NC STATE UNIVERSITY

Speed Optimization Tour
with Spherical Geometry

NC STATE UNIVERSITY

BASIC OPTIMIZATION CONCEPTS

NC STATE UNIVERSITY

Starting Points for Efficient Code

Premature optimization is the root of nearly all evil.
Donald Knuth

|. Write correct code
2. Optimize as little of it as possible

= Use the right tools for the problem, and use the tools right
= Know your programming language, compiler,and CPU architecture
= Verify the compiler is doing a good enough job

NC STATE UNIVERSITY

Starting Points for Efficient Code

* Write correct code, then optimize.

= Use a top-down approach.

= Know your microprocessor’s architecture, compiler, and programming language.
= Use the right tool for the problem

= Leave assembly language for un-ported designs, interrupt service routines, and frequently
used functions.

NC STATE UNIVERSITY

Do Less Work at Run-Time

* Fundamental concept: perform less computation at run-time
= Lazy (or deferred) execution: don’t compute data until needed
= Early decisions: for decisions based on computations, may be able to use intermediate results

= Applied broadly
= Many algorithms implement these concepts
= Compilers try to apply these in optimizations passes

= Role of developer
= Help the compiler apply these concepts
* Implement concepts directly in source code

NC STATE UNIVERSITY

Optimization & The Software Development Process

* Process overview
= Select algorithm and architecture based on requirements
and constraints
= Create detailed design and source code Algorithm
= Compile and evaluate object code and Architecture
= Optimize by changing

= Toolchain options

Requirements

Detailed Design
and Source Code

= Source code
= Detailed design & source code

\

" etc.
. . . : Software Config.
= Many possible designs and implementations - Optioﬁs
= Profiler shows what to optimize I

= How to optimize! Object Code @

= Low-level — based on toolchain and source code details
= High-level — based on algorithms (and source code too!)

NC STATE UNIVERSITY

Overview of Optimization Process

= Can optimize for speed or size, and sometimes both
= Avoid unnecessary work

= Start at a high level and think about how to minimize how much work must be done

" Do the necessary work quickly
= Use efficient algorithms

= E.g.bubble sort vs. quicksort, parallelization
* Implement using efficient coding practices
= Make it easy for compiler to create good code

= Use appropriate techniques for the target processor
= Fixed vs. floating point, data sizes, ...

= Compile with optimizations turned on
= e.g.-O3 for speed

= Execute and profile program to find worst parts
" Look at the assembly code — is it good enough!?

NC STATE UNIVERSITY

Your Results Will Vary

= Different programs will have different bottlenecks

= Bottlenecks may depend on input data

Bottlenecks may move after optimizing the code

Different processor architectures may create different bottlenecks in a program

Different compilers may create different bottlenecks in a program

Different compiler settings may create different bottlenecks in a program

Optimization Risks

* Hard to predict development effort
needed

= Balancing act
= Pro: expected performance gain

= Cons: additional development time requires,
increased schedule risk

= Difficulties in prediction
= How much faster will the code be after this
optimization? Will it be fast enough so we can stop
optimizing the program?
= How long will it take to perform this optimization?
= How many more optimizations will we need?

NC STATE UNIVERSITY

* Impact on code maintainability

= Code will be used in future
= Bug fixes, feature changes, feature additions, upgrades

= Basis for follow-up and evolved products, platform
for range of products

* What if you’ve forgotten how your optimized
code works?

= What if someone else needs to maintain your
optimized code!?

= Optimization often hurts code maintainability

* Need to optimize in a way which retains
maintainability

NC STATE UNIVERSITY

TOOLCHAIN CONFIGURATION

NC STATE UNIVERSITY

Review of Compiler Stages

* Parser " Low-Level Optimizer
= reads in C code, = Modifies assembly code (parts are
= checks for syntax errors, processor-specific)
= forms intermediate code (tree = Assembler
representation) = Creates object code (machine code)
= High-Level Optimizer = Linker/Loader
* Modifies intermediate code (processor- = Creates executable image from object file
independent)

= Code Generator

= Creates assembly code step-by-step from
each node of the intermediate code

= Allocates variable uses to registers

Compiler Optimization Settings

= Select

= —O3 optimization (maximum)
= Optimize for speed

= Unselect

= Strict ANSI C — don’t need this!

NC STATE UNIVERSITY

Options for Target 'KL25Z Flash’
Device I Target I Output I Listing I User C/Css |.F-5m I Linker I Debug I |kilities I
— Preprocessor Symbols
Define:
Undefine:
— Language / Code Generation
[~ Strict ANSIC S
Optimization: |Level 3 (03) | ™ Enum Container always int | unspecified> |
v Optimize for Time ™ Plain Charis Signed [T Thumb Mode
[~ Split Load and Store Multiple ™ Read-Only Posttion Independent [No Auto Includes
™ One ELF Section per Function I” Read-Write Position Independent
Include | \joc J
Paths
Misc
Controls -fpmode=fast
Compiler |- —cpu Cortex-M0 -D_MICROLIB g 03 Ctime —apcs=interwork —asm —intedeave —asm_dir " sty
control |\ - \inc -fpmode=fast -| C:\KeilhARM\EYV31Nne -l C:AKeiPARMMVCMSIS Include -1 C:h\Keil'ARM
string W

oK Cancel Defaults Help

NC STATE UNIVERSITY

SAMPLE PROGRAM FOR
OPTIMIZATION

NC STATE UNIVERSITY

Example Program:“Nearby Points of Interest”

= Find distance and bearing from current position to closest of a
fixed set of positions

= Positions are described as coordinates on the surface of the Earth
(latitude, longitude)

(lat,, lon,)

B

(lat, lon))

d = acos((sin(lat;) * sin(lat,) + (cos(lat;) * cos(lat,) * cos(lon, — lon,)) * 6371

a = atan2(cos(lat,) * sin(lat,) — sin(lat,) * cos(lat,) * cos(lon, — lon,), sin(lon, — lon,) * cos(lat,)) * %

NC STATE UNIVERSITY

Core Code: Calculate Distance

float Calc_Distance(PT_T * pl, const PT_T * p2) {
// calculates distance 1n kilometers between locations
return acos(sin(pl->Lat*PI/180)*
sin(p2->Lat*PI/180) +
cos(pl->Lat*PI/180)*cos(p2->Lat*PI/180)*
cos(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371,

NC STATE UNIVERSITY

Core Code: Calculate Bearing

float Calc_Bearing(PT_T * pl, const PT_T * p2){
// calculates bearing from pl to p2 in degrees
float angle = atan2(
sin(pl->Lon*(PI/180) - p2->Lon*(PI/180))*
cos(p2->Lat*(PI/180)),
cos(pl->Lat*(PI/180))*sin(p2->Lat*(PI/180)) -
sin(pl->Lat*(PI/180))*cos(p2->Lat*(PI/180))*
cos(pl->Lon*(PI/180) - p2->Lon*(PI/180))
) * (180/PI);

1f (angle < 0.0)
angle += 360;
return angle;

}

Find Nearest Point

void Find_Nearest_waypoint(
float cur_pos_1lat, float cur_pos_1lon,
float * distance, float * bearing,

char * * name) {
// cur_pos_lat, cur_pos_lon: deg.
// distance: km
// bearing: degrees

// Initialization code removed

while (strcmp(waypoints[i].Name,
"END"))
{
d = Calc_Distance(&ref,
&(waypoints[i1]));
b = Calc_Bearing(&ref,

-

NC STATE UNIVERSITY

&(waypoints[i1]));

// remember closest waypoint
1f (d<closest_d) {

closest_d = d;

closest_1 = 1;

}

T++;

= Calc_Distance(&ref,
&(waypoints[closest_i]));

= Calc_Bearing(&ref,
&(waypoints[closest_i]));

Data: Point Table
typedef struct {

float Lat;
float Lon;

char Name[24];

} PT_T;

const PT_T waypoints[] = {

//

Lat Lon
56.07553, 152.57224,
51.15329, -179.0052,
59.38128, 153.35352,
22.02867, 94.058737,
57.07501, 177.75757,
30.09335, 88.773624,
60.84875, 146.88753,
// many entries deleted
19.87879, 85.064566,
0 0

Name
"ALBATROSS BNK"
"AMCHITKA" 1,

"AUGUSTINE ISLAND, AK"

"BAY CAMPECHE"
"BERING SEA" 1},
"BILOXI" 1,

"BLIGH REEF LIGHT, AK"

"YUCATAN CHNL"
"END" 1}, s

3,

Iy

},

},

},

NC STATE UNIVERSITY

NC STATE UNIVERSITY

EXAMPLE EVALUATION OF
COMPILER’S ACTUAL OPTIMIZATIONS

NC STATE UNIVERSITY

Sample Code

#define PI 3.14159265
float Calc_bDistance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acos(sin(pl->Lat*PI/180)*
sin(p2->Lat*PI/180) +
cos(pl->Lat*PI/180)*cos(p2->Lat*PI/180)*
cos(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371,

Count in Source Code

Operation

Arc Cosine

Cosine

Floating-Point Multipl
Floating-Point Add
Floating-Point Subtract
Floating-Point Divide

o — — — W N -
o

20

Evaluation Environment

= MDK-ARM

= armcc v5

= Optimization
= -0O3
= Speed

21

NC STATE UNIVERSITY

Examine Object Code (vl)

= Compile with armcc with maximum
optimization, for speed

= Examine .txt file

= Observations

= No conditional branching in function, just subroutine
calls

Code makes 31 calls (BL), but only expected only |8
based on source code

Lots of double precision math routines called
= aeabi_dmul
= aeabi_ddiv

Assembly code listing is long (150 lines), tedious to
examine

22

Calc_Distance PROC

PUSH
SUB
MOV
MOV
LDR
BL
MOV
LDR
LDR
BL
MOVS
LDR
STR
STR
BL
STR
STR
LDR

{r4-r7,1r}
sp,sp,#0x5c
r4,ro

rs,rl

ro, [r4,#4]
__aeabi_f2d
re,ro
r2,|L1.328|
r3,|L1.332]
__aeabi_dmul
r2,#0
r3,|L1.336]
rl,[sp,#4]
ro, [sp,#0]
__aeabi_ddiv
rl, [sp,#0x14]
ro, [sp,#0x10]
ro, [r5,#4]

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Examine Calls in Object Code

BL __aeabi_f2d BL ||sin]|
= Use search tool to extract function calls from source BL __aeabi_dmul BL __aeabi_f2d
code for clarity BL __aeabi_dmul BL __aeabi_dmul
BL __aeabi_f2d BL __aeabi_dmul

" grep BL geometry.xt BL __aeabi_dmul BL |[sin]]|

BL __aeabi_dmul BL __aeabi_dmul
= Observations BL __aeabi_dsub BL _aeabi_dadd
BL |]|cos]|| BL acos
BL __aeabi_f2d BL __aeabi_d2f
BL __aeabi_dmul BL __aeabi_fmul

= Code makes 31| calls (BL), but only expected only 18 based on
source code

= Lots of double precision (DP) math routines called BL __aeabi_dmul
(__aeabi_dmul, __aeabi_ddiv) BL ||cos||
= Type conversion routines called (__aeabi_f2d) BL __aeabi_f2d
* What'’s happening? BL __aeabi_dmuT
= Library trig functions acos, sin, cos expect double precision arguments :t ﬁ‘zg:tl’-:—dmu-l

= C language performs automatic promotions of variables BL __ aeabi_dmul

BL __aeabi_dmul
BL __aeabi_f2d
BL __aeabi_dmul
BL __aeabi_dmul

23

NC STATE UNIVERSITY

Math.h Functions and Automatic Promotions

= Standard math routines usually accept double-precision inputs and return double-precision outputs.

= That double-precision return value will force all other operands in the expression to be promoted to

doubles

= Example: return ((unsigned char) (3.5*(sin(x/f)+1.0)));
= X is unsigned int
= fis float
= 3.5 and 1.0 are loaded as doubles

= The multiply and addition are promoted to double precision
= We cast the result to an 8-bit integral value, discarding the fraction and most of the integer portion
= A single precision float or even fixed-point sin() would be even faster
= |t is likely that only single-precision is needed.
= Cast to single-precision if accuracy and overflow conditions are satisfied

24

NC STATE UNIVERSITY

MDK Floating Point Math Library

= mathlib includes two versions of each function
= double precision: sin()
= single precision: sinf()

= Two methods to use
= Write/change source code to call the single precision version

= Pass argument --fpmode=fast to compiler to replace double precision with single precision,
= Be sure to set optimization as high as possible

25

NC STATE UNIVERSITY

Default Type for Float Literals

#define PI 3.14159265
// Lat, Lon fields are single precision floats

float Calc_Distance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acosf(sinf(pl->Lat*PI/180)%*
sinf(p2->Lat*PI/180) +
costf(pl->Lat*PI/180)*cosf(p2->Lat*PI/180)*
cosf(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371;

26

float Calc_Distance(PT_T * pl,

{rd-r7,1r}
sp,sp,#0x3c
r4,r0

r5,rl

const PT_T * p2) {

return acosf(sinf(pl->Lat*PI/180)*..

Object Code

;5319

000000 b5f0 PUSH
000002 bO8f SUB
000004 4604 MOV
000006 460d MOV
;5521

000008 6860 LDR
00000a f7fffffe BL
00000e 4606 MOV
000010 4a4b LDR
000012 4b4c LDR
000014 f7fffffe BL

rO, [r4,#4] ;
__aeabi_f2d ;
re, ro

r2,|L1.320]| ;
r3,|L1.324]| ;
__aeabi_dmul;

pl->Lat is SP, but promoted to DP, returned in rO, rl

A DP constant is loaded into r2 and r3

Load pl->Lat (SP)
Cconvert to DP

Load a constant
Load another constant
DP multiply

DP multiply performed on argument | (in rO, rl) and argument 2 (in r2, r3)

Why is Pl represented as a double!?

C standard states floating point literals are interpreted as double precision

27

NC STATE UNIVERSITY

Floating Point Types and Literals

= Single-precision (SP) vs. double-precision (DP) vs.
long double
= ANSI C: single, double and long double sizes are
implementation-dependent
= ANSI/IEEE 754-1985, Standard for Binary Floating Point

Arithmetic

= Single precision: 32 bits

= Double precision: 64 bits

= Long double precision: 96 or 128 bits (architecture-

dependent)
= Single-precision is probably adequate

= Use the smallest adequate data type, or else...
= Conversions without an FPU are very slow

= Extra space is used
= C standard allows compiler to convert automatically,

slowing down code more

28

NC STATE UNIVERSITY

= Type suffixes for floating-point literals (ANSI C)
= f/F type: single precision: 3.14f, 3.14F
= |/L type: long double precision: 3.14l, 3.14L
= default: double precision: 3.14

= What to do

= Use single-precision floating point specifier “f” when possible
= May be able to change compiler’s default type for float literals
to single-precision

NC STATE UNIVERSITY

Use Single-Precision Trig Functions

#define PI 3.14159265

float Calc_bDistance(PT_T * pl, const PT_T * p2) {
// calculates distance 1n kilometers between locations
return acosf(sinf(pl->Lat*PI/180)%*
sinf(p2->Lat*PI/180) +
cosf(pl->Lat*PI/180)*cosf(p2->Lat*PI/180)*
cosf(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371;

29

Examine Calls in Object Code (v2)

= Good news

= Code now is calling single-precision trig functions

(e.g. cosf)
= Code makes 24 calls now

= Bad news

30

= Code is still making 6 more calls than expected

BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL

__aeabi_fmul
__aeabi_fmul
__aeabi_fmul
__aeabi_fmul
__aeabi_fsub
cosf

__aeabi_fmul
__aeabi_fmul
cosf

__aeabi_fmul
__aeabi_fmul
cosf

__aeabi_fmul
__aeabi_fmul
__aeabi_fmul
__aeabi_fmul
sinf

__aeabi_fmul
__aeabi_fmul
sinf

__aeabi_fmul

NC STATE UNIVERSITY

BL __aeabi_fadd
BL acosf
BL __aeabi_fmul

NC STATE UNIVERSITY

Summary of Calls in v2 Code

Operation Count in Library Routine | Count in Object

Source Code

Arc Cosine I acosf 1
2 sinf 2
Cosine 3 cosf 3
FP Multipl 10 __aeabi_fmul 16
FP Add I __aeabi_fadd 1
FP Subtract J __aeabi_fsub 1
FP Divide 6 __aeabi_fdiv 0

= We missing 6 fdiv calls
= We have 6 extra fmul calls
= |s this a coincidence!? Let’s examine the object code

31

Examine Object Code (v2)

32

cosf(p2->Lon*P1I/180 - pl->Lon*PI/180)

LDR ro, [rO,#4] LDR
LDR rl, |L1.164| BL
BL __aeabi_fmul LDR
LDR rl, |L1.168| BL
BL __aeabi_fmul MOV
MOV reo, ro BL
LDR rl, |L1.164| BL

rO, [r5,#4]
__aeabi_fmul
rl, |L1.168|
__aeabi_fmul
rl,ré
__aeabi_fsub
cosf

Let’s examine a portion of the code to understand what’s happening

NC STATE UNIVERSITY

Start with first call to cosf in object code and work backwards to see the data it uses (data flow analysis)

Remember argument and return passing conventions
Arguments go in registers r0, rl, r2, r3, then stack

Return value comes back in register r0

cosf has one argument, __aeabi_fmul has two

NC STATE UNIVERSITY
Data Flow Graph to BL cosf Instruction

LDR I‘O, [I"O,#4] I. LDR rO0, 2.LDRrl,
LDR rl, |L1.164| [r0,#4] IL1.164]
BL __aeabi_fmul

i

LDR rl, |L1.168]

BL __aeabi_fmul
MOV re, ro

LDR rl, |L1.164]| ‘

8. LDR [r5, 7.LDRl,
s acabi fmu]
LDR rl, |[L1.168|
BL —aeabi_fmul 10. LDR rl, 6. MOV r6,
MOV rl, ré e IL1.168| r0
BL __aeabi_fsub
BL cosf
How is the argument to BL cosf computed?
DFG shows how data flows among instructions, shows true data dependencies
-> Only multiplies are used to compute argument (no divides) ki

Compiler’s implementation eliminates division

Source code: p2->Lon*PI/180

Compiler’s approach: p2->Lon*PI*0.005555

]

33

NC STATE UNIVERSITY

Optimization: Compile-Time Evaluation

return acosf(sinf(pl->Lat*P1/180)*sinf(p2->Lat*PI/180) +
cosf(pl->Lat*PI/180)*cosf(p2->Lat*PI/180)*
cosf(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371;

return acost(sinf(pl->Lat*PI*0.005556)*sinf(p2->Lat*PI*0.005556) +
cosf(pl->Lat*PI*0.005556)*cosf(p2->Lat*PI*0.005556)%*
cosf(p2->Lon*PI*0.005556 - pl->Lon*PI*0.005556)) *
6371;

P1/180 or PI*0.005556 can be evaluated at compile-time

Compiler should be able to optimize out this operation

Why doesn’t it? C operator precedence rules

*and / are same level of precedence, and are evaluated left to right

Try putting parentheses around PI/180 term in source code

34

Examine Calls in Object Code (v3)

= Good news

* No more calls to division functions
= |0 calls to fmul
= |8 calls total

= Should we expect the compiler to do better?

35

BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL

NC STATE UNIVERSITY

__aeabi_fmul
__aeabi_fmul
__aeabi_fsub
cosf
__aeabi_fmul
cosf
__aeabi_fmul
cosf
__aeabi_fmul
__aeabi_fmul
__aeabi_fmul
sinf
__aeabi_fmul
sinf
__aeabi_fmul
__aeabi_fadd
acosf
__aeabi_fmul

Optimization: Reuse of Data

#define PI 3.14159265f
float Calc_Distance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acos(sin(pl->Lat*(PI/180))*
sin(p2->Lat*(PI/180)) +

cos(pl->Lat*(PIr/180))*cos(p2->Lat*(PI/180))*
cos(p2->Lon*(PI/180) - pl->Lon*(PI/180))) *

6371;

Repeated calculations
pl->Lat™(PI/180) is used twice
p2->Lat™(PI/180) is used twice

Opportunity for optimization — “common subexpression elimination”

36

NC STATE UNIVERSITY

Does Compiler Do It?

= Are the results reused?
= Need to examine the object code
= Code has ten calls to __aebi_fmul, implying no reuse

* Why no reuse!?

NC STATE UNIVERSITY

= Does compiler assume that memory pointed to by pl, p2 may have changed between these calls?

= Try giving function a local copy of data to work with: p|Lat, p2Lat

float Calc_bistance(PT_T * pl, const PT_T * p2) {
float plLat = pl->Lat;
float p2Lat = p2->Lat;
return acosf(sinf(plLat*(P1/180))*sinf(p2Lat*(PI/180)) +
cosf(plLat*(PI/180))*cosf(p2Lat*(PI/180))*
cosf(p2->Lon*(P1/180) - pl->Lon*(PI/180))) * 6371;

37

Examine Calls in Object Code (v4)

= Good news

* No more calls to division functions
= 8 calls to fmul
= |6 calls total

= Should we expect the compiler to do better?

38

BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL

NC STATE UNIVERSITY

__aeabi_fmul
__aeabi_fmul
__aeabi_fsub
cosf
__aeabi_fmul
cosf
__aeabi_fmul
cosf
__aeabi_fmul
__aeabi_fmul
sinf

sinf
__aeabi_fmul
__aeabi_fadd
acosf
__aeabi_fmul

NC STATE UNIVERSITY

DON’T HANDCUFF THE COMPILER

Approach

= Which optimizations is the compiler capable of?

= What might stop the compiler from applying them?

= How can we tell if the compiler applied them?

= How can we modify the source code to help the compiler optimize!?

40

NC STATE UNIVERSITY

NC STATE UNIVERSITY

WHAT SHOULD THE COMPILER BE
ABLETO DO?

NC STATE UNIVERSITY

Scalar Optimizations

* What should you expect your compiler to be able to do?

= Machine-Independent (Ml)
= Eliminate code with no effect
= Move operation to where it executes less often
= Specialize computations
= Eliminate redundant computations

= Machine-Dependent (MD)

= Take advantage of special hardware features
= Manage or hide latency
= Manage limited machine resources

42

NC STATE UNIVERSITY

MI: Eliminate code with no effect

= Unreachable code = Useless control flow (based on CFG)
= Examine CFG for nodes without predecessors = Fold redundant branches (both from BB A to BB
B)

= Useless code (based on data-flow graph) * Remove empty BBs

= Mark critical operations * Combine BBs (jump from A to B)

= Branch hoisting — replace jump to empty block

= sets return value for procedure . . .
with a jump to its successor

= input/output statement

= modifies non-local data
= Find operations which define data (operands) ” Simplification of algebraic identities

used by these critical operations = ¥l 2 x
= Repeat until set of critical operations doesn’t = x+0 2 x
grow

= Delete remaining operations

43

NC STATE UNIVERSITY

MI: Specialize computations

= Operator strength reduction
= Replace multiplication with addition or shifting, division with subtraction or shifting

= Constant propagation
= |f a variable has a known value at given point in program, may be able to specialize operations based on
this knowledge
= e.g. perform calculations at compile time rather than run time
= e.g.for (i=0;i<l|0;i++) is a top-test loop, but don’t need test on first entry

= Peephole optimization
= Recognize patterns of assembly instructions which can be replaced with a faster set
" e.g.addressing modes

44

MI: Enabling Transformations

= Goal is to make code more amenable to other optimizations
= Loop unrolling

45

= replicate loop body
= adjust loop control code

= also reduces loop overhead, useful for short loop bodies
* Loop unswitching
= hoist loop-invariant control-flow operations out of loop

= can be hard to determine if control-flow really is loop-invariant
= Renaming
= value numbering gives independent name to each value defined

= optimizer can recognize already-computed values which are still live

a€e Xty
b€ x+y
a €17

c€EXxX+y

a8, € X+ Yy
by € X, + Y,
a, € 17

Co € X+ Y

NC STATE UNIVERSITY

Machine-Dependent Optimizations

= Take advantage of special instructions, addressing modes and hardware features
= Pre-fetch, predicted branch, load bypassing cache
= Conditional instruction execution

= Advanced addressing modes
= Pre-ALU barrel shifter

= Manage or hide latency (pipeline, memory system, ALU)
= Large memory latency
= Rearrange loop iteration order for cache locality
= Change data layout to improve cache locality

= Manage limited machine resources
= Register allocation

46

NC STATE UNIVERSITY

NC STATE UNIVERSITY

WHAT COULD STOP THE COMPILER
FROM OPTIMIZING?

NC STATE UNIVERSITY

Excessive Variable Scope

= Avoid declaring variables as globals or statics when they could be locals (automatics or
parameters)

= Globals and statics are allocated permanent storage in memory, not reusable stack space

= Compiler assumes that any function may access a global variable
= Function must write back any globals it has modified before calling a subroutine
= Function must reload any globals to use after calling the routine

48

NC STATE UNIVERSITY

Automatic Promotions in Arithmetic Expressions

= How are expressions with mixed data = ANSI C Standard for conversions
types evaluated? = |f either operand is a long double, promote the
other to a long double

= Else if either is a double, promote the other to a
float 'F; double

char c; .

- Else if either is a float, promote the other to a
int r;

float

= Else if either is a unsigned long int, promote the
other to a unsigned long int

= Else if either is a long int, promote the other to a
long int

= Else if either is an unsigned int, promote the other
to an unsigned int

= Else both are promoted to int: short, char, bit field

= Special rules for dealing with signed/unsigned
differences left out

r=*%f * c;

49

NC STATE UNIVERSITY

Resulting Object Code

« Call routine to convert c to float
« Call routine to perform floating-
P f % point multiply with f
’ « Call routine to convert result
from float to integer
« Store result in r

= Time and code space overhead of conversion routines
= Avoid mixed type expressions

50

NC STATE UNIVERSITY

ANSI C Standard for Argument Promotions

" Integral function arguments smaller than = Where should the prototype go?

an int for non-prototyped functions are = |f program is broken into modules, put prototype
promoted to ints in header (.h) file
= Extra time converting to int = Otherwise put prototype near top of C code file,

before the function is called
= Extra space on stack

= Another reason to prototype — some
compilers won’t promote arguments to use
int Find_Average(char a, char b, char c, registers rather than stack if the function

char d) { isn’t prototyped

= So prototype all functions

= Function:

¥

= Correct, complete prototype:

int Find_Average(char a, char b, char c,
char d);

= Parameter names are good documentation

51

Precedence and Order of Evaluation

= How is a = b+c*d-e%f/g; evaluated?
= Order is based upon operator
precedence and associativity
= Repeat
= Evaluate the highest precedence operator

= |f multiple operators of the same precedence, apply
associativity

Example:a=b+c*d—-e%f/g;
c*d
eJf

b+

L N W IN —
S~
09

52

Type Operator Associativity
Primary O[] .->++(post) - - | left to right
Expression (post)
Unary *& + -1 ~++(pre) - | right to left
-(pre) (typecast)
sizeof()
Binary *[% left to right
+ -
>> <<
< ><=>=
==
&
N
|
&&
|
Ternary ?: right to left
Assignment = += -=*= [= Y= right to left
>S>=<< = §=N= |:
Comma left to right

NC STATE UNIVERSITY

NC STATE UNIVERSITY

Functions

= Make local functions static, keep in same module (source file)
= Allows more aggressive function inlining
= Only functions in same module can be inlined

= Prototype your functions, or else the compiler may promote all arguments to ints or doubles

53

NC STATE UNIVERSITY

DATA REUSE

NC STATE UNIVERSITY

Data Reuse

float Calc_Bearing(PT_T * pl, const PT_T * p2){
float angle = atan2(
sin(pl->Lon*(P1/180) - p2->Lon*(PI/180))*
cos(p2->Lat*(P1/180)),
cos(pl->Lat*(PI/180))*sin(p2->Lat*(P1/180)) -
sin(pl->Lat*(P1/180))*cos(p2->Lat*(PI/180))*
cos(pl->Lon*(PI/180) - p2->Lon*(PI/180))
) * (180/PI);
if (angle < 0.0)
angle += 360;
return angle;

}

= Code may have common sub-expressions which perform mw
same operations on same input data pl->Lon*(PI/180) 2
= Waste of computation p2->Lon*(PI/180) 2
= Compiler should be able to recognize these, delete p2->Lat*(PI/180) 3
extra computations, reuse original result pl->Lat*(PI/180) 2

= Does it?

55

NC STATE UNIVERSITY

PRECOMPUTATION OF RUN-TIME
INVARIANT DATA

NC STATE UNIVERSITY

Run-Time Invariant Data

= Don’t waste the program’s time computing results which can never change at run-time

= 2 + 2 will always be 4...

= Two approaches to eliminating these calculations from run-time

= Rely on the compiler

= Constant propagation: Optimization method which propagates constant values (known at compile time) to
eliminate computation

= May need to modify source code to help compiler optimize
= Use custom tool before compiler

= Generate final values automatically

57

NC STATE UNIVERSITY

Optimization Possible by Compiler

#define PI 3.14159265
float Calc_bDistance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acos(sin(pl->Lat*PI/180)*
sin(p2->Lat*PI/180) +
cos(pl->Lat*PI/180)*cos(p2->Lat*PI/180)*
cos(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371;

= PI1/180

= Both operands are constants, known at compile time
= Will always have same result
= Optimization
= Compiler instead uses a multiplication by 0.017453293
= Will delete six divisions per call to Calc_Distance

58

NC STATE UNIVERSITY

Optimization Requiring Source Code Modification

const PT_T waypoints[] = {
// Lat Lon Name
{ 56.07553, 152.57224, "ALBATROSS BNK" },

}

return acos(sin(pl->Lat*PI/180)*sin(p2->Lat*PI/180) +
cos(pl->Lat*PI/180)*cos(p2->Lat*PI/180)*
cos(p2->Lon*P1/180 - pl->Lon*PI/180)) * 6371;

* Why all the multiplication by PI/180?
= Points coordinates are stored in degrees

= Trig functions use radians for arguments or return values

= Store the point coordinates in radians instead of degrees
= Modify source code so functions use radians

= Helpful to use a spreadsheet or other tool to automate data conversion process

59

NC STATE UNIVERSITY

Optimization Requiring Source Code Modification

void Find_Nearest_waypoint(float cur_pos_lat, float cur_pos_1lon,
float * distance, float * bearing, char * * name) {

while (strcmp(waypoints[i].Name, "END")) {
d = Ccalc_Distance(&ref, &(waypoints[i]));
b = Calc_Bearing(&ref, &(waypoints[i]));

}

= Observations

= Computing distance, bearing between one arbitrary point and one known point

= Known point coordinates are constants stored in table

= Don’t need to recompute sine or cosine of a constant, can apply constant propagation
= Optimization

= Precompute the run-time invariant values based on the known point (2"¢ argument)

= Again, helpful to use a spreadsheet or other tool to automate data conversion process

60

NC STATE UNIVERSITY

Manual Constant Propagation (1)

float Calc_Distance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acos(sin(pl->Lat*PI/180)*
sin(p2->Lat*PI/180) +
cos(pl->Lat*PI/180)*cos(p2->Lat*PI/180)*
cos(p2->Lon*PI/180 - pl->Lon*PI/180)) * 6371;

= p2->Lat and p2->Lon are constants
= How far can we propagate those constants in the functions? See red code above

= What needs to be added to the point structure and table?
= p2->Lon*PI/180
= sin(p2->Lat*PI/180)
= cos(p2->Lat*PI/180)

6l

NC STATE UNIVERSITY

Manual Constant Propagation (2)
float Calc_Bearing(PT_T * pl, const PT_T * p2){
float angle = atan2(sin(pl->Lon*(PI/180) -

p2->Lon*(PI/180))*cos(p2->Lat*(P1/180)),
cos(pl->Lat*(PI/180))*sin(p2->Lat*(P1/180)) -
sin(pl->Lat*(PI/180))*cos(p2->Lat*(PI1/180))*
cos(pl->Lon*(PI/180) - p2->Lon*(PI/180))

) * (180/PI);

= p2->Lat and p2->Lon are constants

= How far can we propagate those constants in the functions? See red code above

= What needs to be added to the point structure and table?
= p2->Lon*PI/180
= sin(p2->Lat*P1/180)
= cos(p2->Lat*PI/180)

= Same as for previous function (Calc_Distance)

62

NC STATE UNIVERSITY

Improved Point Structure and Table

typedef struct {
float Lat;
float SinLat;
float CosLat;
float Lon;
char Name[24];
} PT_T;
const PT_T waypoints[] = {
// Lat sin(Lat) cos(Lat) Lon Name
{ 0.97860611, 0.829720137, 0.558179626, 2.66284884, "ALBATROSS BNK"},
{ 0.89273591, 0.778790853, 0.627283673, -3.12413936, "AMCHITKA" },
{ 1.03637651, 0.860564286, 0.50934184, 2.67646241, "AUGUSTINE IS, AK"},
{ 0.38432150, 0.374930219, 0.927053036, 1.64148216,"BAY CAMPECHE" },

= Code is much faster

= Table is slightly larger: two more floats per point (40 instead of 32 bytes)

63

NC STATE UNIVERSITY

LESS COMPUTATION AT RUN-TIME

NC STATE UNIVERSITY

Example: Find the Nearest Point

void Find_Nearest_Point(. . .) {

while (strcmp(points[i].Name, "END")) {
d = Ccalc_Distance (&ref, &(points[i]));
1f (d>closest_d) {
closest_d = d;
closest_i = 1;
}
1++;
}

= Calc_Distance is called on every point, returning closest_d (distance in km)

= This distance is used in two ways
= To identify closest point
= Returned to calling function

= Can we split these up?

65

NC STATE UNIVERSITY

Distance Calculation

float Calc_Distance(PT_T * pl, const PT_T * p2) {
// calculates distance in kilometers between locations
return acos(pl->SinLat * p2->SinLat + pl->CosLat * p2->CoslLat
*cos(p2->Lon - pl->Lon)) * 6371;

= Distance is acos(big_expression)*637 |
"What is 6371

= Scaling factor to convert radians to km
= 6371 km = Earth’s radius = circumference/21T radians

= Can compare angle rather than km
= Angle is still proportional to distance between points

66

NC STATE UNIVERSITY

float Calc_bDistance_in_Radians(PT_T * pl, const PT_T * p2) {
// calculates distance in radians between locations
return acos(pl->SinLat * p2->SinLat + pl->CosLat * p2->CoslLat
*cos(p2->Lon - pl->Lon)); // no #6371 here

Optimized Code

}
void Find_Nearest_Point(. . .) {
while (strcmp(points[i].Name, "END")) {
d = calc_bistance_in_Radians(&ref, &(points[i]));
}
*distance = d*6371;
}

= Eliminates N, ..-| floating point multiplies

67

NC STATE UNIVERSITY

float Calc_bDistance_in_Radians(PT_T * pl, const PT_T * p2) {
// calculates distance in radians between locations
return acos(pl->SinLat * p2->SinLat +
pl->CosLat * p2->CosLat 35
*cos(p2->Lon - pl->Lon));

Taking it Further

acos(X)

2.5 \
2

* How is acos related to its argument X!

= Can we make distance comparisons without using acos!?

" Just call acos once — to compute the distance to the 0 . . . |
closest point ' '

68

NC STATE UNIVERSITY

float Calc_Proximity (PT_T * pl,

Taking it Further

acos(X) const PT_T * p2) {
3.5
return (
3 pl->SinLat * p2->SinLat +

pl->CosLat * p2->CoslLat
23 ‘\\\\\ *cos(p2->Lon - pl->Lon));
2 }

\ = acos always decreases as input X increases
| " Nearest point will have minimum distance and
\\\\\ maximum X
- \ = So search for point with maximum argument
0 , to acos function
! 0>)O(0> ! = After finding nearest point (max X), compute

distance _km = acos(X) * 6371

69

	Default Section
	Slide 1: Speed Optimization Tour with Spherical Geometry
	Slide 2: Basic Optimization Concepts
	Slide 3: Starting Points for Efficient Code
	Slide 4: Starting Points for Efficient Code
	Slide 5: Do Less Work at Run-Time
	Slide 6: Optimization & The Software Development Process
	Slide 7: Overview of Optimization Process
	Slide 8: Your Results Will Vary
	Slide 9: Optimization Risks
	Slide 10: Toolchain Configuration
	Slide 11: Review of Compiler Stages
	Slide 12: Compiler Optimization Settings
	Slide 13: Sample Program for Optimization
	Slide 14: Example Program: “Nearby Points of Interest”
	Slide 15: Core Code: Calculate Distance
	Slide 16: Core Code: Calculate Bearing
	Slide 17: Find Nearest Point
	Slide 18: Data: Point Table
	Slide 19: Example evaluation of compiler’s actual optimizations
	Slide 20: Sample Code
	Slide 21: Evaluation Environment
	Slide 22: Examine Object Code (v1)
	Slide 23: Examine Calls in Object Code
	Slide 24: Math.h Functions and Automatic Promotions
	Slide 25: MDK Floating Point Math Library
	Slide 26: Default Type for Float Literals
	Slide 27: Object Code
	Slide 28: Floating Point Types and Literals
	Slide 29: Use Single-Precision Trig Functions
	Slide 30: Examine Calls in Object Code (v2)
	Slide 31: Summary of Calls in v2 Code
	Slide 32: Examine Object Code (v2)
	Slide 33: Data Flow Graph to BL cosf Instruction
	Slide 34: Optimization: Compile-Time Evaluation
	Slide 35: Examine Calls in Object Code (v3)
	Slide 36: Optimization: Reuse of Data
	Slide 37: Does Compiler Do It?
	Slide 38: Examine Calls in Object Code (v4)
	Slide 39: don’t handcuff the compiler
	Slide 40: Approach
	Slide 41: What should the compiler be able to do?
	Slide 42: Scalar Optimizations
	Slide 43: MI: Eliminate code with no effect
	Slide 44: MI: Specialize computations
	Slide 45: MI: Enabling Transformations
	Slide 46: Machine-Dependent Optimizations
	Slide 47: What could stop the compiler from optimizing?
	Slide 48: Excessive Variable Scope
	Slide 49: Automatic Promotions in Arithmetic Expressions
	Slide 50: Resulting Object Code
	Slide 51: ANSI C Standard for Argument Promotions
	Slide 52: Precedence and Order of Evaluation
	Slide 53: Functions
	Slide 54: Data Reuse
	Slide 55: Data Reuse
	Slide 56: Precomputation of Run-Time Invariant Data
	Slide 57: Run-Time Invariant Data
	Slide 58: Optimization Possible by Compiler
	Slide 59: Optimization Requiring Source Code Modification
	Slide 60: Optimization Requiring Source Code Modification
	Slide 61: Manual Constant Propagation (1)
	Slide 62: Manual Constant Propagation (2)
	Slide 63: Improved Point Structure and Table
	Slide 64: Less Computation at Run-Time
	Slide 65: Example: Find the Nearest Point
	Slide 66: Distance Calculation
	Slide 67: Optimized Code
	Slide 68: Taking it Further
	Slide 69: Taking it Further

