
1

Profiling Code for Execution Time

2

Overview

▪Which part of the code uses the

most time?

▪That’s the best place to start

optimization for speed, as it has the

largest impact

3

▪ What is the program really doing? Anything unexpected

or extra?

▪ How is the program doing it? Is it reasonably efficient?

▪ The vital few, the trivial many

▪ The 80/20 rule

▪ Pareto Principle, Juran’s Principle

How Does The Program Spend Its Time?

J & B. Keane, King Features Syndicate

4

Optimizing Your

ECE 561 Project 1

Code for Speed

A.G.Dean

A Cookbook of All

Possible Code

Optimizations

for Speed

N. Author

Optimizing Your

ECE 561 Project 1

Code for Speed

A.G.Dean

A Cookbook of All

Possible Code

Optimizations

for Speed

N. Author

Optimizing Your

ECE 561 Project 1

Code for Speed

A.G.Dean

A Cookbook of All

Possible Code

Optimizations

for Speed

N. Author

Optimization Approaches: Which Book to Use?

▪ Ideal: Service manual

▪ Diagnostic manual

customized to your

program

▪ Does not exist!

▪ Cookbook

▪ Many different possible

optimizations,

▪ But which should be

applied, and where?

▪ Detective story

▪ Filled with clues, but also

many distractions (“red

herrings”)

▪ Want to see the clues

and nothing else

▪ Resulting approach

▪ Use detective story to

find clues and identify

performance problems

▪ Use cookbook to solve

performance problems

Optimizing Your

ECE 561 Project 1

Code for Speed

A.G.Dean

A Cookbook of All

Possible Code

Optimizations

for Speed

N. Author

Optimizing Your

ECE 561 Project

1 Code for

Speed

A.G.Dean

Optimizing Your

ECE 561

Project 1 Code

for Speed in

Just Two Hours

A.G.Dean

Optimizing

Your ECE 561

Project 1 Code

for Speed

A.G.Dean

A Day in the

Life of Your

ECE 561

Project 1 Code

N. Author

Optimizing

Your ECE 561

Project 1 Code

for Speed

A.G.Dean

ECE 561

Project 1

Report on

Speed

Optimization

Stuart “Stu” Dent

5

▪Two basic approaches to find the right code to optimize

▪ Estimation: Examine source code (and maybe object code too, for more accuracy)

and build simple model of execution time relationships. We just saw this, and how

risky it is.

▪ Measurement: Measure a real system to get real* numbers

▪ * How real the numbers are depends on real the system and its inputs are

How is the Program Spending Its Time?

6

Measurement: Sampling a Program

▪ Keep an array of counter variables, one per
function

▪ Periodically sample the program as it runs
▪ Find which function is running
▪ Increment the counter variable for that

function

▪ After run, examine the counter array to see
which functions dominate execution time

Where are you now?
What are you doing?

Activity Count

Studying calculus 37

Walking/biking/rollerblading 12

Soldering 7

Writing code 55

Eating 5

Study break 6

Sleeping 14

7

Making the Program Self-Sampling

▪ Want target program to monitor itself

▪ Periodically samples itself as it runs
▪ Trigger PC sampling with a timer interrupt
▪ See which function was running by finding the ISR’s return

address
▪ Increment the counter variable for that function

▪ Target program needs data structures:
▪ Address-to-function translation table
▪ Execution count for each region

▪ Helper program will generate address-to function
translation table and integrate into application’s
source code

Where am I now?
What am I doing?

8

Regions

▪ Target program needs an array to use while running to translate an address to a function name

Object Code in Memory

RegionTable RegionCount

9

Region Information

▪ Getregions program

▪ Analyzes .axf file to find function names, starting addresses and lengths

▪ Generates C code to define and initialize an array of REGION_T elements

▪ Each function is described by an entry

in RegionTable

▪ Start: first address used by this region

▪ End: last address used by this region

▪ Region name: simplifies analysis

▪ Place table in ROM (using const) to save RAM space

10

Additional Profile Information

▪ RegionCount array
▪ Placed in RAM
▪ Updated by ISR during sampling, so declare as

volatile

▪ NumProfileRegions
▪ Total number of regions in table

▪ profile_samples
▪ Number of samples taken

▪ profiling_enabled

▪ Flag controlling profiling

▪ num_lost

▪ Number of addresses which couldn’t be found in

region table

▪ adx_lost

▪ Last address which wasn’t found, helps for

debugging

Profile.c

Region.c

11

Data Flow for Profiling Support

▪ Helper program (GetRegions) examines executable to make a C file which declares and initializes the region

table.

▪ Run GetRegions
▪ Examines executable file’s symbol table (with addresses of all functions)

▪ Generates C files which define address translation table (RegionTable), sample count table (RegionCount), other data

▪ Then rebuild program using updated region table

Compiler &

Assembler
Linker

Executable

FileSource FilesSource FilesObject Files

profile.c

region.h

Source FilesSource FilesSource Files

Map File
Make Region

Table
region.c

profile.h

Get

Regions

12

Details of the Repeated Build Sequence

1. Build the program using a dummy region.c file.

Region.c has wrong number of regions, wrong

addresses.

2. Run tool to create the region table from the

executable. Region.c has right number of

regions, but wrong addresses.

3. Rebuild the program. The resulting executable

symbol table has the correct function

addresses.

4. Run tool to create the region table from the

executable. Region.c has right number of

regions, right addresses.

5. Rebuild the program. Executable’s region table

has right number of regions, right addresses

Compiler &

Assembler
Linker

Executable

FileSource FilesSource FilesObject Files

profile.c

region.h

Source FilesSource FilesSource Files

Map File
Make Region

Table
region.c

profile.h

Get

Regions

13

EXTRACTING FUNCTION

ADDRESSES FROM EXECUTABLE

14

Finding Function Addresses

▪ MDK creates executable image with .axf extension

▪ Format of .axf file is ELF (Executable and Linkable Format)

▪ http://man7.org/linux/man-pages/man5/elf.5.html

▪ Example sections

▪ .text: executable program instructions (machine code)

▪ .data: initialized data

▪ .bss: uninitialized data (actually cleared to zero)

▪ .symtab: symbol table for debugging

▪ .strtab: string table with names of sections and symbols

▪ Symbol Table holds information for each symbol

(e.g. function, variable)
▪ st_value: beginning address of symbol

▪ st_size: size of symbol

▪ st_name: location of symbol’s name in string table

Image: Wikipedia

http://man7.org/linux/man-pages/man5/elf.5.html

15

Using GetRegions Manually

1. Build your program in µVision.

2. Run update_regions_manually.bat (in the Scripts

folder) to create a new region.c file (which is

placed in the src folder). This file will have the

correct number of entries but the addresses may

be wrong (this is ok – a later pass will fix this).

3. Rebuild your program in µVision to generate an

executable with the correct size region table.

Note that this table still uses the old function

addresses, which will be wrong if the previous

region table had a different number of entries.

4. Run update_regions_manually.bat to create a new

region.c file with the correct function addresses

and the correct number of entries.

5. Rebuild your program in µVision to generate an

executable with the correct region addresses.

6. Download and execute your program on the

target hardware. This will populate the

RegionCount table to indicate the execution time

profile.

16

RETRIEVING THE RETURN

ADDRESS AND FINDING THE

FUNCTION

17

Identifying the Interrupted Function

▪ Demo code uses PIT to generate periodic interrupt

▪ Within timer ISR:
▪ Read the return address from the stack

▪ Examine table of region addresses to determine currently executing region i

▪ Increment entry i of execution count table

▪ Extras
▪ Increment profile_samples variable (to reveal out-of-range PC instances) – want to be

able to double-check the measurements

▪ Keep track of last address which was not found

18

Which Stack? MSP or PSP?

▪ CPU can operate in two different modes

▪ Handler mode for exception/interrupt handlers

▪ Thread mode otherwise

▪ CPU has two stack pointers

▪ Main Stack Pointer

▪ Process Stack Pointer

▪ SPSEL flag in CONTROL register selects SP

for thread mode

▪ On reset, SPSEL = 0

▪ SP refers to either MSP or PSP, depending on

mode and SPSEL

▪ Handler mode uses MSP

▪ Thread mode

▪ If SPSEL is 0, uses MSP

▪ If SPSEL is 1, uses PSP. This means handlers use a

different stack than threads.

Thread Mode
MSP (no RTOS)
or PSP (RTOS)

Handler Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

19

Finding Return Address in ISR – No RTOS

▪ Function foo is running and is interrupted

▪ Where is the return address stored?

▪ Not in LR, which holds exception return code in ISRs

▪ Instead need to access saved PC value on stack

▪ Only main stack pointer (MSP) is used

▪ Where is it on the stack?

▪ 24 bytes past MSP on entry to handler/ISR

▪ But within handler, offset may be larger since handler

may push more onto the stack

Address Offset Contents

-8
Free space/Handler stack frame?

-4

MSP upon entering exception handler → 0 Saved R0

+4 Saved R1

+8 Saved R2

+12 Saved R3

+16 Saved R12

+20 Saved LR

+24 Saved PC

+28 Saved xPSR

MSP before entering exception handler → +32 Foo’s stack frame

Where is MSP within
exception handler ???

20

Finding Return Address in ISR – Using RTOS

▪ Thread running Foo uses PSP

▪ Handler uses MSP

▪ Where is it on the stack?

▪ 24 bytes past PSP on entry to handler/ISR

▪ Handler may push more onto the MSP stack, but PSP

stack is not affected

▪ Within handler, SP refers to MSP, but we need to

access PSP to get return address

Address Offset Contents

PSP upon entering

exception handler →

0 Saved R0

+4 Saved R1

+8 Saved R2

+12 Saved R3

+16 Saved R12

+20 Saved LR

+24 Saved PC

+28 Saved xPSR

PSP before entering

exception handler →

+32 Foo’s stack frame

Address Offset Contents

MSP upon entering

exception handler →

0

+4

+8

+12

+16

+20

+24

+28

MSP before entering

exception handler →

+32 Free

space/Handler’s

stack frame

21

Code for Finding Return Address – Arm Compiler 5

▪ Read saved PC value from correct stack

▪ Define constant values in profile.h

▪ Use inline assembly code to access correct SP

(PSP or MSP)

▪ Add offset for context saved by hardware in

response to interrupt (HW_RET_ADX_OFFSET)

▪ Possibly add offset for ISR’s stack frame contents

(FRAME_SIZE)

▪ Load the word from resulting memory address

▪ Resulting object code

▪ Look at what that long line of C code turned

into! Very efficient object code.

▪ Note: __return_address()

▪ Compiler provides intrinsic command

__return_address().

▪ Not useful because it returns value of link register,

which doesn’t hold return address for handlers.

22

Code for Finding Return Address – Arm Compiler 6 (CLANG)

▪ Read return address (saved PC

value) from correct stack (“RA_SP”)

▪ Define constant values in profile.h

▪ Use inline assembly code to access

correct SP (PSP or MSP)

▪ Possibly add offset for ISR’s stack

frame contents (FRAME_SIZE)

▪ Add offset for context saved by

hardware in response to interrupt

(HW_RET_ADX_OFFSET)

▪ Load the word from resulting

memory address

▪ Resulting object code

▪ Look at what that long line of C code

turned into! Very efficient object

code.

profile.h

profile.c: Process_Profile_Sample()

Disassembly

23

Return Address Summary

Stack Pointer with

Return Address (RA_SP)
Frames on that Stack

Offset within Hardware-

Stacked Register Context

No RTOS msp
PIT_IRQHandler +

Process_Sample_Profile
24

RTOS psp (none) 24

24

Looking Up The Address

▪ By the way…

▪ This function executes frequently and could be optimized

▪ Could sort entries, starting with most frequently executed regions: “Profile-driven profiler optimization!”

▪ Uses a linear search: Change to binary search? Need to sort regions in address order

25

Profiler API and Use

▪ void Init_Profiling(void)

▪ Clears RegionCount table

▪ Initializes and starts timer

▪ void Process_Profile_Sample(void)
▪ Reads return address from correct stack

▪ Finds first containing region and increments its RegionCount

entry

▪ void Disable_Profiling(void)

▪ Clears profiling_enabled flag

▪ void Enable_Profiling(void)

▪ Sets profiling_enabled flag

▪ void Sort_Profile_Regions(void)
▪ Creates a list of region numbers, sorted by highest values first

▪ void Display_Profile(void)

▪ If PROFILER_LCD_SUPPORT defined, provides user interface

to page through sorted regions

▪ void Serial_Print_Sorted_Profile(void)

▪ If PROFILER_SERIAL_SUPPORT defined, sends sorted profile

out UART to virtual serial port

▪ Configure settings in profile.h

▪ Sampling frequency

▪ Whether RTOS is used or not

▪ LCD and serial support

▪ Stack frame sizes

▪ Program responsibilities

▪ Initialize profiling system and timers with Init_Profiling()

▪ Ensure interrupts are enabled (can call __enable_irq() to

make sure)

▪ Enable profiling

▪ Run code in question

▪ Disable profiling

26

Disadvantages of Sampling

▪ Sampling is inexact - not guaranteed to get everything that runs

▪ Code which disables interrupts (e.g. ISRs, OS code) is not measured

▪ Rarely executed code may be missed

▪ Takes time for numbers to settle down

▪ Profile changes based on mode of program

▪ How long is enough?

▪ The statistician I asked said “Well, it depends,” and changed the subject

▪ A complex statistical question!

▪ If this were a statistics class, we probably would never actually get to running the program…

▪ So, run it until the digits you care about stop changing.

▪ 9%? 9.7%? 9.73%? 9.731%? 9.731123452345245%?

▪ Each additional digit will take more time to stabilize

27

DEMONSTRATION

28

ProfileDemo

▪ Where does this program spend most of its time?

▪ f1, f2 and f3 are floats

▪ Each loop has

▪ 2 FP adds

▪ 2 FP multiplies

▪ 1 FP sine

▪ 1 FP cosine

▪ Build program, download, run

▪ Break at while (1) loop

▪ Examine RegionCount and profile_samples

29

Results

▪ profile_samples = 5329 (number of samples)

▪ Top region is #26

▪ 1413 samples/5329 = 26.5%

▪ Look up #26 in RegionTable – is

_aeabi_fmul (floating-point multiply)

▪ 2nd region is #23

▪ 1345 / 5329 = 25.2%

▪ __aeabi_fadd (fp add)

▪ 3rd region is #39

▪ 494 / 5329 = 9.3%

▪ __mathlib_rredf2 (?)

▪ Better to sort the regions with call to

Sort_Profile_Regions, then examine

SortedRegions[]

RegionCount[] RegionTable[]

30

How long do the sin and cos calls take?

▪ Look them up in RegionTable

▪ Entries 45 (sinf) and 44 (cosf)

▪ Then look in RegionCount

▪ Sinf: 264/5329 = 4.95%

▪ Cosf: 248/5329 = 4.64%

▪ Are those functions really that fast? 2.5x faster than

multiply or add?

▪ No they aren’t!

▪ Look at object code for sinf in disassembly window

▪ Many calls to fmul and other functions

RegionCount

RegionTable

sinf Disassembly

31

Flat vs. Cumulative Profile

▪ Flat profile
▪ A function F accumulates time only if the PC address sample is in function F

▪ Cumulative profile
▪ A function F accumulates time

▪ If the PC address sample is in function F

▪ If the PC address sample is in a function G, which F called (directly or indirectly)

▪ All functions above G in the call tree also accumulate time

▪ This can be done by examining all return addresses on the call stack

▪ Not implemented here (possible extra credit project?)

▪ Approximation
▪ Modify function of interest to set an output bit on entry, clear it on exit

▪ Examine bit with oscilloscope, measure duty cycle

	Default Section
	Slide 1: Profiling Code for Execution Time
	Slide 2: Overview
	Slide 3: How Does The Program Spend Its Time?
	Slide 4: Optimization Approaches: Which Book to Use?
	Slide 5: How is the Program Spending Its Time?
	Slide 6: Measurement: Sampling a Program
	Slide 7: Making the Program Self-Sampling
	Slide 8: Regions
	Slide 9: Region Information
	Slide 10: Additional Profile Information
	Slide 11: Data Flow for Profiling Support
	Slide 12: Details of the Repeated Build Sequence
	Slide 13: Extracting function addresses from executable
	Slide 14: Finding Function Addresses
	Slide 15: Using GetRegions Manually
	Slide 16: Retrieving the Return Address and finding the function
	Slide 17: Identifying the Interrupted Function
	Slide 18: Which Stack? MSP or PSP?
	Slide 19: Finding Return Address in ISR – No RTOS
	Slide 20: Finding Return Address in ISR – Using RTOS
	Slide 21: Code for Finding Return Address – Arm Compiler 5
	Slide 22: Code for Finding Return Address – Arm Compiler 6 (CLANG)
	Slide 23: Return Address Summary
	Slide 24: Looking Up The Address
	Slide 25: Profiler API and Use
	Slide 26: Disadvantages of Sampling
	Slide 27: Demonstration
	Slide 28: ProfileDemo
	Slide 29: Results
	Slide 30: How long do the sin and cos calls take?
	Slide 31: Flat vs. Cumulative Profile

