NC STATE UNIVERSITY

SIMD AND DSPWITH ARM CORTEX-M

Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Instruction Set Enhancements for SIMD and DSP

= ARMv7-M = Cortex-M7F adds...
= Cortex-M3 adds. .. = Additional floating-point math instructions

= Optional double-precision floating-point
instructions

= Hardware divide instruction

= Conditional execution using IT instruction

= MAC (Multiply-Accumulate) instruction, multi-
cycle

= Cortex-M4 adds... = ARMv8.1-M (e.g. Cortex-M55) adds...

Saturating arithmetic = Low-overhead branch instructions

= DSP instructions (more later)
= More MAC instructions, single-cycle

= Half-precision floating point

. , . . . = Helium (M-Profile Vector Extension)
= 32-bit SIMD processing — single instruction, = |28-bit SIMD processing

multiple data (mini-vector)
= Cortex-M4F adds...
= Single-precision floating-point math unit
= [nstructions

= 325 registers (32-bItS eaCh) Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

SIMD PROCESSING

NC STATE UNIVERSITY

SIMD: Single Instruction Performed Simultaneously on Multiple Data items

Source
Registers

= 9 » Y ¢| Dn
[Elements /
I Operation

1 - estination]
.I_ﬁ Register
= Data path in CPU is 32 bits wide = Now a single instruction can operate on
= Registers, arithmetic/logic unit, memory multiple elements
interface = Up to 2x or 4x speed-up
= Interpret and process those 32 bits as = Available on Cortex-M4, M7, etc.

multiple elements of a vector

= E.g. two |6-bit values, four 8-bit values packed
into 32 bits

NC STATE UNIVERSITY

SIMD Data Types and Instructions Available

= 32-bit SIMD in ARMv7-M (M4,M7) * Helium: Advanced SIMD defined in
= Data types and operation variants ARMv8.1-M (e.g. Cortex-M55)
= Size: 8 bit (byte) or 16 bit (halfword) = Very high performance 128-bit data path
= Signed or unsigned (s, u) = Uses FP register file as 8 quadwords, 16

= Saturating (q): result does not doublewords, or 32 words

overflow/underflow, but instead is clipped * Data types
= Halving (h): result is divided by two, = 8, 16, 32 bits
eliminating overflow possibility = Integer, optional float
= Operations = Over 150 new instructions
= Add, subtract, multiply, exchange, absolute = Data processing

value, accumulate, select = Data reformatting: Load and store support

= Not all oper‘ations are available for all data inter|eaving, gather load, scatter store
types operations

= Full information in Armcc User Guide,
Chapter 12 (SIMD Instruction Intrinsics)

NC STATE UNIVERSITY

Preview: How to Use Them?

= Rely on compiler to vectorize code and = Write assembly code with SIMD
generate SIMD instructions instructions

* Write C code and use libraries which = Write C code with compiler intrinsics to
support SIMD specify SIMD operations

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

SIMD CONCEPTS

El.1 | EIl2

Dest. Reg.

Alexander G. Dean - agdean@ncsu.edu

SIMD (Mini-Vector) Concepts

Src. Reg. 1

Data

Src. Reg. 2

Data

Data

= Data path (registers, ALU, buses, etc.) is

32 bits wide

32-bit value?

Dest. Reg.

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2
El.L1 | EI.2 El.L1 | EI.2
El.L1 | EIL 2
Dest. Reg.

= SIMD: Single Instruction is applied to

Multiple Data values simultaneously
= Can we pack multiple data items into a single -

Alexander G. Dean -

One register has multiple lanes, each holding a

data value

32 |-bit lanes, four 8-bit lanes, two | 6-bit lanes?

agdean@ncsu.edu

NC STATE UNIVERSITY

Example Application: Convert Text to Upper Case
Memory
Char Dec Oct Hex | Char Dec Oct Hex t h i) i S i t
|
. 8-bit load
@ 64 0100 0x40 | 9% 0140 0x60 Registers ¥
A 65 0101 0x41 | a 97 0141 0Ox61 O o .
B 66 02 O0x42 [b 95 0142 0x62 Oxdf t char *in, *out, t;
C 67 0103 0x43 | ¢ 99 0143 0x63
D 68 0104 O0x44 | d 100 0144 0Ox64
E 69 0105 0x45 | e 101 0145 0x65 .
F 70 0106 Ox46 | f 102 0146 0x66 e 32-bit AND
G 71 0107 0x47 | g 103 0147 0x67 t = ™1 n++;
H 72 0110 0x48 | h 104 0150 0x68 .
| 73 0111 0x49 | i 105 0151 0x69 t &= ~OX201
J 74 0112 Ox4a | | 106 0152 Ox6a e — .
K 75 0113 Oxdb | k 107 0153 0Ox6b T out++ t ’
L 76 0114 Oxdc | | 108 0154 Ox6c N
M 77 0115 Ox4d | m 109 0155 Ox6d 8-bit store
Al 70 n11e NuAn | n 11N n1ce NuvRA Memory
?T
= Text represented with 8-bit ASCII data = Converts one character at a time
= Clear bit 6 to convert from lower to = Processor has 32-bit data path, which can
upper case hold four 8-bit lanes. Can we do better?

= AND with ~0x20 (0xdf)

9 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Example Application: Convert Text to Upper Case

Memory

= Have processor interpret data four
bytes at a time (as uint32_t)

= Data in memory is arranged sequentially, no
reorganization needed Oxdf| Oxdf | Oxdf | Oxdf

i S i t

= Convert inputs, temps, outputs to 32 bits uint32_t *in,

= Replicate constant ~0x20 across all lanes *out, t;
(~0x20202020)
= Pointers will automatically be incremented t = *In++;
by 4 instead of | t &= ~0x20202020;
*out++ = t;

= Restrictions

= Assumes number of data items is multiple of four
32-bit store

= Will also convert some symbols if inputs are not & \ y
tested to be characters: {—[, }—], |-\,~—" %»T AR emory

= |s AND a special operation, or will this work for
every operation?

10 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Generalization to Other Operations!?

= This approach works if lanes are independent (one lane Src. Reg. 1 Src. Reg. 2
cannot affect another) EL1 | EL2 EL1 | EL2

= Independent lanes give inherently SIMD operations
= AND, NAND, OR, XOR, NOR, NOT
= Other instructions have dependence between lanes,
preventing SIMD operations
= Rotate, shift

= Add (carry), subtract (borrow), multiply, divide

El.L1 | EI.2

= Need special versions of these operations

= ARMv7-M provides some 32-bit SIMD instructions
based on ADD, SUB, and MUL

Dest. Reg.

I Alexander G. Dean - agdean@ncsu.edu

ARMV7-M SIMD
AND DSP SUPPORT

Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

JELTEL
23]

Dest. Reg.

Data Sizes for 32-bit SIMD Instructions

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

= Four eight-bit lanes

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2
El.L1 | EIL 2 El.L1 | EI.2
El.L1 | EI.2
Dest. Reg.

= Two sixteen-bit lanes

Alexander G. Dean - agdean@ncsu.edu

32-bit SIMD Arithmetic Instructions

= Basic Instructions

= ADD[8|16]: Byte-wise or halfword-wise addition

= SUB[8|16]: Byte-wise or halfword-wise subtraction
= Result status bits in program status register

= Four bits GE[0-3], corresponding to each lane
= SADD, SSUB: sets lane bit to | if lane result = 0

= UADD, USUB: sets lane bit to | if lane result overflows or underflows

= Prefixes
= Signed (S): signed math, updates GE bits
= Unsigned (U): unsigned math, updates CPSR GE bits
= Saturating (Q): Limit value to closest valid value
= Halving (H): Divide result by two

NC STATE UNIVERSITY

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Prefixes for Parallel Instructions

S Signed arithmetic modulo 2% or 2'°, sets CPSR GE bits
0 Signed saturating arithmetic

SH Signed arithmetic, halving results
U Unsigned arithmetic modulo 2% or 2'°, sets CPSR GE bits
Uo Unsigned saturating arithmetic

UH Unsigned arithmetic, halving results

14 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

32-bit SIMD Arithmetic Instructions

Src. Reg. 1 Src. Reg. 2

= More Instructions

= ASX: Halfword-wise exchange, add, subtract El.1 | EL2 EL.1 | EL2

= SAX: Halfword-wise exchange, subtract, add

= Prefixes
= Saturating
= Halving

Prefixes for Parallel Instructions

S Signed arithmetic modulo 2% or 2'°, sets CPSR GE bits

Q Signed saturating arithmetic

SH Signed arithmetic, halving results

10f Unsigned arithmetic modulo 2% or 2'°, sets CPSR GE bits

Uo Unsigned saturating arithmetic

UH Unsigned arithmetic, halving results

5 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

32-bit SIMD Arithmetic Instructions

Src. Reg. 1 Src. Reg. 2 Src. Reg. 3

= More Instructions
= USADS: Unsigned sum of absolute differences

= USADABS8: Unsigned sum of absolute differences
and accumulate

Dest. Reg.

16 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

32-bit SIMD Multiplication Instructions

Src. Reg. 1 Src. Reg. 2 Src. Reg. 3

SM[UJL][A|SKLID{X}: Dual halfword signed

multiply, add/subtract products EL1 | EL2 El.1 | El2

[U|L] Options

= U:SMU — Base operation: multiply halfwords,
add/subtract products

= L:SML — Accumulate sum (or difference) of products
in 32-bit register

[A|S] Options
= A:Add products
= S:Subtract products !

{L} Option I
= L: Accumulate to 64-bit register
{X} Option

= X:Exchange halfwords of one operand before multiplications
17 Alexander G. Dean - agdean@ncsu.edu

Dest. Reg.

NC STATE UNIVERSITY

32-bit SIMD Miscellaneous Instructions

= Saturation = Packing
= SSAT | 6: Saturate halfwords to range -2™! to = PKHBT: pack halfword, bottom and left-shifted
2™I-1, with n as argument top (LSL)
= USAT | 6: Saturate halfwords to range 0 to 2"-1, = PKHTB: pack halfword, top and right-shifted
with n as argument bottom (ASR)

= Extraction with extension (and optional
addition)
= UXT{A}BIl6: extract low byte of each half-

word, zero extend to |6 bits, optional add to
first operand

= SXT{A}BI6: extract low byte of each half-word,
sigh extend to |6 bits, optional add to first
operand

18 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

32-bit SIMD Miscellaneous Instructions: Selection

APSR.GE Src. Reg. 1 Src. Reg. 2

.| EL. ELL|EL

0/1 2|3
21314] = Example I:

— = SADDI6 RO, RI, R2: Signed halfword add
= SEL R3,R4,R5
= R3[15:0] = R4[15:0] if SADD 16 low-word is 2 0,
else R5[15:0]
= R3[31:16] = R4[31:16] if SADDI6 high-word is 2
0, else R5[31:16]
= Example 2:
= UADDS8 RO, R1, R2: Signed byte add
= SEL R3,R4,R5
= SEL:Select bytes based on GE (greater - R3[7:0] = R4[7:0] if UADDS low byte result
than or equal) flags overflowed, else R5[7:0]

= APSR GE flags updated by = Similar for other bytes
[U|S]I[ADD|SUB][8] 1 6]

19 Alexander G. Dean - agdean@ncsu.edu

Dest. Reg.

NC STATE UNIVERSITY

References

= MDK Armcc User Guide: DUI0375
= Chapter 12: ARMvé SIMD Instruction Intrinsics
= ARM C Language Extensions (ACLE):
IHIO053 (different syntax, not used for
armcc v5)
= 9.3: 1 6-bit multiplications
= 9.4: Saturating intrinsics
= 9.5:32-bit SIMD intrinsics
= | I:Instruction generation

20 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

USING THE SIMD
INSTRUCTIONS

Alexander G. Dean - agdean@ncsu.edu

How Can We Use These SIMD Instructions?

= Write C code, rely on the compiler to = VWrite C code with compiler

generate SIMD instructions intrinsics to specify SIMD instructions
= Depends on compiler’s ability to vectorize = Gives more control but handles many details
= “How can | get the compiler to do what | = Need clear understanding of data layout and
want?” processing flow

= Sometimes manual provides idioms (code

structures) which compiler can process more)
) P P = Write a separate SIMD assembly code

easily R
module, link it with our C code
_ _ = Provides full control but you must manage all
= Write C code, call functions from SIMD the details
libraries = Need clear understanding of data layout and
= SIMD-optimized libraries needed for your processing flow

application, such as CMSIS-DSP

22 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Vectorizing the Code

= Definitions = Best to try to vectorize loops first
= Scalar code: operates on one set of operands = |nnermost loops often dominate execution time
at a time = Arrangement of instructions and data make
= Vector code: operates on multiple sets of vectorization easier (than the general case, e.g.
operands at a time straight-line code)

= Vectorization: converting code from scalar

to vector form o , ,
= Vectorization of loops is built on loop

unrolling
= Vectorization is main compiler

optimization enabling use of SIMD
instructions

= QOthers possible, but don’t work on as much
code, harder to implement in compiler

23 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Loop Unrolling: Selecting Loops

int sum_ints(int * x, int n)

= Select an inner-most loop
int 1, sum_val = 0;

= With data in arrays

= Without . . .
, for (i=0; 1i<n; 1++) {
= Subroutine calls .
- sum_val += x[1];
= Conditional control flow }
= Data dependencies on recent iterations return sum val:
— ’

= Determine loop unroll factor (and vector size) F

= ARM registers are 32 bits wide, so options are:
= 4 element vector of bytes
= 2 element vector of half-words
= Any loop carried dependencies must be > F iterations away

24 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Loop Iteration Count

= Unrolling a loop with L iterations by a = Compiler must generate code which
factor of F operates correctly regardless of whether L

= Unrolled loop performs floor(L/F) iterations is a multiple of F or not
of the unrolled loop (performing F times as = Typically involves generating code to determine
much work per iteration) if there are at least F more iterations of work
= This unrolled loop will later be vectorized to perform

* Clean-up loop performs L modulo F = Can be simplified if compiler can determine if L
remaining iterations of the original loop is a multiple of F

(performing Ix work per iteration)

25 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Loop Unrolling and Process

2. Unroll loop body 4. Clean-up

|. Modify loop control code |. Implement remaining iterations with non-

|. Test: confirm at least F more iterations remain vectorized code
2. Increment: Scale update by factor of F
2. Unroll loop by factor of vector size

|. Modify data processing instructions
I. Unrolling: Make F-| copies of loop body instructions

2.

2. Update references to data:Add | to F-1 to data
value indices. May update pointers by factor of F

26 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Example Program with Loop Unrolling

Scalar Code Unrolled Scalar Code
int sum_ints(int * x, int n) 1nt sum_ints(C int * x, int n)
int i, sum_val = O; int 1, sum_val = 0;
for (i=0; i<n; i++) { for (1=0; Tsn-3; Jr=)
’ ’ o sum_val += x[1];
sum_val += x[1]; sum_val += x[i+1];
} sum_val += x[i+2];
return sum_val; sum_val += x[i+3];

} }
for (; i<n; i++) {
sum_val += x[1];
}

return sum_val;

}

27 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Example Application: Mix Two Audio Channels

void mix_channels(
intlée_t * c_in_1,
intl6_t * c_in_2,
intlée_t * c_out,
int n) {
int 1;

Memory: intl6 t *c in 1

16-;)it load Memory: intl6 t *c in 2

I
l . 16-bit load
Registers g

for (i=0; i<n; i++) {

*c_out++ = (Fc_in_1++)/2 +
(*c_in_2++)/2;

= Mix two audio channels together
= |6-bit signed data
" c out<«—c_in_I/2+c_in_2/2

28

32-bit ADD

(sum)

N
16-bit store

? Memory: intl6 t * c_out

Alexander G. Dean - agdean@ncsu.edu

Step |: Unroll Loop,Add Clean-Up Loop

void mix_channels(intl6_t * c_in_1l, intl6_t *

Original

Replacement

29

intle_t *

int 1;

c_out, int n) {

for (i=0; i<n; i++) {

}

*Cc_out++

(*c_1n_1++)/2 + (*c_1n_2++)/2;

NC STATE UNIVERSITY

c_in_2,

for (i=0; i<n-1; i+=2) { // Unroll factor F=2, n-1=n-(F-1)

}

*Cc_out++
*Cc_out++

(*c_in_1++)/2 + (Fc_in_2++)/2;
(*c_in_1++)/2 + (Fc_in_2++)/2;

for (; i<n; i++) {

}

*Cc_out++

(*c_in_1++)/2 + (*c_in_2++)/2;

Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Step 2: ldentify SIMD Instruction(s), Evaluate Data Layout

c_in_1[0] | c_in_1[1]

c_in_1[2] | c_in_1[3]

c_in_1[4] | c_in_1[5]

c_in_2[0] c_in_2[1]

= Good match for signed halving ADD | 6 instruction c_in_2[2] | c_in_2[3]

(SHADD6) c_in_2[4] c_in_2[5]
= SHADD 6 operates on two data elements packed

into 32-bit register c_out[0] | c_out[1]
= Memory system is 32 bits wide c_out[2] | c_out[3]

= Data in memory is laid out sequentially, so we can
load and store two elements (32 bits) at a time

c_out[4] | c_out[5]

30 Alexander G. Dean - agdean@ncsu.edu

Step 3:Adjust Code Referencing Packed Data

= Currently input data and output void mix_channels(intl6_t * c_in_1, intl6_t

data passed through pointers to * c_1n_2, intl6_t * c_out, int n) {
intl6_t . : , :
- int32_t * c_in_l_v, * c_1n_2_v, *c_out_v;
= Need pointers to packed 32-bit
values [c_in_1_vie (int32_t *
= Will load and store correctly (4 c_in_2_v =™Jnt32_t
bytes at a time) cout_v = (IM32_t *
= Will increment correctly (4 byte
increment) c_in_1[0] ||c_in_1[1]

= So, set up additional pointers to
packed SIMD data (32 bits)

= This often generates no
additional code!

c_in_1[2] | c_in_1[3]

c_in_1[4] | c_in_1[5]

31 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Step 4: Convert Vectorized Loop To Use SIMD Instruction(s)

32

Refer to compiler
user guide for details
on intrinsic syntax

Syntax
unsigned int _ shaddl6(unsigned int vall, unsigned int val2)
Where:

vall

holds the first two 16-bit summands
val2

holds the second two 16-bit summands.

Return value

The _ shadd16 intrinsic returns:

* The halved addition of the low halfwords from each operand. in the low halfword of the return value.

* The halved addition of the high halfwords from each operand. in the high halfword of the return
value.

Replace unrolled
loop body with
SIMD code }

for (i=0; 1i<n-1; i+=2) { // unroll factor 2

*c_out_v++ = __shaddle(*c_in_1_v++, *c_in_2_v++);

Alexander G. Dean - agdean@ncsu.edu

Step 5: Update Scalar Pointers in Clean-Up Loop

= Have scalar clean-up // Clean-Up Loop

s if (i<n) {

loop do remaining work, // Update scalar ptrs to match vector ptrs
* Need to update scalar c_in_1l = (intl6_t *) c_in_1_v;

olnas ok u i

where vectorized loop for ('_1'<n' i 1 ’

finished *C_out++ = *c_in_l++/2 + *c_in_2++/2;
= Casting pointers will }

likely create no new }

code

33 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Resulting Loop Body Object Code and Performance

34

Scalar Code

*c_out++ = (*c_in_1++)/2+
(*c_in_24++)/2;

L1: LDRSH
LDRSH
ADD
ASR
ADD
ADD
STRH
LDRSH
LDRSH
ADD
ASR
ADD
ADD
STRH
SUBS
BNE

r8, [r3,#0x02]
r7,[r2,#0x02]
r8,r8,r8,LSR #31
r8,r8,#1
r7,r7,r7,LSR #31
r7,r8,r7,ASR #1
r7,[rl,#0x02]
r7,[r3,#0x04]!
r8, [r2,#0x04]!
r7,r7,r7,LSR #31
r7,r7,#1
r8,r8,r8,LSR #31
r7,r7,r8,ASR #1
r7,[rl,#0x04]!
ro, ro,#1

L1

Signed divide by 2

Signed divide by 2

Signed divide by 2

Signed divide by 2

SIMD Code
*c_out_v++ = __shaddl6(*c_in_1_v++,
*C_1N_2_V++);
L1: LDR r9, [r3],#0x04
LDR r10, [r2],#0x04
SHADD16 r9,r9,rl10
ADDS ro, r0, #2
STR r9, [rl],#0x04
CMP ro,r8
BLT L1l
| |Scalar Code |SIMD Code
Total Duration 1 1.78 ps 5.5 pys
Time per 92 ns 43
element
Clock cycles per 11 5.1
element

Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

LIMITSTOVECTORIZATION

Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

Conditional Control Flow in Loops

= SIMD - Single Instruction, Multiple Data

= Conditions (if, 2;, etc.) usually introduce conditional control-flow in the loop body

= Multiple control-flow operations -> Multiple PCs -> Multiple Instruction
= Not allowed in SIMD!

36 Alexander G. Dean - agdean@ncsu.edu

NC STATE UNIVERSITY

ISA May Help Eliminate Conditional Control Flow

= More complex instruction may absorb conditional = ARMv7-M Features

control flow = Saturating math
= Saturating math instructions. No overflow test and = Select operation
clean-up code needed! = Bitwise logic operations
= Select instruction: copy r0 or rl into r2, based on = ARMVS.|-M/Helium Features
value in r3 : I o ,
= Instruction predication: Conditional execution for
* Predication: conditional execution some instructions based on condition code flags
* Instruction is processed, but predicate register = Lane predication: Conditional execution for some
controls if results are written to destinations lanes based on VPR register contents (set by vector
= Conditional branch is simple example: compare instructions)
= CMP r0, r3: Compare values, write condition code flags = Rounding and saturating shift instructions

= BNE label: Branch writes label to PC if flags indicate
NE (r0 != r3), otherwise it has no effects (acts like
NOP)

= Could make other instructions conditional:

= ADDNE r4, r5, ré: Put r5+r6 into r4 if flags indicate
NE (e.g. previous comparison resulted in Not Equal
condition)
37 Alexander G. Dean - agdean@ncsu.edu

Loop-Carried Dependencies

38

Loop-carried dependency exists if a
calculation in iteration n depends on the
result of any previous iteration m, where
m<n

This dependency prevents vectorization

= Can’t do multiple iterations simultaneously, but
may be able to overlap them (software
pipelining) to reduce total time

Sometimes is possible to restructure code
to remove it, but not always

NC STATE UNIVERSITY

float x[N], y[N];

for (n=1; n<N; n++) {
x[n] = y[n] * x[n-1];
}

// unrolling once leads to this
for (n=1; n<N; n+=2) {
x[n] = y[n] * x[n-1];
x[n+1l] = y[n+1] * x[n];

Alexander G. Dean - agdean@ncsu.edu

