
suspend

THTTCS Handler to
Thread with Context

Switch

TR Thread
resume

TTTH Thread
to Handler

THTT Handler to
Thread (no

Context Switch)

TR Time to resume thread

TS Time to suspend thread

8

ESTIMATING

WORST-CASE EXECUTION TIME

9

Task Execution Time

▪ We need task execution time Ci to

analyze response time and schedulability

▪ What aspects of execution time do we

care about?

▪ Average – what’s the typical performance?

▪ Worst-case – must meet deadlines

▪ Best-case – too fast might cause race

conditions or other problems

▪ Distribution and variability

▪ Sources of execution time variations

▪ Software

▪ Different input data may trigger different

control flow behavior

▪ Non-trivial software leads to state-space

explosion

▪ Hardware

▪ Instruction execution times may depend on

data

▪ DMA activity may slow or delay task execution

▪ Pipelines may stall

▪ Branch target buffers may miss

▪ Caches may miss

▪ Non-trivial hardware leads to state-space

explosion

10

Basic Ideas

▪ Consider task’s possible execution time

▪ Need WCET (worst-case execution time) for

scheduling analysis

▪ Analytical approach (prediction)

▪ Series of worst-case assumptions leads to WCET

overestimate

▪ Better analysis may rule out impossible cases,

tightening estimate

▪ Experimental approach

▪ Measures actual code execution time for that input

data

▪ May not be worst-case

▪ So usually is an underestimate of WCET

▪ Improve estimate by adding more test cases

Execution Time

P
ro

b
a
b
ili

ty

Better Experimental Measurements Better Static Timing Analysis
Correct

WCET

Ci

11

STATIC TIMING ANALYSIS

12

Static Analysis: Predicting Task Execution Time

▪ "Prediction is extremely difficult. Especially

about the future.”

– Niels Bohr

▪ Prediction Techniques

▪ Manual estimate based on databook

▪ Use a processor simulator

▪ Measure a real system

▪ System is built of abstractions

▪ containing abstractions…

▪ containing abstractions…

▪ containing abstractions…

▪ containing abstractions…

◦ containing abstractions…

▪ Recall sources of timing variations

▪ Software

▪ Different input data may trigger different control

flow behavior

▪ Non-trivial software leads to state-space

explosion

▪ Hardware

▪ Instruction execution times may depend on data

▪ DMA activity may slow or delay task execution

▪ Pipelines may stall

▪ Branch target buffers may miss

▪ Caches may miss

▪ Non-trivial hardware leads to state-space

explosion

13

Examining Object Code

▪ High-level languages hide implementation details

▪ This abstraction obscures what assembly code will be generated for a C statement,

and how long it will take to execute
▪ a = b*c[i+j] depends on

▪ data types of a, b, c, i, j: int? float? double? long?

▪ Instruction Set Architecture (ISA) and MCU implementation
▪ multiply instruction for the data type

▪ advanced addressing modes suitable for array indexing

▪ Examining the object code generated by the compiler is the only way to get an

accurate picture of what will happen
▪ It gets ugly very quickly (“does not scale well”)

▪ Use representations which reflect program structure in order to simplify the analysis

▪ BTW, compilers and other tools use these representations to analyze and optimize the

code automatically

14

How Long Do Instructions Take on the Cortex-M0+?

▪ Details in Cortex-M0+ Technical Reference

Manual (DDI0484B)

▪ Most instructions take 1 cycle

▪ Loads and stores
▪ 1 cycle: to single-cycle I/O port (FPT)

▪ 2 cycles: to AHB interface or SCS

▪ 1+N cycles: load multiple, store multiple, push,

pop (N registers)

▪ Any instruction writing to PC
▪ 2 Cycles

▪ Conditional branch
▪ Not taken: 1 cycle

▪ Taken: 2 cycles

▪ Other branches
▪ Unconditional, exchange, link & exchange: 2

cycles

▪ Link: 3 cycles

▪ Read and write special registers

▪ 3 cycles

▪ Multiply

▪ 1 or 32 cycles, depending on type of

multiplier in CPU

15

Control Flow Graphs and Call Graphs

▪ Control flow graph (CFG)
▪ A flow chart which shows the execution sequence of the

program

▪ Each node is a basic block (sequence of instructions,

potentially with conditional jump at end)

▪ Create one CFG per subroutine or interrupt service

routine

▪ Call graph
▪ A hierarchical (tree) form which shows the nesting of

subroutine calls

▪ Each node is a subroutine
▪ Going down an arrow indicates calling a subroutine

▪ Going up an arrow (backwards)

indicates returning from that subroutine

▪ Create one call graph per program

_timer_isr

L0

L1

_timer_isr_0

main

Init_MCU Read_
Switches

Process Refresh_
Display

Linearize Resample

16

CFG Formation Rules

▪ A CFG consists of basic blocks (BB) joined by directed edges
▪ Basic block: a sequence of consecutive instructions such that each instruction is executed

exactly once if the basic block is executed.

▪ This implies
▪ the flow of control begins at the entry and leaves at the exit
▪ there is no conditional branching except potentially at the end.

▪ no instructions can be skipped within a basic block

▪ conditional branch (+skip) instruction effectively ends the basic block
▪ a jump/branch into a BB will split it into two
▪ a subroutine call ends the basic block

▪ Relationships with other BBs
▪ Predecessors: all basic blocks which can execute immediately before the given basic block.
▪ Successors: all basic blocks which can execute immediately after the given basic block.

▪ For our purposes, a new label starts a new basic block (except in the case of
consecutive labels, in which case the basic block is assigned the first label).

17

Call Graph Details

▪ Each subroutine is represented by a node

▪ Each potential call from subroutine A to B is represented by a directed edge from A to B

▪ Each ISR has a node, but it is not called by any other code (except if software interrupts

are supported)

▪ Operations not supported by ISA (e.g. modulo (%)) may be implemented with

subroutine linked in from a C library, leading to a deeper call graph than expected

18

Static Timing Analysis Procedure

▪ Compile source code

▪ Examine assembly code

▪ Form basic blocks

▪ Form control flow graph from basic blocks

▪ Determine duration per basic block by

adding instruction durations

▪ Evaluate paths through function

▪ Best and worst-case times for function

▪ Deal with control-flow complexity

▪ For code in conditional region (if-then-else),

▪ If control-flow path is known, calculate exact time

for path

▪ If control-flow path is unknown, bound the time:

choose the larger time for WCET, the smaller for

BCET

▪ For code in loop, use the exact number of

iterations (if known) or else try to derive a bound

(minimum and maximum)

19

Static Timing Analysis of SIMD-Optimized Write Pixels Function

▪ Start with CFG of function (e.g. from

Ghidra)

▪ Function behavior

▪ Loop

▪ Load R, G and B data (8:8:8) for four consecutive

pixels

▪ Mask off extra RGB bits (3:2:3)

▪ Pack into words W1, W2 (5:6:5)

▪ Loop

▪ Select bytes b1, b2 from W1, W2

▪ Write b1, b2 to LCD controller

void LCD_Write_Rectangle_N_Quad_Pixel_Components(

uint32_t * aR, uint32_t * aG, uint32_t * aB,

int32_t n) {

uint8_t b1, b2;

uint8_t i;

uint32_t R, G, B, GH, GL, W1, W2;

do {

R = *aR++;

G = *aG++;

B = *aB++;

R &= 0xf8f8f8f8;

GH = (G&0xe0e0e0e0)>>5;

GL = (G&0x1c1c1c1c)>>2;

B = (B&0xf8f8f8f8)>>3;

W1 = R | GH;

W2 = GL | B;

for (i=0; i<4; i++) {

b1 = W1 & 0x000000ff;

b2 = W2 & 0x000000ff;

LCD_24S_Write_Data(b1);

LCD_24S_Write_Data(b2);

W1 >>= 8;

W2 >>= 8;

}

} while (--n>0);

}

20

Static Timing Analysis of SIMD-Optimized Write Pixels Function

▪ First impressions

▪ Inner loop dominates execution time: ~19 cycles

per pixel

▪ Outer loop: additional ~38 cycles per four pixels

→ 8.5 cycles per pixel

▪ Execution cycle count model:
▪ n = argument. Number of pixels/4

▪ C = 16 + n*(31 + 4*18 + (4-1)*1+6) + (n-1)*1 + 7

▪ C = 23 + n*(112)+(n-1)

▪ C = 22 + 113*n

▪ At 48 MHz, t = 0.458 µs + n*2.354 µs

▪ Is this accurate? Must verify by measuring
real system.

31 cycles

18 cycles

6 cycles
1 cycle. Branch taken

on all but last iteration

of outer loop.

1 cycle. Branch

taken on all but

last iteration of

inner loop.

16 cycles

7 cycles

21

EXPERIMENTAL TIMING ANALYSIS

22

▪ Use analysis tools

▪ Logic analyzer or oscilloscope looks for special

events (e.g. on debug pins)

▪ Set up GPIO port to set output bit upon entering

routine, clear it upon exiting

▪ Instruction trace

▪ Search for start and end addresses of task in

instruction trace

▪ Calculate time based on when those instruction

addresses were executed

▪ Some Cortex-M CPUs provide compressed

instruction trace on SWV

▪ Use code to read high-resolution timer in

MCU

▪ Configure as cycle counter

▪ Can select prescaled clock source if needed to

increase time range

▪ Make its ISR increment a counter variable

(volatile!) when it overflows

Time Measurement Methods

23

Repeatability

▪ How good are your measurements?

▪ Does the same input lead to the same

output, or are other factors in the

system affecting the computation?

min = 0xffffffffl;

max = 0;

for (i=0; i<3000; i++) {

Clear_Ticks();

f = sqrt(37/100.0);

t = Get_Ticks();

min = MIN(t, min);

max = MAX(t, max);

}

24

Timing Data Analysis

▪ Statistics can be helpful

▪ Minimum, maximum

▪ Mean: sum total time and divide by

number of measurements

▪ What if the max time is much larger

than the mean time?

#define MIN(a,b) (((a)<(b))? (a):(b))
#define MAX(a,b) (((a)>(b))? (a):(b))
#define NUM_TESTS (300)

unsigned long t=0, min, max;
float sum=0.0;
min = 0xffffffffl;
max = 0;
for (i=0; i<NUM_TESTS; i++) {

Clear_Ticks();
f = tan(i/100.0);
t = Get_Ticks();
min = MIN(t, min);
max = MAX(t, max);
sum += t;

}

25

Histogram Shows Distribution of Execution Times

▪ Horizontal axis: range of values of measured variable (bins)

▪ Vertical axis: number of times (frequency) variable had that

value

#define HIST_SIZE 10

int hist[HIST_SIZE];

for (i=0; i<HIST_SIZE; i++)

hist[i] = 0;

for (i=0; i<300; i++) {

Clear_Ticks();

f = sqrt(i/100.0);

t = Get_Ticks();

min = MIN(t, min);

max = MAX(t, max);

n = (unsigned) (t/250);

hist[min(n, HIST_SIZE-1)]++;

}

Measured Value

C
o
u
n
t

26

Code Coverage of Test Cases

▪ Did all the code run in the tests?

▪ Code coverage: Which basic blocks were

executed

▪ A basic block which wasn’t executed…

▪ Isn’t included in the test, increasing the odds

that the timing measurement is too low

▪ Measure code coverage

▪ Try to ensure that all basic blocks are executed

at least once

▪ Some tools measure code coverage

▪ 100% code coverage still doesn’t consider

everything

▪ Loop iteration counts of 1 and 1,000 have same

100% code coverage

27

Real-World Timing Analysis Complications

▪ Disruptions to task timing measurements

▪ Handling interrupts

▪ DMA transfers

▪ Task preemption

▪ Other kernel activities

▪ Need to stabilize timing to improve

accuracy

▪ Interrupts

▪ If possible, disable interrupts

▪ Else measure time used by interrupts and

subtract from task timing measurement.

▪ Consider kernel activities triggered by

interrupts

▪ DMA transfers

▪ If possible, disable DMA transfers

▪ Else measure time used by DMA transfers and

subtract.

▪ Task preemption

▪ Each preemption (and resumption) introduces

two context switches and scheduler overhead

▪ Disable preemption of task to measure

▪ Lock scheduler when task starts running (if no

blocking possible)

▪ Give task the highest priority

▪ Configure scheduler to use non-preemptive

scheduling

▪ Other kernel activities?

28

“OPTIMIZING” RESPONSE TIME

29

Evaluating Responsiveness

▪ Assumption

▪ ISR or task signals next task after its critical work is completed

▪ Three important types of critical path

▪ T1: From interrupt request to ISR running and completing critical work. Uses MCU interrupt hardware.

▪ T2: From ISR to user task running and completing critical work. Uses OS signaling.

▪ T3: From one user task to another user task running and completing critical work. Uses OS signaling.

Time

Interrupt

Task_2

T1ISR

T2
Task_1

T3

30

Approaches to Improving Responsiveness

▪ Use ISRs better

▪ Move critical work in – faster response

▪ Move non-critical work out – less blocking

▪ Improve task scheduling

▪ Add task prioritization

▪ Change task priorities (utilization vs.

responsiveness)

▪ If non-preemptive, break long tasks into states

with FSM

▪ Add preemption

▪ Use RTOS better

▪ Consider how to use faster or fewer services

▪ Minimize blocking and interrupt lock-out

time

▪ Shorten critical sections

▪ Use mutexes, priority ceiling protocol

▪ Disable the fewest interrupts for the least time

▪ Tolerate bad responsiveness by buffering

data

▪ Use hardware better

▪ DMA transfer

▪ Special peripheral features (ADC averaging,

windowed interrupts, I2C address match, etc.)

▪ Inter-peripheral communications (core-

independent peripherals)

31

REDUCING BLOCKING DELAYS

32

▪ Example: Two tasks can access SD card via SPI

▪ Possible failure:

▪ Task 1 starts reading data from SD card block N but is

switched out by scheduler before finishing

▪ Task 2 starts writing new data to SD card block M

▪ Scheduler switches out Task 2 to run Task 1

▪ Task 1 resumes reading from SD card, sending 0xFF to clock

out data. SD Card interprets 0xFF as data to write to block M.

▪ Task 1 finishes and is switched out

▪ Task 2 resumes and tries to complete by writing rest of data,

but will not succeed.

▪ Result: Task 2’s SD card block is corrupted, with some blocks

overwritten by 0xFF. And SD card controller is probably stuck.

Preemption and a Peripheral: SPI and a µSD Card

Preemption gives interleaved task execution

??

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

33

▪ Simple solution: Don’t let any tasks preempt each other

▪ Disadvantage: All higher priority tasks have to wait longer and finish

later

▪ Slightly better solution: Don’t let tasks which might use the SD

Card preempt each other

▪ Disadvantage: Higher priority tasks which use SD Card have to wait

longer and finish later

▪ Better solution: Let tasks preempt each other, but they must yield

control sometimes when sharing using the SD Card

▪ If gold task wants to use SD Card now and it preempted blue task

when it was using the SD Card, let blue task finish using the SD Card,

and then let gold task use the SD Card

▪ Higher priority tasks finish sooner, as we want

Improving Responsiveness for SPI and SD Card

SD

S D

SD

SD

SD

SD

P
ri
o
ri

ty

Low

High

34

▪ SD_mutex is initially unlocked

▪ Task 1 locks SD_mutex

▪ Task 1 starts updating SD card

▪ Task 2 preempts Task 1, starts running

▪ Task 2 tries to lock SD_mutex but fails and blocks

▪ Scheduler switches back to Task 1

▪ Task 1 finishes updating SD card

▪ Task 1 unlocks SD_mutex

▪ Scheduler switches context to Task 2

▪ Task 2 locks SD_mutex

▪ Task 2 updates SD card

▪ Task 2 unlocks SD_mutex

▪ Task 2 completes and blocks

▪ Task 1 finishes other (non-SD Card) work

Solution: Task Locks Resource(s) When in Use

Block N

Block M

Block N

Block M

Block N

Block M

Block N

Block M

SD Card SD_mutex

35

ANALYZING PRIORITY INVERSION

36

Task Interactions and Blocking

▪ “No task is an island, entire of itself”

▪ Basic model assumes tasks are completely

independent -- very limiting!

▪ Real tasks may interact (signaling events,

sharing data)

▪ Mutex, semaphore, message, event flag…

▪ Blocking may interfere with priorities

37

M

Priority Inversion

1. Low priority task L is running and locks

resource R

2. Medium priority task M preempts L

3. High priority task H preempts M

4. Task H requests resource R, so it blocks

and M resumes. L resumes after M.

5. Task H’s priority has effectively fallen to

below that of task L

▪ H will not get the resource and resume

execution until L releases R, which is after

M finishes

Red line shows response time for task H

L

M

H

L

H

1

2

3 4

5

R

R

L

38

Solutions to Priority Inversion

▪ Solutions – temporarily raise priority of lower-

priority task

▪ Priority Inheritance

▪ Priority Ceiling

▪ Response time for task H is shortened and only

depends on critical section duration of resources

shared with lower-priority tasks

▪ RTOS mutexes typically use Priority Inheritance

▪ CMSIS-RTOS2 supports Priority Inheritance Protocol,

include osMutexPrioInherit in attr_bits

M

L

M

H

L

H

1

2

3 4

5

R

R

L

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__MutexMgmt.html#ga40fba270cb31a977b3bd551d41eb9599

39

▪ Task p (e.g. L) holding resource k …

▪ temporarily inherits priority …

▪ of highest-priority task q (e.g. H) currently blocking

on resource k …

▪ (if higher than own priority)

▪ Blocking time: time which a task waits for a lower-priority task
▪ Bound (limit):

▪ K = number of resources

▪ usage(k,i) = 1 if resource k is used by at least one process with priority < Pi and at least one process with

priority >= Pi

▪ Cj CritSect k = worst-case execution time of task j’s critical section for k

▪ Updated response time algorithm

▪ Problems: allows deadlock, is pessimistic, and allows chains of transitive blocking

Timing Analysis of Priority Inheritance

𝐵𝑖 = ෍

𝑘=1

𝐾

𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖) 𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘

𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + ෍

𝑗∈ℎ𝑝(𝑖)

𝑅𝑖
𝑇𝑗

𝐶𝑗

Time

T
as

k
 p

P
ri

o
ri

ty

40

▪ Task p (e.g. L) holding resource k…

▪ temporarily inherits priority…

▪ of highest-priority task which could possibly block

on that resource… (e.g. H) …

▪ (if higher than own priority)

▪ Improvements

▪ A high-priority task can be blocked at most once during its execution by a lower-priority task

▪ Deadlocks and transitive blocking are prevented

▪ Mutual exclusive access to resources is ensured

▪ Immediate Ceiling Priority Protocol:

▪ Assign each process a static default priority

▪ Assign each resource a static ceiling value = max priority of processes which may use it

▪ Process’s dynamic priority = max(static priority, static ceiling value of any of its locked resources)

▪ Blocking:

▪ Implemented as Priority Protect Protocol in POSIX, Priority Ceiling Emulation in Real-Time Java

Timing Analysis of Priority Ceiling

𝐵𝑖 = max∀𝑘 𝑢𝑠𝑎𝑔𝑒(𝑘, 𝑖)𝐶𝑗 𝐶𝑟𝑖𝑡𝑆𝑒𝑐𝑡 𝑘

Time

T
as

k
 p

P
ri

o
ri

ty

41

Fixed vs. Dynamic Task Priorities

▪ Fixed priority scheduling suffers priority

inversion, while EDF suffers deadline

inversion

▪ EDF has dynamic priority relationships

since they depend on deadlines and hence

release times. Need to analyze entire

hyperperiod!

▪ Stack Resource Protocol (Baker) works for

EDF

▪ Assign each task a static preemption level based

on deadline

▪ Assign each resource a ceiling based on

maximum preemption level of tasks which use it

▪ Upon release, a task can only preempt the

current task if its deadline is shorter and its

preemption level is higher than all currently

locked resources

▪ Behaves same as ICPP

42

TOLERATING DELAYS BY

BUFFERING DATA

43

Double Buffering (Ping-Pong Buffers) for DMA + DAC Output

▪ Add second buffer

▪ Alternate between two buffers

▪ Write to red while reading from green

▪ Write to green while reading from red

▪ Deadline is now TSample*(Buffer Size + 1),

was TSample before

▪ Need to preload first buffer with data

before starting output playback

DMA

DAC
Refill

Sound

Buffer

DMA

IRQ

Handler

44

Generalizing Data Buffering to Tolerate Delayed Response

▪ Buffer size required depends on multiple factors

▪ How quickly can input data arrive?

▪ Periodic? Data arrival rate

▪ Aperiodic? Minimum inter-arrival period

▪ Burst lengths?

▪ How quickly can data be processed?

▪ Constant time?

▪ May depend on data itself

▪ How long can data processing task be delayed?

▪ Scheduler: evaluate worst-case response time of

processing task. Depends on priority and blocking.

▪ So, how much buffer space is needed?

▪ Worst case? Consider extremes

▪ Probabilistic? Consider distributions apply queueing

theory

Data Arrivals

Data Processing

Buffer Used

45

SCHEDULABILITY AND TIMING ANALYSIS

FOR NON-PREEMPTIVE SYSTEMS

46

Ta
sk

 1
 M

ax
 S

ta
ck

Ta
sk

 2
 M

ax
 S

ta
ck

Ta
sk

 3
 M

ax
 S

ta
ck

Task 1 Statics

Task 2 Statics

Task 3 Statics

Task 4 Statics

Preemptive

Dynamic

Why Consider Non-Preemptive Scheduling?

▪ Much easier to write and debug

scheduler

▪ No need for context switches

▪ Less RAM required for call stacks

▪ Nonpreemptive – just need enough space

for worst-case stack of any one task

▪ Preemptive scheduling – need enough

space for worst case stacks of all tasks

simultaneously

▪ However, tasks must be designed

without blocking operations. Use FSM

Non-preemptive

Dynamic

Ta
sk

 1
 M

ax
 S

ta
ck

Ta
sk

 2
 M

ax
 S

ta
ck

Ta
sk

 3
 M

ax
 S

ta
ck

Ta
sk

 4
 M

ax
 S

ta
ck

Task 1 Statics

Task 2 Statics

Task 3 Statics

Task 4 Statics

47

Changing to Non-Preemptive Scheduling

▪ Fewer scheduling points (where scheduler

can run a different task)

▪ After task completes, blocks or yields.

▪ Interrupts still work, but they can’t trigger

context switches.

▪ More blocking and priority inversion likely

▪ What if the longest task has just started

running? We can’t preempt it.

▪ Worse responsiveness, so less attractive

for research, and less understood

48

Idling and Non-Idling Schedulers

▪ Add idle time?

▪ Lack of preemption means we might be able to

improve the schedule by inserting a little bit of

idle time at just the right times.

▪ Finding just the right times is a very difficult

problem mathematically (NP-complete)

▪ So we will only consider non-idling

schedulers – feasible but generally not optimal

▪ Slight change in time frame to examine

▪ With task preemption possible, examine what

happens from task ti release until it finishes

executing

▪ Task ti can’t be preempted, so examine what

happens before release until it starts

executing

49

Optimal Non-Idling Priority Assignments

▪ Dynamic priority

▪ General case: EDF is optimal for all task sets

(deadlines not related to periods)

▪ Fixed priority

▪ General case: Can compute an optimal

priority assignment using Audsley’s method

(O(n2))

▪ Di ≤ Ti: Deadline monotonic is no longer optimal

without preemption

▪ Di ≤ Ti and Di < Dj => Ci ≤ Cj : Deadline

monotonic is still optimal without preemption if

for all pairs of tasks i and j, task i with the

shorter deadline does not require more

computation than task j

50

Schedulability Tests

▪ Dynamic priority

▪ D=T: No utilization-based test, but an exact

(necessary and sufficient) analytical test exists

▪ General case: No utilization-based test, but an

inexact (sufficient but not necessary) analytical

test exists

▪ Fixed priority

▪ No utilization-based test exists

▪ So, must calculate worst-case response time for

each task and verify all deadlines are met

51

Worst-Case Response Time Analysis

▪ Dynamic priority

▪ Start with analysis for preemptive case, considering all possible releases over hyperperiod

▪ Also consider that:

▪ A task with a later deadline could cause deadline inversion (~priority inversion)

▪ Analysis focuses on time before task execution start, not completion

▪ Fixed priority

▪ General case: similar to preemptive case, but also include blocking Bi from longest lower-priority task

52

Recent Work Simplifying Analysis

▪ If I switch to a non-preemptive scheduler, how

much faster must the computer run to meet all

its deadlines?

▪ Speed-up factor = S = Timeold/Timenew

▪ 1x = no speed-up

▪ “We derive the exact processor speed-up factor

S required to guarantee the feasibility under FP-NP

(i.e. schedulability assuming an optimal priority

assignment) of any task set that is feasible under

EDF-P.”

▪ “We derive the exact speed-up factor required to

guarantee the FP-NP feasibility of any FP-P feasible

task set.”

▪ “Further, we derive the exact speed-up factor

required to guarantee FP-P feasibility of any

constrained-deadline FP-NP feasible task set.”

Fixed Priority Dynamic Priority

N
o

Ta
sk

Pr
ee

m
p
ti
on

Ta
sk

Pr
ee

m
p
ti
on

53

1. Comparing Fixed vs. Dynamic Priority (EDF)

▪ Dynamic priority dominates fixed priority. Dynamic (EDF) can

always schedule a workload which is feasible with fixed priority

tasks.

Di = Ti

Di ≤Ti

54

2. Comparing Dynamic Preemptive (EDF-P) with Non-Preemptive

▪ EDF-P dominates non-preemptive approaches. EDF-P can always

schedule a workload which is feasible with non-preemptive

approaches (fixed or dynamic task priority).

Di = Ti

Di ≤Ti

55

Understanding the CMax/DMin Term

Time

i

Exec.

Time

Ci

Deadline

Di

Sped-Up

Exec. Time

Ci/S

I 9 17 1.937

2 42 72 9.04

3 45 88 9.7

56

Comparing Preemption for Fixed Priority Tasks

▪ There is no dominance relationship between preemptive and

non-preemptive fixed priority tasks

Di = Ti

Di ≤Ti

Di = Ti

Di ≤Ti

57

▪Giorgio C. Buttazzo, Hard Real-Time

Computing Systems: Predictable

Scheduling Algorithms and Applications,

Third Edition, Springer, ISSN 1867-321X, e-

ISSN 1867-3228

Recommended Further Reading

58

Closing Comment: Schedulability Tests and Automotive Applications

59

References

▪ George, L., Rivierre, N., & Spuri, M. (1996). Technical Report RR-2966: Preemptive and Non-preemptive Real-

time Uniprocessor Scheduling. INRIA.

▪ Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., & Wellings, A. J. (1995). Fixed Priority Pre-emptive

Scheduling: An Historical Perspective. Real-Time Systems, 8(3), 173-198.

▪ Buttazzo, G. C. (2005). Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems, 29, 5-26.

▪ Sha, L., Abdelzhaer, T., Arzen, K.-E., Cervin, A., Baker, T., Burns, A., et al. (2004, November-December). Real

Time Scheduling Theory: A Historical Perspective. Real Time Systems, 28(2-3), 101-155.

▪ Audsley, N. C., (1991). Optimal Priority Assignment And Feasibility Of Static Priority Tasks with Arbitrary

Start Times, Technical Report YCS 164, Dept. Computer Science, University of York, UK, Dec. 1991

▪ C. L. Liu and J. W. Layland, ‘‘Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment’’,

Journal of the ACM 20(1), pp. 40-61 (1973).

60

Additional References

▪ Alan Burns and Andy Wellings, Real-Time Systems and Programming Languages

▪ Loïc P. Briand and Daniel M. Roy, Meeting Deadlines in Hard Real-Time Systems: The Rate Monotonic

Approach

▪ Klein, M., Ralya, T., Pollak, B., Obenza, R. Harbour, M. G., A Practitioner's Handbook for Real-Time Analysis:

Guide to Rate Monotonic Analysis of Real-Time Systems

http://www.tripac.com/html/images/pertsscreen3.gif

61

Examining Times for RTXv5 Activities

▪ You’ll measure these times in Lab

Handler
(DMA IRQ)

Thread A
(e.g. Idle)

Thread B
(e.g. Refill

Sound
Buffer)

TCSP Context Switch
from Preemption

TR Thread
resume

TS Thread
suspend

TCSB Context Switch
from Blocking

TR Thread
resume

TS Thread
suspend

THTTCS Handler to
Thread with Context

Switch

TR Thread
resume

TTTH Thread
to Handler

THTT Handler to
Thread (no

Context Switch)

	Default Section
	Slide 1: Advanced Responsiveness Analysis and Optimization

	Examining the Simplifications
	Slide 2: examining Our simplifications
	Slide 3: A Closer Look at Our Assumptions

	Overhead Analysis
	Slide 4: Analysis of ISR and Kernel Overheads
	Slide 5: ISR Latency Times
	Slide 6: RTOS Overhead, Including Context Switch Times
	Slide 7: Assemble Times for RTXv5 Activities

	WCET
	Slide 8: Estimating Worst-Case Execution Time
	Slide 9: Task Execution Time
	Slide 10: Basic Ideas
	Slide 11: Static Timing analysis
	Slide 12: Static Analysis: Predicting Task Execution Time
	Slide 13: Examining Object Code
	Slide 14: How Long Do Instructions Take on the Cortex-M0+?
	Slide 15: Control Flow Graphs and Call Graphs
	Slide 16: CFG Formation Rules
	Slide 17: Call Graph Details
	Slide 18: Static Timing Analysis Procedure
	Slide 19: Static Timing Analysis of SIMD-Optimized Write Pixels Function
	Slide 20: Static Timing Analysis of SIMD-Optimized Write Pixels Function
	Slide 21: Experimental Timing analysis
	Slide 22: Time Measurement Methods
	Slide 23: Repeatability
	Slide 24: Timing Data Analysis
	Slide 25: Histogram Shows Distribution of Execution Times
	Slide 26: Code Coverage of Test Cases
	Slide 27: Real-World Timing Analysis Complications

	Optimization
	Slide 28: “Optimizing” Response Time
	Slide 29: Evaluating Responsiveness
	Slide 30: Approaches to Improving Responsiveness
	Slide 31: Reducing Blocking Delays
	Slide 32: Preemption and a Peripheral: SPI and a µSD Card
	Slide 33: Improving Responsiveness for SPI and SD Card
	Slide 34: Solution: Task Locks Resource(s) When in Use
	Slide 35: Analyzing Priority Inversion
	Slide 36: Task Interactions and Blocking
	Slide 37: Priority Inversion
	Slide 38: Solutions to Priority Inversion
	Slide 39: Timing Analysis of Priority Inheritance
	Slide 40: Timing Analysis of Priority Ceiling
	Slide 41: Fixed vs. Dynamic Task Priorities

	Tolerating Delays
	Slide 42: Tolerating Delays by Buffering Data
	Slide 43: Double Buffering (Ping-Pong Buffers) for DMA + DAC Output
	Slide 44: Generalizing Data Buffering to Tolerate Delayed Response

	Non-Preemptive Scheduling
	Slide 45: Schedulability and Timing analysis for NON-Preemptive systems
	Slide 46: Why Consider Non-Preemptive Scheduling?
	Slide 47: Changing to Non-Preemptive Scheduling
	Slide 48: Idling and Non-Idling Schedulers
	Slide 49: Optimal Non-Idling Priority Assignments
	Slide 50: Schedulability Tests
	Slide 51: Worst-Case Response Time Analysis
	Slide 52: Recent Work Simplifying Analysis
	Slide 53: 1. Comparing Fixed vs. Dynamic Priority (EDF)
	Slide 54: 2. Comparing Dynamic Preemptive (EDF-P) with Non-Preemptive
	Slide 55: Understanding the CMax/DMin Term
	Slide 56: Comparing Preemption for Fixed Priority Tasks

	References
	Slide 57: Recommended Further Reading
	Slide 58: Closing Comment: Schedulability Tests and Automotive Applications
	Slide 59: References
	Slide 60: Additional References
	Slide 61: Examining Times for RTXv5 Activities

