
1 Alexander G. Dean - agdean@ncsu.edu

SIMD AND DSP WITH ARM CORTEX-M

2 Alexander G. Dean - agdean@ncsu.edu

 ARMv7-M
 Cortex-M3 adds…

 Hardware divide instruction
 Conditional execution using IT instruction
 MAC (Multiply-Accumulate) instruction, multi-

cycle
 Cortex-M4 adds…

 Saturating arithmetic
 DSP instructions (more later)
 More MAC instructions, single-cycle
 32-bit SIMD processing – single instruction,

multiple data (mini-vector)
 Cortex-M4F adds…

 Single-precision floating-point math unit
 Instructions
 32 S registers (32-bits each)

 Cortex-M7F adds…
 Additional floating-point math instructions
 Optional double-precision floating-point

instructions

 ARMv8.1-M (e.g. Cortex-M55) adds…
 Low-overhead branch instructions
 Half-precision floating point
 Helium (M-Profile Vector Extension)

 128-bit SIMD processing

Instruction Set Enhancements for SIMD and DSP

3

SIMD PROCESSING

4

 Data path in CPU is 32 bits wide
 Registers, arithmetic/logic unit, memory

interface

 Interpret and process those 32 bits as
multiple elements of a vector
 E.g. two 16-bit values, four 8-bit values packed

into 32 bits

 Now a single instruction can operate on
multiple elements
 Up to 2x or 4x speed-up

 Available on Cortex-M4, M7, etc.

SIMD: Single Instruction Performed Simultaneously on Multiple Data items

Elements

5

 32-bit SIMD in ARMv7-M (M4,M7)
 Data types and operation variants

 Size: 8 bit (byte) or 16 bit (halfword)

 Signed or unsigned (s, u)

 Saturating (q): result does not
overflow/underflow, but instead is clipped

 Halving (h): result is divided by two,
eliminating overflow possibility

 Operations

 Add, subtract, multiply, exchange, absolute
value, accumulate, select

 Not all operations are available for all data
types

 Full information in Armcc User Guide,
Chapter 12 (SIMD Instruction Intrinsics)

 Helium: Advanced SIMD defined in
ARMv8.1-M (e.g. Cortex-M55)
 Very high performance 128-bit data path

 Uses FP register file as 8 quadwords, 16
doublewords, or 32 words

 Data types

 8, 16, 32 bits

 Integer, optional float

 Over 150 new instructions

 Data processing

 Data reformatting: Load and store support
interleaving, gather load, scatter store
operations

SIMD Data Types and Instructions Available

6

 Rely on compiler to vectorize code and
generate SIMD instructions

 Write C code and use libraries which
support SIMD

 Write assembly code with SIMD
instructions

 Write C code with compiler intrinsics to
specify SIMD operations

Preview: How to Use Them?

7 Alexander G. Dean - agdean@ncsu.edu

SIMD CONCEPTS El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

8 Alexander G. Dean - agdean@ncsu.edu

 Data path (registers, ALU, buses, etc.) is
32 bits wide
 Can we pack multiple data items into a single

32-bit value?

 SIMD: Single Instruction is applied to
Multiple Data values simultaneously
 One register has multiple lanes, each holding a

data value
 32 1-bit lanes, four 8-bit lanes, two 16-bit lanes?

SIMD (Mini-Vector) Concepts

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

Data

+

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

Data

Data

9 Alexander G. Dean - agdean@ncsu.edu

 Text represented with 8-bit ASCII data
 Clear bit 6 to convert from lower to

upper case
 AND with ~0x20 (0xdf)

 Converts one character at a time
 Processor has 32-bit data path, which can

hold four 8-bit lanes. Can we do better?

Example Application: Convert Text to Upper Case
t h i s i s i t

t0xdf

&

T

T

Memory

Memory

Registers 8-bit load

8-bit store

32-bit AND

char *in, *out, t;
…

t = *in++;
t &= ~0x20;
*out++ = t;

10 Alexander G. Dean - agdean@ncsu.edu

 Have processor interpret data four
bytes at a time (as uint32_t)
 Data in memory is arranged sequentially, no

reorganization needed
 Convert inputs, temps, outputs to 32 bits
 Replicate constant ~0x20 across all lanes

(~0x20202020)
 Pointers will automatically be incremented

by 4 instead of 1

 Restrictions
 Assumes number of data items is multiple of four
 Will also convert some symbols if inputs are not

tested to be characters: {→[, }→], |→\,~→^
 Is AND a special operation, or will this work for

every operation?

Example Application: Convert Text to Upper Case

& &

T H I S

0xdf 0xdf 0xdf 0xdf t h i s

&&

t h i s i s i t

Memory

T H I S
Memory

32-bit load

32-bit store

32-bit AND

uint32_t *in,
*out, t;
…
t = *in++;
t &= ~0x20202020;
*out++ = t;

11 Alexander G. Dean - agdean@ncsu.edu

 This approach works if lanes are independent (one lane
cannot affect another)

 Independent lanes give inherently SIMD operations
 AND, NAND, OR, XOR, NOR, NOT

 Other instructions have dependence between lanes,
preventing SIMD operations
 Rotate, shift
 Add (carry), subtract (borrow), multiply, divide

 Need special versions of these operations
 ARMv7-M provides some 32-bit SIMD instructions

based on ADD, SUB, and MUL

Generalization to Other Operations?

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

12 Alexander G. Dean - agdean@ncsu.edu

ARMV7-M SIMD
AND DSP SUPPORT + +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

13 Alexander G. Dean - agdean@ncsu.edu

 Four eight-bit lanes  Two sixteen-bit lanes

Data Sizes for 32-bit SIMD Instructions

El. 1 El. 2 El. 1 El. 2

+ +

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

+ +

Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

++

14 Alexander G. Dean - agdean@ncsu.edu

 Basic Instructions
 ADD[8|16]: Byte-wise or halfword-wise addition
 SUB[8|16]: Byte-wise or halfword-wise subtraction

 Result status bits in program status register
 Four bits GE[0-3], corresponding to each lane
 SADD, SSUB: sets lane bit to 1 if lane result ≥ 0
 UADD, USUB: sets lane bit to 1 if lane result overflows or underflows

 Prefixes
 Signed (S): signed math, updates GE bits
 Unsigned (U): unsigned math, updates CPSR GE bits
 Saturating (Q): Limit value to closest valid value
 Halving (H): Divide result by two

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+

Q/H

+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

15 Alexander G. Dean - agdean@ncsu.edu

 More Instructions
 ASX: Halfword-wise exchange, add, subtract
 SAX: Halfword-wise exchange, subtract, add

 Prefixes
 Saturating
 Halving

32-bit SIMD Arithmetic Instructions

El. 1 El. 2 El. 1 El. 2

+/-

Q/H

-/+

Q/H

Src. Reg. 1 Src. Reg. 2

El. 1 El. 2

Dest. Reg.

16 Alexander G. Dean - agdean@ncsu.edu

 More Instructions
 USAD8: Unsigned sum of absolute differences
 USADA8: Unsigned sum of absolute differences

and accumulate

32-bit SIMD Arithmetic Instructions

- -

Src. Reg. 1 Src. Reg. 2
El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

--

abs absabsabs

+

Dest. Reg.

Src. Reg. 3

17 Alexander G. Dean - agdean@ncsu.edu

 SM[U|L][A|S]{L}D{X}: Dual halfword signed
multiply, add/subtract products

 [U|L] Options
 U: SMU – Base operation: multiply halfwords,

add/subtract products
 L: SML – Accumulate sum (or difference) of products

in 32-bit register

 [A|S] Options
 A: Add products
 S: Subtract products

 {L} Option
 L: Accumulate to 64-bit register

 {X} Option
 X: Exchange halfwords of one operand before multiplications

32-bit SIMD Multiplication Instructions

El. 1 El. 2 El. 1 El. 2

* *

Src. Reg. 1 Src. Reg. 2

+/-

Dest. Reg.

Src. Reg. 3

18 Alexander G. Dean - agdean@ncsu.edu

 Saturation
 SSAT16: Saturate halfwords to range -2n-1 to

2n-1-1, with n as argument
 USAT16: Saturate halfwords to range 0 to 2n-1,

with n as argument

 Extraction with extension (and optional
addition)
 UXT{A}B16: extract low byte of each half-

word, zero extend to 16 bits, optional add to
first operand

 SXT{A}B16: extract low byte of each half-word,
sign extend to 16 bits, optional add to first
operand

 Packing
 PKHBT: pack halfword, bottom and left-shifted

top (LSL)
 PKHTB: pack halfword, top and right-shifted

bottom (ASR)

32-bit SIMD Miscellaneous Instructions

19 Alexander G. Dean - agdean@ncsu.edu

 SEL: Select bytes based on GE (greater
than or equal) flags
 APSR GE flags updated by

[U|S][ADD|SUB][8|16]

 Example 1:
 SADD16 R0, R1, R2: Signed halfword add
 SEL R3, R4, R5

 R3[15:0] = R4[15:0] if SADD16 low-word is ≥ 0,
else R5[15:0]

 R3[31:16] = R4[31:16] if SADD16 high-word is ≥
0, else R5[31:16]

 Example 2:
 UADD8 R0, R1, R2: Signed byte add
 SEL R3, R4, R5

 R3[7:0] = R4[7:0] if UADD8 low byte result
overflowed, else R5[7:0]

 Similar for other bytes

32-bit SIMD Miscellaneous Instructions: Selection
Src. Reg. 1 Src. Reg. 2

Dest. Reg.

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

El.
1

El.
2

El.
3

El.
4

APSR.GE

0 1 2 3

20 Alexander G. Dean - agdean@ncsu.edu

References

 MDK Armcc User Guide: DUI0375
 Chapter 12: ARMv6 SIMD Instruction Intrinsics

 ARM C Language Extensions (ACLE):
IHI0053 (different syntax, not used for
armcc v5)
 9.3: 16-bit multiplications
 9.4: Saturating intrinsics
 9.5: 32-bit SIMD intrinsics
 11: Instruction generation

21 Alexander G. Dean - agdean@ncsu.edu

USING THE SIMD
INSTRUCTIONS

22 Alexander G. Dean - agdean@ncsu.edu

 Write C code, rely on the compiler to
generate SIMD instructions
 Depends on compiler’s ability to vectorize
 “How can I get the compiler to do what I

want?”
 Sometimes manual provides idioms (code

structures) which compiler can process more
easily

 Write C code, call functions from SIMD
libraries
 SIMD-optimized libraries needed for your

application, such as CMSIS-DSP

 Write C code with compiler
intrinsics to specify SIMD instructions
 Gives more control but handles many details
 Need clear understanding of data layout and

processing flow

 Write a separate SIMD assembly code
module, link it with our C code
 Provides full control but you must manage all

the details
 Need clear understanding of data layout and

processing flow

How Can We Use These SIMD Instructions?

23 Alexander G. Dean - agdean@ncsu.edu

Vectorizing the Code

 Definitions
 Scalar code: operates on one set of operands

at a time
 Vector code: operates on multiple sets of

operands at a time
 Vectorization: converting code from scalar

to vector form

 Vectorization is main compiler
optimization enabling use of SIMD
instructions
 Others possible, but don’t work on as much

code, harder to implement in compiler

 Best to try to vectorize loops first
 Innermost loops often dominate execution time
 Arrangement of instructions and data make

vectorization easier (than the general case, e.g.
straight-line code)

 Vectorization of loops is built on loop
unrolling

24 Alexander G. Dean - agdean@ncsu.edu

Loop Unrolling: Selecting Loops

 Select an inner-most loop
 With data in arrays
 Without

 Subroutine calls
 Conditional control flow
 Data dependencies on recent iterations

 Determine loop unroll factor (and vector size) F
 ARM registers are 32 bits wide, so options are:

 4 element vector of bytes
 2 element vector of half-words

 Any loop carried dependencies must be > F iterations away

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n; i++) {
sum_val += x[i];

}
return sum_val;

}

25 Alexander G. Dean - agdean@ncsu.edu

Loop Iteration Count

 Unrolling a loop with L iterations by a
factor of F
 Unrolled loop performs floor(L/F) iterations

of the unrolled loop (performing F times as
much work per iteration)
 This unrolled loop will later be vectorized

 Clean-up loop performs L modulo F
remaining iterations of the original loop
(performing 1x work per iteration)

 Compiler must generate code which
operates correctly regardless of whether L
is a multiple of F or not
 Typically involves generating code to determine

if there are at least F more iterations of work
to perform

 Can be simplified if compiler can determine if L
is a multiple of F

26 Alexander G. Dean - agdean@ncsu.edu

Loop Unrolling and Vectorization Process

1. Create prelude
1. Create vector values (and loop-independent

variables) from scalars

2. Unroll loop body
1. Modify loop control code

1. Test: confirm at least F more iterations remain
2. Increment: Scale update by factor of F

2. Unroll loop by factor of vector size
1. Modify data processing instructions

1. Unrolling: Make F-1 copies of loop body instructions

2. Vectorizing: replace F scalar instructions with one
vector instruction

2. Update references to data: Add 1 to F-1 to data
value indices. May update pointers by factor of F.

3. Create postlude
1. Reduce (gather, condense, sum) data from

vector to scalar form

4. Clean-up
1. Implement remaining iterations with non-

vectorized code

27 Alexander G. Dean - agdean@ncsu.edu

Example Program with Loop Unrolling

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n; i++) {
sum_val += x[i];

}
return sum_val;

}

int sum_ints(int * x, int n)
int i, sum_val = 0;

for (i=0; i<n-3; i+=4) {
sum_val += x[i];
sum_val += x[i+1];
sum_val += x[i+2];
sum_val += x[i+3];

}
for (; i<n; i++) {

sum_val += x[i];
}
return sum_val;

}

Scalar Code Unrolled Scalar Code

28 Alexander G. Dean - agdean@ncsu.edu

 Mix two audio channels together
 16-bit signed data
 c_out← c_in_1/2 + c_in_2/2

Example Application: Mix Two Audio Channels

+

(sum)

Memory: int16_t * c_in_2

Memory: int16_t * c_out

Registers 16-bit load

16-bit store

32-bit ADD

Memory: int16_t * c_in_1

16-bit load

void mix_channels(
int16_t * c_in_1,
int16_t * c_in_2,
int16_t * c_out,
int n) {
int i;
for (i=0; i<n; i++) {
*c_out++ = (*c_in_1++)/2 +

(*c_in_2++)/2;
}

}

/2 /2

29 Alexander G. Dean - agdean@ncsu.edu

Step 1: Unroll Loop, Add Clean-Up Loop

void mix_channels(int16_t * c_in_1, int16_t * c_in_2,
int16_t * c_out, int n) {
int i;

for (i=0; i<n; i++) {
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;

}

for (i=0; i<n-1; i+=2) { // Unroll factor F=2, n-1=n-(F-1)
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;
*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;

}
for (; i<n; i++) {

*c_out++ = (*c_in_1++)/2 + (*c_in_2++)/2;
}

O
rig

in
al

Re
pl

ac
em

en
t

30 Alexander G. Dean - agdean@ncsu.edu

Step 2: Identify SIMD Instruction(s), Evaluate Data Layout

 Good match for signed halving ADD16 instruction
(SHADD16)

 SHADD16 operates on two data elements packed
into 32-bit register

 Memory system is 32 bits wide
 Data in memory is laid out sequentially, so we can

load and store two elements (32 bits) at a time

c_in_1[0] c_in_1[1]

c_in_1[2] c_in_1[3]

c_in_1[4] c_in_1[5]

c_in_2[0] c_in_2[1]

c_in_2[2] c_in_2[3]

c_in_2[4] c_in_2[5]

c_out[0] c_out[1]

c_out[2] c_out[3]

c_out[4] c_out[5]

El. 1 El. 2 El. 1 El. 2

+

H

+

H

El. 1 El. 2

31 Alexander G. Dean - agdean@ncsu.edu

Step 3: Adjust Code Referencing Packed Data

 Currently input data and output
data passed through pointers to
int16_t

 Need pointers to packed 32-bit
values
 Will load and store correctly (4

bytes at a time)
 Will increment correctly (4 byte

increment)

 So, set up additional pointers to
packed SIMD data (32 bits)

 This often generates no
additional code!

void mix_channels(int16_t * c_in_1, int16_t
* c_in_2, int16_t * c_out, int n) {

int32_t * c_in_1_v, * c_in_2_v, *c_out_v;

c_in_1_v = (int32_t *)c_in_1;
c_in_2_v = (int32_t *)c_in_2;
c_out_v = (int32_t *)c_out;

c_in_1[0] c_in_1[1]

c_in_1[2] c_in_1[3]

c_in_1[4] c_in_1[5]

32 Alexander G. Dean - agdean@ncsu.edu

Step 4: Convert Vectorized Loop To Use SIMD Instruction(s)

 Refer to compiler
user guide for details
on intrinsic syntax

 Replace unrolled
loop body with
SIMD code

for (i=0; i<n-1; i+=2) { // unroll factor 2
*c_out_v++ = __shadd16(*c_in_1_v++, *c_in_2_v++);

}

33 Alexander G. Dean - agdean@ncsu.edu

Step 5: Update Scalar Pointers in Clean-Up Loop

 Have scalar clean-up
loop do remaining work,

 Need to update scalar
pointers to pick up
where vectorized loop
finished

 Casting pointers will
likely create no new
code

// Clean-Up Loop
if (i<n) {

// Update scalar ptrs to match vector ptrs
c_in_1 = (int16_t *) c_in_1_v;
c_in_2 = (int16_t *) c_in_2_v;
c_out = (int16_t *) c_out_v;
for (; i<n; i++) {

*c_out++ = *c_in_1++/2 + *c_in_2++/2;
}

}

34 Alexander G. Dean - agdean@ncsu.edu

Resulting Loop Body Object Code and Performance

*c_out_v++ = __shadd16(*c_in_1_v++,
*c_in_2_v++);

L1: LDR r9,[r3],#0x04
LDR r10,[r2],#0x04
SHADD16 r9,r9,r10
ADDS r0,r0,#2
STR r9,[r1],#0x04
CMP r0,r8
BLT L1

*c_out++ = (*c_in_1++)/2+
(*c_in_2++)/2;

L1: LDRSH r8,[r3,#0x02]
LDRSH r7,[r2,#0x02]
ADD r8,r8,r8,LSR #31
ASR r8,r8,#1
ADD r7,r7,r7,LSR #31
ADD r7,r8,r7,ASR #1
STRH r7,[r1,#0x02]
LDRSH r7,[r3,#0x04]!
LDRSH r8,[r2,#0x04]!
ADD r7,r7,r7,LSR #31
ASR r7,r7,#1
ADD r8,r8,r8,LSR #31
ADD r7,r7,r8,ASR #1
STRH r7,[r1,#0x04]!
SUBS r0,r0,#1
BNE L1

Compiler
unrolled loop

by factor of two

Signed divide by 2

Signed divide by 2

Signed divide by 2

Signed divide by 2

Scalar Code SIMD Code

Total Duration 11.78 µs 5.5 µs

Time per
element

92 ns 43

Clock cycles per
element

11 5.1

Scalar Code SIMD Code

35 Alexander G. Dean - agdean@ncsu.edu

LIMITS TO VECTORIZATION

36 Alexander G. Dean - agdean@ncsu.edu

Conditional Control Flow in Loops

 SIMD – Single Instruction, Multiple Data

 Conditions (if, ?:, etc.) usually introduce conditional control-flow in the loop body

 Multiple control-flow operations -> Multiple PCs -> Multiple Instruction
 Not allowed in SIMD!

37 Alexander G. Dean - agdean@ncsu.edu

ISA May Help Eliminate Conditional Control Flow

 More complex instruction may absorb conditional
control flow
 Saturating math instructions. No overflow test and

clean-up code needed!
 Select instruction: copy r0 or r1 into r2, based on

value in r3

 Predication: conditional execution
 Instruction is processed, but predicate register

controls if results are written to destinations
 Conditional branch is simple example:

 CMP r0, r3: Compare values, write condition code flags

 BNE label: Branch writes label to PC if flags indicate
NE (r0 != r3), otherwise it has no effects (acts like
NOP)

 Could make other instructions conditional:
 ADDNE r4, r5, r6: Put r5+r6 into r4 if flags indicate

NE (e.g. previous comparison resulted in Not Equal
condition)

 ARMv7-M Features
 Saturating math
 Select operation
 Bitwise logic operations

 ARMv8.1-M/Helium Features
 Instruction predication: Conditional execution for

some instructions based on condition code flags
 Lane predication: Conditional execution for some

lanes based on VPR register contents (set by vector
compare instructions)

 Rounding and saturating shift instructions

38 Alexander G. Dean - agdean@ncsu.edu

Loop-Carried Dependencies

 Loop-carried dependency exists if a
calculation in iteration n depends on the
result of any previous iteration m, where
m<n

 This dependency prevents vectorization
 Can’t do multiple iterations simultaneously, but

may be able to overlap them (software
pipelining) to reduce total time

 Sometimes is possible to restructure code
to remove it, but not always

float x[N], y[N];

for (n=1; n<N; n++) {
x[n] = y[n] * x[n-1];

}

// Unrolling once leads to this
for (n=1; n<N; n+=2) {

x[n] = y[n] * x[n-1];
x[n+1] = y[n+1] * x[n];

}

