CPU, MCU and Board Features for Low Power and Energy

Overview

- Cortex-M0+ CPU Core
- KL25Z MCU and Peripherals
- FRDM-KL25Z Development Board

Information Source – Reference Manual

- Chapter 7: Power Management
 - Describes different modes available
- Chapter 13: System Mode Controller
 - Switches system between different power modes
- Chapter 5: Clock Distribution
 - Clock sources
 - Controls 1.0V band-gap reference (for ADC, CMP)
- Chapter 12: System Integration Module
 - Selection of clock sources for configurable peripherals

- Chapter 15: Low-Leakage Wakeup Unit
- Chapter 24: Multipurpose Clock Generator
- Chapter 33: Low-Power Timer
- Chapter 14: Power Management Controller
 - Detects low operating voltage
 - Low Voltage Warning interrupts
 - Power-On Reset

Application Notes

AN4503KLQRUG

Freescale Semiconductor Users Guide KLQRUG Rev. 0, 09/2012

Kinetis L Peripheral Module Quick Reference

A Compilation of Demonstration Software for Kinetis L Series Modules

This collection of code examples, useful tips, and quick reference material has been created to help you speed the development of your applications. Most chapters in this document contain examples that can be modified to work with Kinetis MCU Family members. When you're developing your application, consult your device data sheet and reference manual for part-specific information, such as which features are supported on your device.

Sample code can be found at KL25_SC.exe, available from:

www.freescale.com/files/32bit/software/KL25_SC.exe

Information about the ARM core can be found in the help center at ARM.com

The most up-to-date revisions of our documents are on the Web. Your printed copy may be an earlier revision. To verify that you have the latest information available, refer to freescale.com

Freescale Semiconductor Application Note

Document Number:AN4503 Rev. 1, 11/2012

Power Management for Kinetis and ColdFire+ MCUs

When and how to use low-power modes

by: Philip Drake

1 Introduction

Applications strive for high performance within constrained energy budgets, which continue to play a significant role in determining embedded designs. Increasing requirements do not allow for compromises on performance and continue to push for low energy budgets.

The Kinetis and ColdFire+ microcontroller families include internal power management features that can be used to control the microcontroller's power usage. This application note discusses how to use the power management systems, provides use case examples, and shows real-time current measurement results for these use cases.

Also included is a discussion of the differences between power management features on the various microcontrollers, along with drivers demonstrating the low-power features. Tips are given for using each of the power modes.

Power management methods discussed here do not include

Contents

1	Introduction	1
2	Power Modes	2
3	Quick Start	7
4	Reset Management	9
5	Dynamic and Static Power Management	12
6	Clock Operation in Low-power Modes	13
7	Power Mode Entry Transitions	15
8	Power Mode Entry Code	19
9	Power Mode Exit Transitions	30
10	Modules in Power Modes	32
11	Power Measurement	36
12	Pin and Module Wakeup Sources	40

Overview

Cortex-M0+ CPU Core

- KL25Z MCU and Peripherals
- FRDM-KL25Z Development Board

Setting the MCU Clock Frequency

KL25Z MCU Power at 3.0V

- Characteristics
 - Static power is 5.5689 mW
 - Dynamic power is roughly proportional to frequency: 0.246 mW/MHz
- Can reduce power consumption by reducing CPU core frequency

What Clock Sources are Available?

Multipurpose Clock Generator (MCG)

- Internal Reference Clocks
 - Fast IRC: 4 MHz
 - Slow IRC: 32 kHz
- Frequency-Locked Loop
 - Used as Digitally-Controlled Oscillator (DCO)
 - Clocked by external or 32 kHz internal reference clock
 - Can multiply input frequency by an integer
- Phase-Locked Loop
 - Has voltage-controlled oscillator (VCO)
 - Clocked by external reference clock
- System Oscillator
 - Uses external crystal or resonator to generate external reference clock

More on KL25 Clock System

- SIM System Integration Module
 - Divides and routes clock signals
- RTC Real-Time Clock
 - Hardware counters to track time-of-day and date.
- PMC Power Management Controller
 - Provides LPO clock for some low-power peripherals

MCG Control Registers

- Extensive configuration options available!
- See Chapter 24 of reference manual for details

How Do We Divide the Clock Speed?

- Dividers are located in SIM (CLKDIVI)
- Core and System clock
 - Up to 48 MHz
 - Input is MCGOUTCLK
 - Divided by OUTDIVI+I (four bits, I to I6)
- Bus and Flash clock
 - Up to 24 MHz
 - Input is core and system clock
 - Divided by OUTDIV4+1 (three bits, 1 to 8)
- SIM register CLKDIVI controls both dividers

Configuring The System Clock

- Specify clock with CLOCK_SETUP symbol in program
- Two ways to define CLOCK_SETUP
 - Compiler command line options: -dCLOCK_SETUP=I
 - system_MKL25Z4.h: #define CLOCK_SETUP I
- CLOCK_SETUP used by configuration code
 - Files system_MKL25Z4.[c|h] in Project's Device node
 - system_MKL25Z4.h
 - Five predefined clock setups
 - Settings for watchdog, allowed low power modes
 - system_MKL25Z4.c
 - "Provides a system configuration function and a global variable that contains the system frequency. It configures the device and initializes the oscillator"
 - void SystemInit(void)
 - Configures watchdog, low power modes allowed
 - Configures system clock (with safe transitions)
 - void SystemCoreClockUpdate(void)
 - Updates SystemCoreClock variable based on current hardware settings

Side Effects

PIT and other peripherals are clocked by bus clock

- Changing bus frequency will change PIT period
- May not be what you want
- TPM uses other clock inputs which don't change with bus clock
 - Can select FLL clock, PLL clock, internal reference clock, external reference clock, or oscillator clock
 - Use SIM SOPT2 register to select clock source

CPU and MCU Power Modes

Power Mode Overview

- See Table 7-1 in MCU SRM
- Run Modes CPU executes instructions
 - Regular CPU runs at up to 48 MHz
 - Very Low Power runs at up to 4 MHz
- Stop/Wait Modes CPU doesn't execute instructions
 - Wait (ARM "sleep")
 - All peripherals and NVIC can operate
 - Stop (ARM "deep sleep")
 - Most peripherals cannot operate
 - NVIC is not powered, must use LLWU
 - Specific type selected with control registers
 - SCR: SLEEPDEEP
 - SMC: RUNM, STOPM, PSTOPO, VLLSM
- Return to Run mode when triggered by interrupt or reset (depends on mode)

Example Power Mode Documentation Overview

Table 7-1. Chip power modes

Chip mode	Description	Core mode	Normal recovery method
Normal run	Allows maximum performance of chip. Default mode out of reset; on- chip voltage regulator is on.	Run	
Normal Wait - via WFI	Allows peripherals to function while the core is in sleep mode, reducing Sleep Intercover. NVIC remains sensitive to interrupts; peripherals continue to be clocked.		
Normal Stop - via WFI	Places chip in static state. Lowest power mode that retains all registers while maintaining LVD protection. NVIC is disabled; AWIC is used to wake up from interrupt; peripheral clocks are stopped.	Sleep Deep	Interrupt
VLPR (Very Low Power Run)	On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. Reduced frequency Flash access mode (1 MHz); LVD off; in BLPI clock mode, the fast internal reference oscillator is available to provide a low power nominal 4MHz source for the core with the nominal bus and flash clock required to be <800kHz; alternatively, BLPE clock mode can be used with an external clock or the crystal oscillator providing the clock source.	Run	_
VLPW (Very Low Power Wait) -via WFI Same as VLPR but with the core in sleep mode to further reduce power; NVIC remains sensitive to interrupts (FCLK = ON). On-chip voltage regulator is in a low power mode that supplies only enough power to run the chip at a reduced frequency. Sleep		Interrupt	
VLPS (Very Low Power Stop)-via WFI	Places chip in static state with LVD operation off. Lowest power mode with ADC and pin interrupts functional. Peripheral clocks are stopped, but OSC, LPTMR, RTC, CMP, TSI can be used. TPM and UART can optionally be enabled if their clock source is enabled. NVIC is disabled	Sleep Deep	Interrupt

Full documentation in MCU Subfamily Reference Manual, Chapter 7

Mode Comparison

Mode	Core/Bus/ Sys Clk	NVIC	Watchdog	LLWU	GPIO	Internal Logic	RAM	l kHz LPO
Wait								
VLP Wait	Off/							
	Max I MHz/ Max 4 MHz			Static				
Stop VLP Stop		Static	Static	Juic				
LLS	All gated off	Static	Static		Static, pins latched			
VLLS3						D		
VLLSI		Off	Off		Off, pins latched	Powered down,	Powered down,	
VLLS0						state lost	state lost	Off

Full functionality

Limited or no functionality, but module register states and associated memories are retained.

Powered off, module is in reset state upon wakeup.

Details of Stop Modes

- STOP: The basic stop mode
 - Core and system clocks are gated off
- VLPS:Very-low-power stop
 - Core and system clocks are gated off
- LLS: Low-leakage stop
 - Core and system clocks are gated off.
 - Internal logic supply voltage is reduced but state is retained.
- VLLS3:Very-low-leakage stop 3
 - RAM and I/O states are retained.
 - Internal logic is powered down and lost, so CPU resumes with Reset handler.

- VLLS2: Not available on Cortex-M0+
- VLLSI:Very-low-leakage stop I
 - I/O states are retained.
 - RAM and internal logic are powered down and lost, so CPU resumes with Reset handler.
- VLLS0:Very-low-leakage stop 0
 - I/O states are retained.
 - RAM and internal logic are powered down and lost, so CPU resumes with Reset handler.
 - I kHz LPO is disabled
 - Power on reset circuit can be enabled or disabled

Μ	1ode		Current		
MCU	CPU (ARM)	Normal	Very Low Power	Low Leakage	Very Low Leakage
Run		5000 μA			
Wait	Sleep	3700 μ Α			
Stop		345 µA			
Stop 3	Deep				
Stop I	Sleep				
Stop 0					

Mode			Current		
MCU	CPU (ARM)	Normal	Very Low Power	Low Leakage	Very Low Leakage
Run		5000 μA	250 µA		
Wait	Sleep	3700 μA	Ι35 μA		
Stop		345 µA	4.4 µA		
Stop 3	Deep				
Stop I	Sleep				
Stop 0					

2	1ode		Current		
MCU	CPU (ARM)	Normal	Very Low Power	Low Leakage	Very Low Leakage
Run		5000 μA	250 µA		
Wait	Sleep	3700 μ Α	Ι35 μA		
Stop		345 µA	4.4 µA	Ι.9 μA	
Stop 3	Deep				
Stop I	Sleep				
Stop 0					

۲	Mode		Current		
MCU	CPU (ARM)	Normal	Very Low Power	Low Leakage	Very Low Leakage
Run		5000 μA	250 µA		
Wait	Sleep	3700 μA	Ι35 μA		
Stop		345 µA	4.4 µA	Ι.9 μA	
Stop 3	Deep				Ι.4 μA
Stop I	Sleep				0.77 µA
Stop 0					0.38 µA

Recovery Methods: What Code Does CPU Run after Waking Up?

Chip Mode	Core Mode	Comments	Recovery Method	On Wake-Up, CPU runs
Wait	Sleep		Peripheral interrupt	Peripheral interrupt handler
Stop	Sleep Deep		Peripheral interrupt	Peripheral interrupt handler
LLS	Sleep Deep		Wakeup interrupt	LLWU interrupt handler
VLLS3	Sleep Deep		Wakeup reset	Reset handler, but LLWU flag is set
VLLSI	Sleep Deep	SRAM powered off and lost	Wakeup reset	Reset handler, but LLWU flag is set
VLLS0	Sleep Deep	SRAM powered off and lost	Wakeup reset	Reset handler, but LLWU flag is set

- Peripheral Interrupt: CPU runs interrupt handler
- Wakeup Interrupt: CPU runs LLWU interrupt handler
- Wakeup Reset: CPU runs reset handler (LLWU flag indicates cause).
 - See armcc User Guide section 4.82 (How to prevent uninitialized data from being initialized to zero)

4.82 How to prevent uninitialized data from being initialized to zero

The ANSI C specification states that static data that is not explicitly initialized, is to be initialized to zero.

Therefore, by default, the compiler puts both zero-initialized and uninitialized data into the same ZI data section, which is populated with zeroes at runtime by the C library initialization code.

NC STATE UNIVERSITY

```
You can prevent uninitialized data from being initialized to zero by placing that data in a different section. This can be achieved using #pragma arm section, or with the GNU compiler extension __attribute__((section("name"))).
```

The following example shows how to retain uninitialized data using #pragma arm section:

The non_initialized section is placed into its own UNINIT execution region, as follows:

```
LOAD_1 0x0
{
EXEC_1 +0
{
* (+R0)
* (+RW)
* (+ZI) ; ZI data gets initialized to zero
}
EXEC_2 +0 UNINIT
{
* (non_init) ; ZI data does not get initialized to zero
}
}
```

Related references

9.76 #pragma arm section [section_type_list] on page 9-589.
9.66 __attribute __((section("name"))) variable attribute on page 9-579.

Related information

Execution region attributes.

Transitions Between Power Modes

Enter low-power mode

- How?
 - By executing WFI instruction (wait for interrupt)
 - By returning from exception handler (if SLEEPONEXIT in SCR is set)
- Go to Wait/Sleep or Stop/Deep Sleep?
 - Selected by SLEEPDEEP field of System Control Register Cortex-M0+ Peripheral, in Cortex-M0+ Device Generic User Guide, Section 4.3.6
- Exit low-power mode
 - Exit when enabled interrupt occurs
- Sleep-on-Exit
 - Useful if MCU only executes code in ISRs
 - Set SLEEPONEXIT bit in SCR

The Big Picture on Selecting Power-Saving Modes

Valid Transitions Between Power Modes

- Reset puts MCU in RUN mode (CPU at up to 48 MHz)
- Going to Sleep
 - From RUN mode, can get into most other modes
 - Wait
 - Stop
 - LL Stop
 - VLL Stop
 - From VLPR (Very Low Power Run) mode (CPU at up to 4 MHz), can get into only some of other modes
 - VLP Wait
 - VLP Stop
 - LL Stop
- Waking Up
 - From LLS, VLPS, Wait, VLPW, CPU runs interrupt handler
 - From VLLSx, CPU runs reset handler

How Do We Select The Low Power Mode?

	31						54	3	2	1 0)
				Reserved							
SLEEPDEEP	Controls whether the processor $0 =$ sleep. 1 = deep sleep. 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 =	ises sleep or de	ep sleep as its low p	ower mode:		SEVONPEN Reserve SLEEPDEE SLEEPONEX	D %d :P IT				-
SLEEPONEXIT	Indicates sleep-on-exit when returning $0 = do$ not sleep when returning $1 = enter$ sleep, or deep sleep, on Setting this bit to 1 enables an in application.	uming from Han to Thread mode return from an terrupt driven a	ndler mode to Threa e. ISR to Thread mod application to avoid	nd mode: le. returning to an	n empty main	Reserve	:d				

- First configure whether WFI will cause sleep (wait) or deep sleep (stop)
- Cortex-M0+ has System Configuration Block (standard peripheral) with System Control Register
 - SCB->SCR: SLEEPDEEP bit
 - See Cortex-M0+ Device Generic User Guide, Section 4.3.6

Allow Additional Modes

• First need to allow the modes in Power Mode Protection register (SMC_PMPROT)

- AVLP: allow very-low-power modes
- ALLS: allow low-leakage stop mode
- AVLLS: allow very-low-leakage stop mode

Can only write PMPROT once after reset

Power Mode Control Register SMC_PMCTRL

RUNM: Run Mode control

- 00 Normal Run
- I0 Very Low-power run
- Other values reserved

STOPA: Stop aborted

Previous stop mode entry sequence did not complete

- STOPM: Stop Mode control
 - 000 Normal Stop
 - 010 Very-low-power stop
 - 011 Low-leakage stop
 - 100 Very-low-leakage stop
 - Other values reserved

Stop Mode Control Register – SMC_STOPCTRL

- PSTOPO Allows stop to cause only a partial stop
 - 00: STOP: Normal stop mode
 - 01: PSTOP1: Partial stop with both system and bus clocks disabled
 - I0: PSTOP2: Partial stop with both system and bus clocks enabled
- PORPO Controls power-on-reset circuit activity in VLLS0 mode
 - 0: POR enabled
 - I: POR disabled

- VLLSM Selects which VLLS Mode to enter if STOPM is VLLS
 - 000:VLLS0
 - 001:VLLS1
 - 010: n/a (VLLS2)
 - 011:VLLS3

Power Mode Status Register – SMC_PMSTAT

Indicates the MCU's power mode at present timeRead-only

000_0001	Current power mode is RUN
000_0010	Current power mode is STOP
000_0100	Current power mode is VLPR
000_1000	Current power mode is VLPW
001_0000	Current power mode is VLPS
010_0000	Current power mode is LLS
100_0000	Current power mode is VLLS

Overview

Cortex-M0+ CPU Core

KL25Z MCU and Peripherals

FRDM-KL25Z Development Board

Overview

- Reduce power drawn by unused peripheral modules
 - Clock gating stops dynamic power
- Identify which peripheral modules can operate (and how much) in low power modes
- Use peripheral modules to wake up MCU

Clock Gating Cuts Dynamic Power

- Peripherals use power
 - Microamps, nanoamps they may matter for your application!
- Save power by disabling clock to unused peripherals
- Use SIM System Clock Gating Control Registers (SIM_SCGC4-7) to disable those clock signals

Datasheet Provides Low-Power Mode Peripheral Adder Currents

Symbol	Description	Temperature (°C)						Unit
		-40	25	50	70	85	105	
IEREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by							
	entering all modes with the crystal	440	490	540	560	570	580	
	enabled.	440	490	540	560	570	580	
	VLLS1	490	490	540	560	570	680	nA
	VLLS3	510	560	560	560	610	680	
	LLS	510	560	560	560	610	680	
	VLPS							
	STOP							
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA

Table 6. Low power mode peripheral adders — typical value (continued)

Table 6 shows current used by an enabled peripheral in a low-power mode

Currents (at 25°C) with Sorting

IADC		366 µA	IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode.
			ADC is configured for low power mode using the internal clock and continuous conversions.
ITPM			ITPM TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for
			output compare generating 100Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected
			clock source and I/O switching currents.
	OSCERCLK (4MHz external crystal)	256 μA	
	MCGIRCLK (4MHz internal reference clock)	86 µA	
IUART			IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX
			data at 115200 baud rate. Includes selected clock source power consumption.
	OSCERCLK (4MHz external crystal)	237 μA	
	MCGIRCLK (4MHz internal reference clock)	66 µA	
IIREFSTEN4MHz		56 μA	IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC
			enabled.
IIREFSTEN32KHz		52 μA	IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.
IBG		45 μA	IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.
ICMP		22 μA	ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a
			single external input for compare. Includes 6-bit DAC power consumption.
IEREFSTEN4MHz		22 μA	IEREFSTEN4MHz External 4MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.
IEREFSTEN32KHz			IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSCO_CR[EREFSTEN and EREFSTEN] bits. Measured by
			entering all modes with the crystal enabled.
	VLPS	560 nA	
	STOP	560 nA	
	VLLS1	490 nA	
	VLLS3	490 nA	
	LLS	490 nA	
IRTC		357 nA	IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of
			the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.

Low Power Modes vs. Module Operation

- What can work in low-power modes?
- Details in Section 7.5 of KL25 Sub-Family Reference Manual
- Key
 - FF: full functionality
 - static: non-functional, but state information in registers and memory is retained
 - powered, low power: nonfunctional, but memory is retained
 - OFF: not powered, is reset state on wake-up

Modules	Modules VLPR		Stop	VLPS	LLS	VLLSx				
	Core modules									
NVIC	FF	FF	static	static	OFF					
			System modules							
Mode Controller	FF	FF	FF	FF	FF	FF				
LLWU ¹	static	static	static	static	FF	FF ²				
Regulator	low power	low power	ON	low power	low power	low power in VLLS3, OFF in VLLS0/1				
LVD	disabled	disabled	ON	disabled	disabled	disabled				
Brown-out Detection	ON	ON	ON	ON	ON	ON in VLLS1/3, optionally disabled in VLLS0 ³				
DMA	FF	FF	Async operation	Async operation	static	OFF				
Watchdog	FF	FF	static	static	static	OFF				

Low Power Modes vs. Module Operation

Modules	VLPR	VLPW	Stop	VLPS	LLS	VLLSx						
Memory and memory interfaces												
Flash	1 MHz max access - no program	low power	low power	low power	OFF	OFF						
SRAM_U and SRAM_L	low power	low power	low power	low power	low power	low power in VLLS3, OFF in VLLS0/1						
	Clocks											
1kHz LPO	ON	ON	ON	ON	ON	ON in VLLS1/3, OFF in VLLS0						
System oscillator (OSC)	OSCERCLK max of 16MHz crystal	OSCERCLK max of 16MHz crystal	OSCERCLK optional	OSCERCLK max of 16MHz crystal	limited to low range/low power	limited to low range/low power in VLLS1/3, OFF in VLLS0						
MCG	4 MHz IRC	4 MHz IRC	static - MCGIRCLK optional; PLL optionally on but gated	static - MCGIRCLK optional	static - no clock output	OFF						
Core clock	4 MHz max	OFF	OFF	OFF	OFF	OFF						
System clock	4 MHz max	4 MHz max	OFF	OFF	OFF	OFF						
Bus clock	1 MHz max	1 MHz max	OFF	OFF	OFF	OFF						

Low Power Modes vs. Peripheral Module Operation

Modules	VLPR VLPW Stop VLPS				LLS	VLLSx					
	Timers										
ТРМ	FF	FF	FF with clocks	FF with clocks	static	OFF					
PIT	FF	FF	static	static	static	OFF					
LPTMR	FF	FF	FF	FF	FF	FF ⁴					
RTC	FF	FF	FF	FF	FF	FF ⁵					
			Analog	•	-						
16-bit ADC	FF	FF	ADC internal clock only	ADC internal clock only	static	OFF					
CMP ⁶	IP ⁶ FF FF		HS or LS compare	HS or LS compare	LS compare	LS compare in VLLS1/3, OFF in VLLS0					
6-bit DAC	FF	FF	static	static	static	static, OFF in VLLS0					
12-bit DAC	FF	FF	static	static	static	static					
		Huma	an-machine inter	faces	•						
GPIO	FF	FF	wakeup	wakeup	static, pins latched	OFF, pins latched					
TSI	FF	wakeup ⁷	wakeup ⁷	wakeup ⁷	wakeup ⁷	wakeup ⁷					

Low Power Modes vs. Peripheral Module Operation

Modules	VLPR	VLPW	Stop	VLPS	LLS	VLLSx					
Communication interfaces											
USB FS/LS	static	static	static	static	static	OFF					
USB Voltage Regulator	optional	optional	optional	optional	optional	optional					
UART0	1 Mbps	1 Mbps	FF with clocks	FF with clocks	static	OFF					
UART1 , UART2	62.5 kbps	62.5 kbps	static, wakeup on edge	static, wakeup on edge	static	OFF					
SPI0	master mode 500 kbps,	master mode 500 kbps,	static, slave mode receive	static, slave mode receive	static	OFF					
	kbps	kbps									
SPI1	master mode 2 Mbps,	master mode 2 Mbps,	static, slave mode receive	static, slave mode receive	static	OFF					
	slave mode 1 Mbps	slave mode 1 Mbps									
I ² C0	50 kbps	50 kbps	static, address match wakeup	static, address match wakeup	static	OFF					
I ² C1	50 kbps	50 kbps	static, address match wakeup	static, address match wakeup	static	OFF					

Using Peripherals to Wake Up

How Do We Wake Up?

Run and Wait Modes

- Run and wait modes
 - NVIC is awake

- Stop modes
 - NVIC is not awake, so use low-leakage wakeup unit (LLWU)
 - LLWU has own interrupt vector
 - LLWU will wake up NVIC

Low-Leakage Wakeup Unit

LLWU Features

- Is activated only in low-leakage (LL) power modes
- Uses very little power
- Can wake up MCU or NVIC

Wakeup Sources

- Interrupts from edges on external pin inputs
- Interrupt flags from other peripheral modules

LLWU Wakeup Source Details

- Internal peripheral modules
 - LLWU_M0IF-M7IF
 - Interrupt request flags for LPTMR0, CMP0, etc. named LLWU_P0, LLWU_P1, etc.
 - Enabled by fields WUME0-WUME7 in register LLWU_ME
 - Wake up source indicated by MWUF flags in LLWU_F3
- Edges on external pin inputs
 - Pins PTB0, PTC1, etc. named LLWU_P0, LLWU_P1, etc.
 - Enabled by fields WUPE0-WUPE15 in registers LLWU_PE1-LLWU_PE4
 - Can filter out noise to prevent false wakeup
 - Wake up source indicated by WUF flags in LLWU_F1 and LLWU_F2

Transition Delays - Visualized

Table 4. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs
	 VLLS0 → RUN 	_	95	115	μs
	 VLLS1 → RUN 	_	93	115	μs
	 VLLS3 → RUN 	_	42	53	μs
	• LLS → RUN	_	4	4.6	μs
	 VLPS → RUN 	_	4	4.4	μs
	 STOP → RUN 	_	4	4.4	μs

- It takes time to start running again, depending on situation
- Using reset:
 - Up to 300 microseconds
- Using an interrupt
 - ~ 100 microseconds to come out of VLLS0 or VLLS1
 - ~ 50 microseconds to come out of VLLS3
 - ~4 microseconds to come out of LLS,VLPS or STOP

Putting Together the Wake-Up Pieces

Reality Check on System Using Sleep and Wake-Up

Expected current

Wake Up

KL25Z

Execute Code Go to sleep

Sleep

- Reality check on a simple program
 - Wake up, do a little work, go back to sleep
 - Does our mental model match reality?
 - Did we under/overestimate something important?
 - Did we forget something important?
 - Did we not know something important?
- Let's examine time taken and power drawn for each step with scope.
 - Measure voltage V_{R81} across J4 (P_KL25 on PCB). Not ground-referenced!
 - MCU current $I_{KL25Z} = V_{R81} / R81$
 - Power = $V_{P3V3_{KL25Z}} * I_{KL25Z}$

Activity	Time Taken t	Power Use P	Energy = ∫Pdt
Wake Up			
Execute Code			
Go to sleep			
Sleep			

Profiling Power and Energy Consumption

- Current consumption
 - Min:1.2 mV/10 Ω = 0.12 mA
 - Max: 52.8 mV/10 Ω = 5.28 mA
- Power consumption (at 3.07 V)
 - Min: 0.12 mA * 3.07 V = 0.37 mW
 - Max: 5.28 mA * 3.07 V = 16.2 mW
- Strange trace shape. What is happening here?
- Think: Duration is about 1.5 ms
 - f_{CPU} = 48 MHz, so about 72,000 clock cycles. More than a "little" work!
- Do: Let's find out when the CPU is awake by using an output bit. Awake: I, asleep: 0
 - Set to I on reset, entry to ISR, immediately after WFI instruction
 - Clear to 0 immediately before WFI

R)	(GO	L		STC	P			P	~~~	~~	~ <mark>5</mark> ~	<u>.</u>	~~~	\sim		<mark>1</mark>	30.	.ØmV
					Ţ										CurA:	52.	8mV	
	<u></u>				<u> </u>	r.				-	. <u></u>			<u>0</u>	CurB	1.2	:0mV	
					_ <mark>/</mark>								- [Т.,	¦∆Y¦∶	51.	6mU	
													.					
													- <mark>-</mark>			-		
					: .											- 		
					-													
	- I I				I I													
					-													
					- 											l l i		
					-											۱ <mark>۱</mark>		
1>	, Hit ra															·····		tin and
	 ·																	
	<mark> </mark>	Ji	d(1) =	**	***	8		Vav	9(1)=3	i. Ør	IJ	F	rea(i)	=***	****	
	-11	<u></u>	10,	.Øn	NU	B						Ti	me	200	.0us	•	768.	.Øus

The Plot Thickens

- Current rises long before ISR starts running (by about 1 ms)
- I ms is long compared to the ISR duration (0.5 ms), leading to a lot of extra power and energy consumption
- What is happening before the ISR?

Try Different Clock Setup Modes

- Same program, different modes (CLOCK_SETUP=0-3)
- Settings: H: 200 us/div, V: I mA/div
- Mode 0: Internal oscillator (no crystal)

Mode I: External crystal + system oscillator

Mode 2: Internal oscillator (no crystal)

Mode 3: External crystal + system oscillator

 Let's superimpose the plots to make it easier to evaluate differences

Oscillator Start-Up Delay

Table 13. Oscillator DC electrical specifica

Table 14. Oscillator frequency specifications

Symbol	Description	Тур.	Unit	Osc. Period
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	750	ms	1/(32 kHz) =
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	250	ms	30.5 µs
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	0.6	ms	1/(8 MHz) =
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	1	ms	0.125 us

Symbol	Description	Тур.	Unit
V _{DD}	Supply voltage	_	V
IDDOSC	Supply current — low-power mode (HGO=0)		
	• 32 kHz	500	nA
	• 4 MHz	200	μA
	• 8 MHz (RANGE=01)	300	μA
	• 16 MHz	950	μA
	• 24 MHz	1.2	mA
	• 32 MHz	1.5	mA
IDDOSC	Supply current — high gain mode (HGO=1)		
	• 32 kHz	25	μA
	• 4 MHz	400	μA
	• 8 MHz (RANGE=01)	500	μA
	• 16 MHz	2.5	mA
	• 24 MHz	3	mA
	• 32 MHz	4	mA

MCU Current vs. Clock Setup (V_{CC} = 3.07V)

Quantifying Wake-Up Energy Costs

Time relative to CPU starting user code (ms)

	MCG	Supply	Region 1		Region 2		Region 3		Total Wake-up
_MODE	Mode	Voltage	Avg. Current (mA)	Time (us)	Avg. Current (mA)	Time (us)	Avg. Current (mA)	Time (us)	Energy (uJ)
0	FEI	3.07	3	400	1.5	700	0	0	6.9
1	PEE	3.07	4.8	400	3.5	420	0	0	10.4
2	BLPI	3.07	2.9	380	1.45	600	0	0	6.1
3	BLPE	3.07	4.5	400	3.3	420	0.25	300	10.0

Modeling Wake-Up Power Use

 What is average power use for periodic wake-up at 10 Hz?

- 6.9 uJ*10Hz = 6.9 uWs*10/s
 = 69 uW
- Raise it to 100 Hz?
 - 6.9 uJ*100Hz = 6.9 uWs*100/s
 = 690 uW
- KL25Z MCU Current vs. Clock Setup on Wake from Deep Sleep 10 FEI CS0 9 • PEE CS1 8 **BLPI CS2 BLPE CS3** 7 Current (mA) 6 3 2 1 0 -0.5 0.5 1.5 0 1 -1
 - Time relative to CPU starting user code (ms)

- Can find average power used during each wake-up
 - Divide energy by wake-up duration
 - E.g. 6.9 uJ/1100 us = 0.00627
 W = 6.27 mW

	MCG	During V	Vake-Up
	Mode	Duration (us)	Avg. Power(mW)
0	FEI	1100	6.28
1	PEE	820	12.69
2	BLPI	980	6.18
3	BLPE	820	12.21

Summary of Power and Wake-Up Energy Use

Overview

Cortex-M0+ CPU Core

KL25Z MCU and Peripherals

FRDM-KL25Z Development Board

FRDM-KL25Z Features for Low-Power or Low-Energy

- SDA debug MCU can be disabled
- Linear Voltage Regulator can be bypassed
- High-Efficiency LEDs
- Accelerometer

NC STATE UNIVERSITY FRDM-KL25Z Features for Low-Power or Low-Energy

SDA debug MCU can be disabled

- Disconnect power (J3: P_SDA) and target MCU reset signal (J14)
- If you remove J3 but keep J14, target MCU is held in reset

FRDM-KL25Z Features for Low-Power or Low-Energy

- Linear Voltage Regulator can be bypassed
 - Supply power directly to P3V3 rail (e.g. with ultracapacitor)
 - Prevent P3V3 from back-driving regulator, wasting power: Cut trace across J20 which shorts diode D12 on regulator output.

FRDM-KL25Z Features for Low-Power or Low-Energy

- High-Efficiency LEDs
 - Don't need much current (~2 mA) to be very bright
 - Can pulse-width modulate them for dimming
 - Can change series resistors

- Accelerometer
 - Sleep and auto-sleep modes available
 - Interrupts to wake up MCU
 - Adjustable sampling rate