
1 Alexander G. Dean - agdean@ncsu.edu

SIMD AND DSP WITH ARM CORTEX-M

2 Alexander G. Dean - agdean@ncsu.edu

 ARMv7-M
 Cortex-M3 adds…

 Hardware divide instruction
 Conditional execution using IT instruction
 MAC (Multiply-Accumulate) instruction, multi-

cycle
 Cortex-M4 adds…

 Saturating arithmetic
 DSP instructions (more later)
 More MAC instructions, single-cycle
 32-bit SIMD processing – single instruction,

multiple data (mini-vector)
 Cortex-M4F adds…

 Single-precision floating-point math unit
 Instructions
 32 S registers (32-bits each)

 Cortex-M7F adds…
 Additional floating-point math instructions
 Optional double-precision floating-point

instructions

 ARMv8.1-M (e.g. Cortex-M55) adds…
 Low-overhead branch instructions
 Half-precision floating point
 Helium (M-Profile Vector Extension)

 128-bit SIMD processing

Instruction Set Enhancements for SIMD and DSP

3

SIMD PROCESSING

4

 Data path in CPU is 32 bits wide
 Registers, arithmetic/logic unit, memory

interface

 Interpret and process those 32 bits as
multiple elements of a vector
 E.g. two 16-bit values, four 8-bit values packed

into 32 bits

 Now a single instruction can operate on
multiple elements
 Up to 2x or 4x speed-up

 Available on Cortex-M4, M7, etc.

SIMD: Single Instruction Performed Simultaneously on Multiple Data items

Elements

5

 32-bit SIMD in ARMv7-M (M4,M7)
 Data types and operation variants

 Size: 8 bit (byte) or 16 bit (halfword)

 Signed or unsigned (s, u)

 Saturating (q): result does not
overflow/underflow, but instead is clipped

 Halving (h): result is divided by two,
eliminating overflow possibility

 Operations

 Add, subtract, multiply, exchange, absolute
value, accumulate, select

 Not all operations are available for all data
types

 Full information in Armcc User Guide,
Chapter 12 (SIMD Instruction Intrinsics)

 Helium: Advanced SIMD defined in
ARMv8.1-M (e.g. Cortex-M55)
 Very high performance 128-bit data path

 Uses FP register file as 8 quadwords, 16
doublewords, or 32 words

 Data types

 8, 16, 32 bits

 Integer, optional float

 Over 150 new instructions

 Data processing

 Data reformatting: Load and store support
interleaving, gather load, scatter store
operations

SIMD Data Types and Instructions Available

6

 Rely on compiler to vectorize code and
generate SIMD instructions

 Write C code and use libraries which
support SIMD

 Write assembly code with SIMD
instructions

 Write C code with compiler intrinsics to
specify SIMD operations

Preview: How to Use Them?

7 Alexander G. Dean - agdean@ncsu.edu

SIMD CONCEPTS El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

8 Alexander G. Dean - agdean@ncsu.edu

 Data path (registers, ALU, buses, etc.) is
32 bits wide
 Can we pack multiple data items into a single

32-bit value?

 SIMD: Single Instruction is applied to
Multiple Data values simultaneously
 One register has multiple lanes, each holding a

data value
 32 1-bit lanes, four 8-bit lanes, two 16-bit lanes?

SIMD (Mini-Vector) Concepts

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

Data

+

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

Data

Data

9 Alexander G. Dean - agdean@ncsu.edu

 Text represented with 8-bit ASCII data
 Clear bit 6 to convert from lower to

upper case
 AND with ~0x20 (0xdf)

 Converts one character at a time
 Processor has 32-bit data path, which can

hold four 8-bit lanes. Can we do better?

Example Application: Convert Text to Upper Case
t h i s i s i t

t0xdf

&

T

T

Memory

Memory

Registers 8-bit load

8-bit store

32-bit AND

char *in, *out, t;
…

t = *in++;
t &= ~0x20;
*out++ = t;

10 Alexander G. Dean - agdean@ncsu.edu

 Have processor interpret data four
bytes at a time (as uint32_t)
 Data in memory is arranged sequentially, no

reorganization needed
 Convert inputs, temps, outputs to 32 bits
 Replicate constant ~0x20 across all lanes

(~0x20202020)
 Pointers will automatically be incremented

by 4 instead of 1

 Restrictions
 Assumes number of data items is multiple of four
 Will also convert some symbols if inputs are not

tested to be characters: {→[, }→], |→\,~→^
 Is AND a special operation, or will this work for

every operation?

Example Application: Convert Text to Upper Case

& &

T H I S

0xdf 0xdf 0xdf 0xdf t h i s

&&

t h i s i s i t

Memory

T H I S
Memory

32-bit load

32-bit store

32-bit AND

uint32_t *in,
*out, t;
…
t = *in++;
t &= ~0x20202020;
*out++ = t;

11 Alexander G. Dean - agdean@ncsu.edu

 This approach works if lanes are independent (one lane
cannot affect another)

 Independent lanes give inherently SIMD operations
 AND, NAND, OR, XOR, NOR, NOT

 Other instructions have dependence between lanes,
preventing SIMD operations
 Rotate, shift
 Add (carry), subtract (borrow), multiply, divide

 Need special versions of these operations
 ARMv7-M provides some 32-bit SIMD instructions

based on ADD, SUB, and MUL

Generalization to Other Operations?

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

12 Alexander G. Dean - agdean@ncsu.edu

ARMV7-M SIMD
AND DSP SUPPORT + +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

13 Alexander G. Dean - agdean@ncsu.edu

 Four eight-bit lanes Two sixteen-bit lanes

Data Sizes for 32-bit SIMD Instructions

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

+ +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

14 Alexander G. Dean - agdean@ncsu.edu

 Basic Instructions
 ADD[8|16]: Byte-wise or halfword-wise addition
 SUB[8|16]: Byte-wise or halfword-wise subtraction

 Result status bits in program status register
 Four bits GE[0-3], corresponding to each lane
 SADD, SSUB: sets lane bit to 1 if lane result ≥ 0
 UADD, USUB: sets lane bit to 1 if lane result overflows or underflows

 Prefixes
 Signed (S): signed math, updates GE bits
 Unsigned (U): unsigned math, updates CPSR GE bits
 Saturating (Q): Limit value to closest valid value
 Halving (H): Divide result by two

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+

Q/H

+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

15 Alexander G. Dean - agdean@ncsu.edu

 More Instructions
 ASX: Halfword-wise exchange, add, subtract
 SAX: Halfword-wise exchange, subtract, add

 Prefixes
 Saturating
 Halving

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+/-

Q/H

-/+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

16 Alexander G. Dean - agdean@ncsu.edu

 More Instructions
 USAD8: Unsigned sum of absolute differences
 USADA8: Unsigned sum of absolute differences

and accumulate

32-bit SIMD Arithmetic Instructions

- -

Src. Reg. 1 Src. Reg. 2
El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

--

abs absabsabs

+

Dest. Reg.

Src. Reg. 3

17 Alexander G. Dean - agdean@ncsu.edu

 SM[U|L][A|S]{L}D{X}: Dual halfword signed
multiply, add/subtract products

 [U|L] Options
 U: SMU – Base operation: multiply halfwords,

add/subtract products
 L: SML – Accumulate sum (or difference) of products

in 32-bit register

 [A|S] Options
 A: Add products
 S: Subtract products

 {L} Option
 L: Accumulate to 64-bit register

 {X} Option
 X: Exchange halfwords of one operand before multiplications

32-bit SIMD Multiplication Instructions

El. 1 El. 2 El. 1 El. 2

* *

Src. Reg. 1 Src. Reg. 2

+/-

Dest. Reg.

Src. Reg. 3

18 Alexander G. Dean - agdean@ncsu.edu

 Saturation
 SSAT16: Saturate halfwords to range -2n-1 to

2n-1-1, with n as argument
 USAT16: Saturate halfwords to range 0 to 2n-1,

with n as argument

 Extraction with extension (and optional
addition)
 UXT{A}B16: extract low byte of each half-

word, zero extend to 16 bits, optional add to
first operand

 SXT{A}B16: extract low byte of each half-word,
sign extend to 16 bits, optional add to first
operand

 Packing
 PKHBT: pack halfword, bottom and left-shifted

top (LSL)
 PKHTB: pack halfword, top and right-shifted

bottom (ASR)

32-bit SIMD Miscellaneous Instructions

19 Alexander G. Dean - agdean@ncsu.edu

 SEL: Select bytes based on GE (greater
than or equal) flags
 APSR GE flags updated by

[U|S][ADD|SUB][8|16]

 Example 1:
 SADD16 R0, R1, R2: Signed halfword add
 SEL R3, R4, R5

 R3[15:0] = R4[15:0] if SADD16 low-word is ≥ 0,
else R5[15:0]

 R3[31:16] = R4[31:16] if SADD16 high-word is ≥
0, else R5[31:16]

 Example 2:
 UADD8 R0, R1, R2: Signed byte add
 SEL R3, R4, R5

 R3[7:0] = R4[7:0] if UADD8 low byte result
overflowed, else R5[7:0]

 Similar for other bytes

32-bit SIMD Miscellaneous Instructions: Selection
Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

APSR.GE

0 1 2 3

20 Alexander G. Dean - agdean@ncsu.edu

References

 MDK Armcc User Guide: DUI0375
 Chapter 12: ARMv6 SIMD Instruction Intrinsics

 ARM C Language Extensions (ACLE):
IHI0053 (different syntax, not used for
armcc v5)
 9.3: 16-bit multiplications
 9.4: Saturating intrinsics
 9.5: 32-bit SIMD intrinsics
 11: Instruction generation

21 Alexander G. Dean - agdean@ncsu.edu

USING THE SIMD
INSTRUCTIONS

22 Alexander G. Dean - agdean@ncsu.edu

 Write C code, rely on the compiler to
generate SIMD instructions
 Depends on compiler’s ability to vectorize
 “How can I get the compiler to do what I

want?”
 Sometimes manual provides idioms (code

structures) which compiler can process more
easily

 Write C code, call functions from SIMD
libraries
 SIMD-optimized libraries needed for your

application, such as CMSIS-DSP

 Write C code with compiler
intrinsics to specify SIMD instructions
 Gives more control but handles many details
 Need clear understanding of data layout and

processing flow

 Write a separate SIMD assembly code
module, link it with our C code
 Provides full control but you must manage all

the details
 Need clear understanding of data layout and

processing flow

How Can We Use These SIMD Instructions?

23 Alexander G. Dean - agdean@ncsu.edu

Vectorizing the Code

 Definitions
 Scalar code: operates on one set of operands

at a time
 Vector code: operates on multiple sets of

operands at a time
 Vectorization: converting code from scalar

to vector form

 Vectorization is main compiler
optimization enabling use of SIMD
instructions
 Others possible, but don’t work on as much

code, harder to implement in compiler

 Best to try to vectorize loops first
 Innermost loops often dominate execution time
 Arrangement of instructions and data make

vectorization easier (than the general case, e.g.
straight-line code)

 Vectorization of loops is built on loop
unrolling

24 Alexander G. Dean - agdean@ncsu.edu

Loop Unrolling: Selecting Loops

 Select an inner-most loop
 With data in arrays
 Without

 Subroutine calls
 Conditional control flow
 Data dependencies on recent iterations

 Determine loop unroll factor (and vector size) F
 ARM registers are 32 bits wide, so options are:

 4 element vector of bytes
 2 element vector of half-words

 Any loop carried dependencies must be > F iterations away

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n; i++) {
sum_val += x[i];

}
return sum_val;

}

25 Alexander G. Dean - agdean@ncsu.edu

Loop Iteration Count

 Unrolling a loop with L iterations by a
factor of F
 Unrolled loop performs floor(L/F) iterations

of the unrolled loop (performing F times as
much work per iteration)
 This unrolled loop will later be vectorized

 Clean-up loop performs L modulo F
remaining iterations of the original loop
(performing 1x work per iteration)

 Compiler must generate code which
operates correctly regardless of whether L
is a multiple of F or not
 Typically involves generating code to determine

if there are at least F more iterations of work
to perform

 Can be simplified if compiler can determine if L
is a multiple of F

26 Alexander G. Dean - agdean@ncsu.edu

Loop Unrolling and Vectorization Process

1. Create prelude
1. Create vector values (and loop-independent

variables) from scalars

2. Unroll loop body
1. Modify loop control code

1. Test: confirm at least F more iterations remain
2. Increment: Scale update by factor of F

2. Unroll loop by factor of vector size
1. Modify data processing instructions

1. Unrolling: Make F-1 copies of loop body instructions

2. Vectorizing: replace F scalar instructions with one
vector instruction

2. Update references to data: Add 1 to F-1 to data
value indices. May update pointers by factor of F.

3. Create postlude
1. Reduce (gather, condense, sum) data from

vector to scalar form

4. Clean-up
1. Implement remaining iterations with non-

vectorized code

27 Alexander G. Dean - agdean@ncsu.edu

Example Program with Loop Unrolling

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n; i++) {
sum_val += x[i];

}
return sum_val;

}

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n-3; i+=4) {
sum_val += x[i];
sum_val += x[i+1];
sum_val += x[i+2];
sum_val += x[i+3];

}
for (; i<n; i++) {

sum_val += x[i];
}
return sum_val;

}

Scalar Code Unrolled Scalar Code

28 Alexander G. Dean - agdean@ncsu.edu

 Mix two audio channels together
 16-bit signed data
 c_out← c_in_1/2 + c_in_2/2

Example Application: Mix Two Audio Channels

+

(sum)

Memory: int16_t * c_in_2

Memory: int16_t * c_out

Registers 16-bit load

16-bit store

32-bit ADD

Memory: int16_t * c_in_1

16-bit load

void mix_channels(
int16_t * c_in_1,
int16_t * c_in_2,
int16_t * c_out,
int n) {
int i;
for (i=0; i<n; i++) {
*c_out++ = (*c_in_1++)/2 +

(*c_in_2++)/2;
}

}

/2 /2

29 Alexander G. Dean - agdean@ncsu.edu

Step 1: Unroll Loop, Add Clean-Up Loop

void mix_channels(int16_t * c_in_1, int16_t * c_in_2,
int16_t * c_out, int n) {
int i;

for (i=0; i<n; i++) {
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;

}

for (i=0; i<n-1; i+=2) { // Unroll factor F=2, n-1=n-(F-1)
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;

}
for (; i<n; i++) {

*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;
}

O
rig

in
al

Re
pl

ac
em

en
t

30 Alexander G. Dean - agdean@ncsu.edu

Step 2: Identify SIMD Instruction(s), Evaluate Data Layout

 Good match for signed halving ADD16 instruction
(SHADD16)

 SHADD16 operates on two data elements packed
into 32-bit register

 Memory system is 32 bits wide
 Data in memory is laid out sequentially, so we can

load and store two elements (32 bits) at a time

c_in_1[0] c_in_1[1]

c_in_1[2] c_in_1[3]

c_in_1[4] c_in_1[5]

c_in_2[0] c_in_2[1]

c_in_2[2] c_in_2[3]

c_in_2[4] c_in_2[5]

c_out[0] c_out[1]

c_out[2] c_out[3]

c_out[4] c_out[5]

El. 1 El. 2 El. 1 El. 2

+

H

+

H

El. 1 El. 2

31 Alexander G. Dean - agdean@ncsu.edu

Step 3: Adjust Code Referencing Packed Data

 Currently input data and output
data passed through pointers to
int16_t

 Need pointers to packed 32-bit
values
 Will load and store correctly (4

bytes at a time)
 Will increment correctly (4 byte

increment)

 So, set up additional pointers to
packed SIMD data (32 bits)

 This often generates no
additional code!

void mix_channels(int16_t * c_in_1, int16_t
* c_in_2, int16_t * c_out, int n) {

int32_t * c_in_1_v, * c_in_2_v, *c_out_v;

c_in_1_v = (int32_t *)c_in_1;
c_in_2_v = (int32_t *)c_in_2;
c_out_v = (int32_t *)c_out;

c_in_1[0] c_in_1[1]

c_in_1[2] c_in_1[3]

c_in_1[4] c_in_1[5]

32 Alexander G. Dean - agdean@ncsu.edu

Step 4: Convert Vectorized Loop To Use SIMD Instruction(s)

 Refer to compiler
user guide for details
on intrinsic syntax

 Replace unrolled
loop body with
SIMD code

for (i=0; i<n-1; i+=2) { // unroll factor 2
*c_out_v++ = __shadd16(*c_in_1_v++, *c_in_2_v++);

}

33 Alexander G. Dean - agdean@ncsu.edu

Step 5: Update Scalar Pointers in Clean-Up Loop

 Have scalar clean-up
loop do remaining work,

 Need to update scalar
pointers to pick up
where vectorized loop
finished

 Casting pointers will
likely create no new
code

// Clean-Up Loop
if (i<n) {

// Update scalar ptrs to match vector ptrs
c_in_1 = (int16_t *) c_in_1_v;
c_in_2 = (int16_t *) c_in_2_v;
c_out = (int16_t *) c_out_v;
for (; i<n; i++) {

*c_out++ = *c_in_1++/2 + *c_in_2++/2;
}

}

34 Alexander G. Dean - agdean@ncsu.edu

Resulting Loop Body Object Code and Performance

*c_out_v++ = __shadd16(*c_in_1_v++,
*c_in_2_v++);

L1: LDR r9,[r3],#0x04
LDR r10,[r2],#0x04
SHADD16 r9,r9,r10
ADDS r0,r0,#2
STR r9,[r1],#0x04
CMP r0,r8
BLT L1

*c_out++ = (*c_in_1++)/2+
(*c_in_2++)/2;

L1: LDRSH r8,[r3,#0x02]
LDRSH r7,[r2,#0x02]
ADD r8,r8,r8,LSR #31
ASR r8,r8,#1
ADD r7,r7,r7,LSR #31
ADD r7,r8,r7,ASR #1
STRH r7,[r1,#0x02]
LDRSH r7,[r3,#0x04]!
LDRSH r8,[r2,#0x04]!
ADD r7,r7,r7,LSR #31
ASR r7,r7,#1
ADD r8,r8,r8,LSR #31
ADD r7,r7,r8,ASR #1
STRH r7,[r1,#0x04]!
SUBS r0,r0,#1
BNE L1

Compiler
unrolled loop

by factor of two

Signed divide by 2

Signed divide by 2

Signed divide by 2

Signed divide by 2

Scalar Code SIMD Code

Total Duration 11.78 µs 5.5 µs

Time per
element

92 ns 43

Clock cycles per
element

11 5.1

Scalar Code SIMD Code

35 Alexander G. Dean - agdean@ncsu.edu

LIMITS TO VECTORIZATION

36 Alexander G. Dean - agdean@ncsu.edu

Conditional Control Flow in Loops

 SIMD – Single Instruction, Multiple Data

 Conditions (if, ?:, etc.) usually introduce conditional control-flow in the loop body

 Multiple control-flow operations -> Multiple PCs -> Multiple Instruction
 Not allowed in SIMD!

37 Alexander G. Dean - agdean@ncsu.edu

ISA May Help Eliminate Conditional Control Flow

 More complex instruction may absorb conditional
control flow
 Saturating math instructions. No overflow test and

clean-up code needed!
 Select instruction: copy r0 or r1 into r2, based on

value in r3

 Predication: conditional execution
 Instruction is processed, but predicate register

controls if results are written to destinations
 Conditional branch is simple example:

 CMP r0, r3: Compare values, write condition code flags

 BNE label: Branch writes label to PC if flags indicate
NE (r0 != r3), otherwise it has no effects (acts like
NOP)

 Could make other instructions conditional:
 ADDNE r4, r5, r6: Put r5+r6 into r4 if flags indicate

NE (e.g. previous comparison resulted in Not Equal
condition)

 ARMv7-M Features
 Saturating math
 Select operation
 Bitwise logic operations

 ARMv8.1-M/Helium Features
 Instruction predication: Conditional execution for

some instructions based on condition code flags
 Lane predication: Conditional execution for some

lanes based on VPR register contents (set by vector
compare instructions)

 Rounding and saturating shift instructions

38 Alexander G. Dean - agdean@ncsu.edu

Loop-Carried Dependencies

 Loop-carried dependency exists if a
calculation in iteration n depends on the
result of any previous iteration m, where
m<n

 This dependency prevents vectorization
 Can’t do multiple iterations simultaneously, but

may be able to overlap them (software
pipelining) to reduce total time

 Sometimes is possible to restructure code
to remove it, but not always

float x[N], y[N];

for (n=1; n<N; n++) {
x[n] = y[n] * x[n-1];

}

// Unrolling once leads to this
for (n=1; n<N; n+=2) {

x[n] = y[n] * x[n-1];
x[n+1] = y[n+1] * x[n];

}

