NC STATE UNIVERSITY

Native Integer and Fixed-Point Math



NC STATE UNIVERSITY

NATIVE DEVICE INTEGER MATH



NC STATE UNIVERSITY

Native Device Integer Math

= Basic idea: don’t do unnecessary conversions

= Example: sensor which warns if temperature is at or below freezing (32°F)
= Sensor indicates temperature with analog voltage
= V; =Temperature™|2 mV/°F
= Measure voltage with analog to digital converter
= 10 bits,V, =33V

ref —
= Naive approach
= Measure voltage, convert to temperature
= temperature = (ADC_result/1024.0)*3.3V / (12 mV/°F)
float temperature = ADC_result*0.268555;
if (temperature <= 32.0)
Freeze_warning();
= Native integer approach
= Compare ADC result to value corresponding to freezing
= #define FREEZE_TEMP_CODE ((32°F * 12 mv/°F)*1024/3.3v) // is 119
if (ADC_result <= FREEZE_TEMP_CODE)
Freeze_warning();



NC STATE UNIVERSITY

FIXED-POINT MATH



NC STATE UNIVERSITY

Limitations of Integer and Floating-Point Data Types

= Integers truncate the fractional part of the data

" Floating point is slow if there is no hardware support (must be emulated in software)

= Floating point representation: S, M, E, B
= S:indicates sign of value (0=+ or |=-)
= Mantissa M is scaled by base B raised to exponent E
= Base B is 2, fixed for the format.

= Value = (-1)>*M*BE

= Basic steps in performing floating point operation in software
= Align mantissas by shifting them, adjusting exponents
= Perform operation
= Normalize result



NC STATE UNIVERSITY

Further Issues with Floating Point: I[EEE-754

= Exponent (8 bits) is biased to allow negative = These conversions take additional time in software.
exponents (small values) = Add or remove bias from exponent
= Exponent of E is actually stored as E+127 = Add or remove implicit | bit
= Mantissa (called significand) is 24 bits long, but only 23
bits are stored = Good explanation:
® Is normalized (shifted) to a value in range [l,2), http://steve.hollasch.net/cgindex/coding/ieeefloat.html

= Now the first bit (left of binary point) is a I.

= Can delete that bit before storing since it will always
bea l.

* Frees up another bit for better precision!

= Resulting value is a fraction in range [0,]) and is used for
storage


http://steve.hollasch.net/cgindex/coding/ieeefloat.html

Fixed Point Math —Why and How

= Basic ldea:

= Locate the radix point so the values cover the range you need
to represent with enough resolution
= Range: difference between smallest and largest values which can be

represented

= Resolution: difference between two adjacent values
= Constant number of discrete values possible (2N)

= Naming Styles
m qf
= f = no. of fraction bits
= i = Implied as
word size - f
= Qif
= i = no. of integer bits
= f = no. of fraction bits

Bit Pattern
/00000 0000,
w0001 11,00,

0110 OQM L
g

ql0

q2 q0

NC STATE UNIVERSITY

3.34375 in a fixed point binary representation

Bt |1 | I | O l < Lo | N
Weight | 2! | 20 . 22 23 24 2
Weight | 2 I \2 YVa 1/8 | I/16 | 1/32
L )\
(Ange 5
e7[)‘(’ Ress s \(/ Radlx Point
Integer (q0) q2 ql0
0/l =0 0/4=0 0/1024 =0
28/1 = 28 28/4 =7 28/1024 = 0.0273...
99/1 = 99 99/4 = 24.75 99/1024 = 0.0966...

Radix Point Locations




NC STATE UNIVERSITY

Dealing with Signed Values

= Two’s complement for integers
= Same instructions work for addition, subtraction
= Different instruction for multiply, divide

= Two’s complement for Fixed Point?
= Possible, but more complicated
= Many FXP implementations instead use sign-magnitude format, and convert as needed



NC STATE UNIVERSITY

Support Operations
%

= Scaling * Normalization
= Shift a valu€ to change from one (implicit) = Two values are normalized if they have the same

5

exponent to another number of fraction bits
= Left shift increases the number of fraction bits, = Need to normalize values before addition or
right shift decreases it subtraction

= Example: Convert from ql0 to qé by shifting
right by 4 bits
= Note: for a signed representation, this must

be an arithmetic shift (MSB must remain the
same)

= Promotion

= Adds additional bits to improve range and/or
precision

= Rounding

= Improves accuracy by incrementing value if
truncated bits are > [/2



NC STATE UNIVERSITY

MATHEMATICAL OPERATIONS



Addition, Subtraction (gf, % df,)

= Are values aligned (f, == f,)!

= We can treat fixed point numbers like integers
= Radix point stays where it started +

= Otherwise we need to align radix points (normalize)

= General Operation
= Ensure operands are normalized (scale by f/-f,)
= Add or subtract operands
= Handle overflow
= Set sign of result

NC STATE UNIVERSITY




NC STATE UNIVERSITY

Multiplication (qf; * qf,)
6,2 Format

S . 10 001010.00 "z
~ T« 105 «000004. 017 V4

B 125 00000000 1100.1000

= Operands do not have to be normalized

= Radix point moves left, so we need to normalize result afterwards, shifting the result
rigEt

= Operation
= Multiply terms

= Handle overflow
= Scale result from q(f,*f,) into desired format



Overflow

= Causes

= Result of operation doesn’t fit into
representation

= Adding two N bit values has an N+1 bit result

= Multiplying two N bit values has a 2N bit result

= C language discards upper N bits of integer
multiplication

= Prevention

* Promote operands to larger representation
before performing operation

= Scale operands down to have fewer fraction bits

NC STATE UNIVERSITY

= Compensation

= Detect overflow after operation, then correct the
result

= Saturation

= Replace overflowing value with closest valid
available value in that representation

= May be provided in special instructions



NC STATE UNIVERSITY

Division

= Option |: Multiply by the reciprocal of the divisor
= Practical for constants ’l/
X

= Also useful if processor has hardware reciprocal instruction but no divide

= Option 2: Use C integer division and remainder operations (/ and %, or div (stdlib.h))
= /:Result is quotient of integer division, is integer (g0). Fraction bits have been truncated
= %: Result is remainder of integer division,
= div(): returns structure of type div_t (int quot, int rem)

= Option 3:Assembly language integer division instruction
= Typically produces two results: integer quotient (q0) and remainder



Using Integer Division

gl Format

B Dividend 7 171.0
- T Divisor 2 - p70.0

NC STATE UNIVERSITY

g2 Format
111.00

= 010.00

I Quotient 3 0011
I | Remainder 1 001.0

00011
001.00

* Perform integer divide on two fixed point operands with formats qf; and df,

* How many fraction bits are in the quotient?
= If f,=f,, quotient is integer
= Otherwise quotient has f-f, fraction bits

= Remainder has f, fraction bits

= Note: This example doesn’t address signed numbers

15



NC STATE UNIVERSITY

Using Integer Division, Part 72
e

gl Format g2 Format e

BT Dividend 7 ,.1710.0  (2911100.00 (1>

+ BT Divisor <27 < 9310.0 £ 010.00 9

I Quotient 35  0011.1 00011.10 ¢

= What if we want to use just the C integer divide operation (and not the modulo
(remainder, %) operation)?

= What if we want result to have fraction bits? /

= Can scale dividend or divisor so quotient will have fraction bits

= To make quotient have same format as dividend and divisor (qf)
= Multiply dividend by 2 (shift left by f, bits). Need to keep the extra bits or detect overflow!
= Quotient is in gf fixed point format now



NC STATE UNIVERSITY

More Fixed Point Math Examples

g4 Format
L 10 0000 1010.0000
+ B + 15 +£0000 0001.1000

B 115 00000000 1011.1000

g4 Format
BT 90625 1001.0001
I * 65 £0110.1000

B 58.90625 0011 1010.1110 1000



NC STATE UNIVERSITY

Example Code: 28.4 Fixed Point Math

= This particular code is for unsigned numbers only! Must be tweaked to support signed numbers.

= Representation
= typedef int FX_28_4;

= Converting to and from fixed point representation
= #define Y_BITS (4)
= #define SCALE (1<<Y_BITS)
= #define FL_TO_FX(a) (int) ((a)*SCALE)
= #define INT_TO_FX(a) ((a)*SCALE)
= #define FX_TO_FL(a) ((a)/((float)SCALE)
= #define FX_TO_INT(a) (int)((a)/SCALE)

= Math
- #define FX_ADD(a,b) j(a)+(b)Lé
- #define FX_SuB(a,b) ((a)-(b)) &  —~
= #define FX_MuL(a,b) _(ﬂg)_*_(.b).)/SCALE)A \méb"”‘\\ge /B/CAD}

+ #define FX_DIV(a,b) (((a)/(b))*SCALEX ;
. #define FX_REM(a,b) ((()%(D)) Yo T

3
u-
o W




NC STATE UNIVERSITY

FIXED-POINT UPDATE_PID FUNCTION



NC STATE UNIVERSITY

Closed-Loop Control System Overview

= Provide closed-loop control of buck converter for correct and
accurate output current control

= Sequence of activities

Int. Resp. Controller code

time =

= Periodic timer triggers ADC conversion with hardware signal

= ADC conversion complete signal triggers ADC interrupt
= ADC interrupt handler contains closed-loop controller code, which updates

TPM with new duty cycle of PWM output Control (PWM)| 1 1T 1

Buck

= Quality of control depends on control frequency f
‘ Converter

Feedback (Analog Voltage)

= Control frequency f. limited by
= Overhead of responding to interrupt

= Duration of controller code

20



NC STATE UNIVERSITY

Floating-Point PID Controller Implementation

ltypedef struct ({ |IsPid plantPID = {0, // dState
float dState; // Last position input 0, // isState
float iState; // Integrator state LIM DUTY CYCLE, // iMax
float iMax, iMin; // Maximum and minimum allowable integrator state -LIM DUTY CYCLE, // iMin
float iGain, // integral gain I CAIN FLT // icain
pGain, // proportional gain P_GPLIH_FL; // pGain
dGain; // derivative gain D GAIN FL // dcain
} Spid; ¥ - -

float UpdatePID(SPid * pid, float error, float position) {
float pTerm, dTerm, iTerm; . .
= Design philosophy

// calculate the proportiocnal term

pTerm = pid—}pGair@error; = Start with easy version (floating
// calculate the integral state with appropriate limiting . . .
pid->iState error; POInt) and get It Worklng

if (pid->istat{’S) pid—>iMax) = Then switch it over to fixed point

pid->iState = pid->iMax;
else 1f [pid—}iState@ pid->iMin)
pid->iState = pid->iMin;
iTerm = pid->iGain@ pid->iState; // calculate the integral term
m = pid->dGain @ (position - pid->dState);
pid->dState = position;

returry pTerm @iTerm@iTerm;
2}




Fixed-Point Update PID Controller Function

= UpdatePID_FX called by _x
ADC interrupt handler to

determine new control signal
(PWM duty cycle)

= Multiply operations expected
to take much longer than add
or subtract operations

= Can use timing debug output
bit to evaluate progress
through code

22

FX1lé 1€ UpdatePID

A

-

NC STATE UNIVERSITY

PidFX * pid, FX1lé 16 error FX, FX1l6é 16 position FX) {

FX16 16 pTerm, dTerm, iTerm, diff:’Tﬁf:FEIT‘f

/{ calculate the proportional term
pTerm =\§EEEEELX_FX{Pid—>PGain, error FX);

// calculate the integral state with appropriate limiting

pid->iState = E@E_EX{pid—biState, error_ FX);
if (pid->»iState > pid->»iMax)
pid->iState = pid->iMax;
else 1if (pid->»iState < pid->»>iMin)
pid->isState = pid->iMin;

Term = Multiply FX(pid->iGain, pid->iState);
diff = Bubtract FX(position F¥X, pid->dState);
dTerm i—ﬁﬁiziﬁigiiﬁ{pid—}dGaiﬂ, diff);

id->dState = position_ FX;

ret val = Add FX(pTerm, iTerm):;
ret wval = Subtract FX(ret wval, dTerm);
return ret wval;

// calculate the integral term



Fixed-Point PID Controller Implementation: Types, + and -

23

typedef

S e e e

define
define
define
define

typedef

FX16_16

int32 t FX16 16;:

FL TO FX(x)
INT TO FX(x)
FX_TO_ INT (x)
FX_TO FL(x)

struct {
FXlé 16 dstate; // Last position input
FX16_16 istate; // Integrator state

// Maximum and minimum allowable integrator state
FXle 16 iGain, // integral gain

(

(

iMax, iMing;

—

FX1e 16) ((x)*65536.0}))
(FX1e 16) {(x)*e5536))
(int32 t) ((x)/e5536))
float) ((x) /65536.0))

pGain, // proportional gain
dGain; // deriwvative gain

} SPidF¥;

FX1lé 16 Add FX(FX1le 16 a, FX1lé 16 b) {
FXle 16 p;
// Add. This will
P =a+b;

}

return p;

overflow 1f a+b > 2*1¢

FXleé 16 Subtract FX(FXleé 1€ a, FXlé le b) {
FX1le 16 p;
P =a - b;

}

return p;

NC STATE UNIVERSITY

= Simple implementation

= Can use native 32-bit
words

= Simple because we ignore
overflows and rounding!



NC STATE UNIVERSITY

Signed 16.16 * 16.16 1
T 1

= Result of 32x32 multiply should Fx16 16 Multiply FX(FX16_16 a, FX16 16 b) { PUSH {rd,1lr}
be 64 bits long int64_t p, pa, pb; ASRS £d, r0, 4
, o _ // Long multiply first. ASRS r3,rl,#
= C multiply of 32-bit integers just pa = a; MOV r2,rl
returns lower 32 bits of result pb = b; MOV rl, r4
= Solution p = pa * pb; BL ___aeabi Imul
= Promote arsuments to 64 bits // Should check for overflow! LSLS rl,rl, # -
. 5 . // Normalize after multiplication LSRS r0,r0, #" '
= Multiply 64x64 to get 64-bit p >>= 16; ORRS r0,r0,rl
product return (FX16 16) (p&0x ({7 {{7ff); POP (rd,pc}

= Process the result (normalize) }
=)
\/[/6‘4) I l
iz m R
WZZER
X

24



NC STATE UNIVERSITY

Signed 16.16 * 16.16 Explained , b

PUSH {r4,1lr) = Sign-extension to 64 bits rl

ro
ASRS rd,r0,# = a(r0) and b (rl) to 64 bits pa (r4:r0) and - S
ASRS r3,rl, # pb (r3:r2) r4 | rO r3 | rl

= ASRS: arithmetic shift right performs sign
extension by setting all of upper word’s

sign bits to match lower word’s sign ri U r2
MOV r2,rl = Move pa and pb into argument

MOV rl,rd registers (rl:r0 and r3:r2) __aeabi_Imul
| -

BL seabi 1mu1 " Call __aeabi_Imul for long ' 4@@

- - multiply @ P
LSLS rl,rl,# = Extract middle 32 bits of result -
LSRS r0,r0,# = LSLS: logical shift left extracts lower |6 bits $
ORRS r0,r0,rl of rl XI’O

= LSRS: logical shift right extracts upper |6
bits of r0

POP {rd,pc} = ORRS: merges together middle 32 bits ri

25



NC STATE UNIVERSITY

Speed!?

= MicroLIB version is much slower than B Options for Target ‘Target 1
standard C library version! Why?
Device [arget lDutput] Listing] User ] EH'CHI Asm ] Unker] Debug] |kilities

MXP MKL25Z212800md
Code Generation

¥tal (MHz): |‘|E-EI ARM Compiler: | Use

Operating system: |I‘-.Inne -
System Viewer File:

MKL25Z4 svd J

| Use MicroLIB

26



NC STATE UNIVERSITY

Object Code for __ aeabi_Imul in MicroLib C Library

_l?ezﬁi_lmul 1 0x00000134: 9003 - STR r0, [sp, #0x2c]

— = ) 0x00000136: .. LDR r0, [sp, #0:10]
0x000000fc: ]"t .. BPYSH {rd4-r7,1r} 0%00000138 : _ LSRS 5,15, 416
0x000000fe: b41lt .. SH {r0-r4d} 0000001 3a: 131 5
0x00000100: b086 .. sp, sp, #0218 0%0000013c: I
0x00000102: 2000 ) M@VS r0, #0 0x0000013e: _
0x00000104: .. TR r0, [sp, #01] 000000140 1627 T2, i
0x00000106: 9001 .- 2 r0, [sp, #4] 0x00000142: £O00F8F1 aeabi 11sl |; O0x328
0x00000108: a0o02 .. STR 0, [sp, #9] 0x00000146:

N=NOO0NT A~ - LDR r0, [sp, #0x18] 0xUU0UU14Y: gA ADCS rl,rl,ré6
What’s going on here? R rl, [sp, #0x18] 0x0000014a: 4 ADDS r4,r4, $#0x1
\ﬁTH r0,r0 0x0000014c: F MOV ro,rl
STR 0, [sp, #0=10] 0x0000014e: a, CMP rd, #0=24
TWO nested loops? LDR r0, [sp,#0=x1c] 0x0000015C= BLT 12cl;  aeabi lmul + 48
LSRS rl,rl, %16 0x00000152: 8F MoV r0,r7
LSLS r2,r0,#16 0x0000015¢4: -
Did the compiler forget ASRS r0,r0,#16 ooooral. (B rga‘?";‘gi#f“ e
. . ORRS rl,rl,r2 q: r P
about the MULS instruction? <= 0. [sp, #0010] 0x0000015¢: 5D, ¥4
MOVS r7, 0 0x0000015e: ADDS r0,r0,r2
. LDR r5, [sp, $0:20] 0x00000160: .. STR r0, [sp, #0]
Could use Ghidra to make DR 0, [op. #0:24] 0x00000162: YA ADCS rl,rl,ri
. . , 000000164 : LDR 0, [sp, #0]
sense of function using 333 ié'i:p'#‘""'l . 0x00000166: STR rl, [sg,#é]
COI‘ItI’O/f/OW graph_ MOV r4' 5 0x00000168: ADDS r0,r0, #0x10
! _ 0x0000016:: .. STR r0, [sp, #5]
UxUUuUUULZa: .. STR r0, [sp, #.:.:-:;::] 0000001 66 : e cMP £0, #0540
0x0000012c: - LDR r0, [sp, #0xc] 0000001 6e : — BLT 0%x10al; aeabi lmul + 14
0x0000012e: - UXTH rl, r> 0x00000170: 9800 .. LDR r0, [sp, #01 B
0x00000130: 0402 .- LSLs r2,r0,#16 0%00000172: b0 Ok .. ADD sp, sp, #0=2c
0x00000132: 0c00 .. LSRS r0,r0,#16 0x00000174: bdfo .. POP {r4-r7,pc}

27



Object Code for __aeabi Imul in Regular C Library

= Much shorter code!

= Extended precision integer
math computes partial products

= Library code computes product
with 6 multiplies
= Are 6 really needed!?

= Could you optimize this for the
fixed point PID controller
knowing it has limited input
data ranges?

28

___aeabi lmul
_ll_mul

0x000001a4d:
0x000001la6:
0x000001a8:
0x000001laa:
0x000001lac:
0x000001lae:
0x000001b0:
0x000001b2:
0x000001b4:
0x000001b6:
0x000001b8:
0x000001ba:
0x000001bc:
0x000001be:
0x000001cO:
0x000001c2:
0x000001c4:
0x000001cé6:
0x000001c8:
0x000001ca:
0x000001cc:
0x000001ce:
0x000001dO:
0x000001d2:

NC STATE UNIVERSITY

IMULS r3,r0,r3|
IMULS rl,r2L££J
PUSH {rd,r5,1r}
ADDS rd,r3,rl
LSRS rl,r0,#16
LSRS r3,r2,#16
MOV r5,rl
UXTH r2,r2
|MULS r5,r3,r5 |
UXTH r0, r0
IMULS rl,r2,rl|
ADDS rd,r5,r4
IMULS r5,r2,r5|
LSRS r2,rl, 16
LSLS rl,rl,#16
ADDS r5,rl,rb5
ADCS r2,r2, ré
IMULS rO,r3,rO|
LSRS rl,r0,#16
LSLS r0,r0,#16
ADDS r0,r0,r5
ADCS rl,rl,r2

POP {rd4, r5,pc}



NC STATE UNIVERSITY

Do We Really Need a Full 64x64 Multiply?

= Need extended precision math
= Must compute partial products with native precision (32 bits)

= Desired result: p = pa*pb: 64-bit arguments pa & pb, 64-bit return value p (upper 64 bits truncated)

= W = weight of single 32-bit register = 232

" p =(pa,"W + pa)*(pb,*W + pby)
P pa,"W* th*W\"', pa, "W*pb, {" Lth*W*Pan"'@ >|<Pb|1
= Upper 64 bits are not needed, since truncated to fit 64-bit return value
" PLowss = P2, *W¥pb, + pb,*W*pa, + pa, *pb,
= Five multiplies and two adds
= Replace multiply by W with using upper word register

= Three multiplies and two adds
= Opportunity for optimization!

29



Timing Analysis and Room for Further Improvement

NC STATE UNIVERSITY

Mode: Repeated - | Trigger: | Auto - Simple | Pulse Protocol .| Position: | 4us &
“ Single b Run :
Buffer: 4F Source: Digital ~ |Inputs: | 100MHz DIO 0..15 Base: 1 usjdiv v =
e wm [T, < >
Mame Pin T| Ready |4096 samples at 100 MHz | 2019-02-18 14:52:13.69& i El‘l&.?
w1 X Mal —= |
SUB_FX ! X SUR A H
ADD_FX ' X , =
: . [
IRQ_ADC Dio 4 X V¢
T (R s o) — =
s JEEEX =
Controller ! J_ ||
LED_ON : )( . n . ..
FX1lé 1€ UpdatePID FX(SPidFX pid, FX1lé 1€ error FX, FXlé 1€ position FX)
X: -352.5 s FX1l€é 16 pTerm, dTerm, iTerm, diff, ret wval;

X|- -lus Ougy lus 2us

= Evaluate time spent in code
= |s 900 ns reasonable for Multiply FX?

* Where else can we trim time!?

N (A 49

30

// calculate the proportional term
pTerm = Multiply FX(pid->pGain, error_ FX);

// calculate the integral state with appropriate limiting

pid->iState = Add FX(pid->»iState, error FX);
if (pid->iState > pid-»iMax)
pid->»>iState = pid->»iMax;
else if (pid-»iState < pid-»iMin)
pid->isState = pid->iMin;

iTerm = Multiply FX(pid->1iGain, pid->isState); // calculate the integral

diff = Subtract FX(position FX, pid->dstate);
dTerm = Multiply FX(pid->dGain, diff);
pid->dState = position FX;

ret val = Add FX(pTerm, iTerm);
ret_wval = Subtract_FX(ret_wval,
return ret_vwval;

dTerm) ;



NC STATE UNIVERSITY

CORTEX-M0+ AND CMSIS-DSP
FIXED POINT MATH SUPPORT



Cortex M0+ CPU Core Support

= 32-bit data in registers

= Add, Subtract
= ADDS, ADCS, SUBS, SBCS

= Multiply: MULS
= Signed multiply
= Returns lower 32 bits of 64 bit product
= Updates N, Z condition flags in APSR

32

NC STATE UNIVERSITY

= Shift
= Logical shift left, right — does not preserve sign
= Arithmetic shift right — preserves sign

" Rotate
= Rotate right

= Extend (sign, zero)
= SXTH, SXTB
= UXTH, UXTB



CMSIS-DSP Support for Fixed Point Math

. Options for Target 'KL25Z Flash’ H
. Th ree fraCtional ﬁxed POInt data types Device ] Target] CILrtputl Usting] User C/C++ lﬁsm ] Unker] Debug] Util'rties]

Supported | @jﬂ:essurﬂmbuls \
= q31_t:signed, | integer bit, 3| fraction bits - jpe: |ARM_MATH_CMOPLLS="

= ql5_t:signed, | integer bit, |5 fraction bits R

= q7_t:signed, | integer bit, 7 fraction bits. 1 el b Ll e
NOt supported by a” functions. Device ] Target] Dutput] Usting] [zer ] E,-’CH] Asm Linkeer ]Debug] Util'rties]
R . o W Use Memony Layout from Target Dialog
" Fra‘Ctlona‘I: range IS - I to + I (aImOSt) T [ Make RW Sections Position Independent R/O Base |:;;_::::::::
; [ Make RO Sections Position Independent W Base |f.:-r'IFFFFEEE
E [ Dont Search Standard Librares | :
. I¥ Report ‘might fail’ Conditions as Emors disable Wamings:
= To use CMSIS-DSP library : o
= #include <arm_math.h> J
= C/C++ Tab: Define preprocessor symbol i
P P y T Scatter J Edit |
ARM_MATH_CMOPLUS Fie
o L|!1ker Tab.. Specify ARM math library to use, G ARSI AR o ot b )
with location : controls

33



b NC STATE UNIVERSITY
CMSIS-DSP Software Library RN T T T (T U]

\
'¥j>/(11|( T (1

T 1N A S
= Fast functions and macros for digital signal r E(/ '

processing and other math = Multiple data types supported

= Basic math — abs, add, sub, multiply, negate, offset, scale,
shift (all support vector operations)

32-bit floating point

32-bit integer/fixed point
= Fast math — sin, cos, sqrt

| 6-bit integer/fixed point
= Complex math

8-bit integer/fixed point

= Different versions optimized for core
Matri = MO, M0+, MI, M3, M4, M7, M23, M33

" atrix

= Transforms — FFT, DCT = Vector functions use SIMD instructions on M4, M7,
M33 (else use loop)

= Filters — IR, FIR, convolution, correlation, FIR LMS,
interpolator

= Motor control — PID control, Clarke & Park (and

inverse) transforms * Detailed documentation available in MDK
= Statistical — min, max, mean, power, rms, standard = Help->Open Books Window, then select Tool User’s
deviation, variance Guide-> CMSIS Documentation

= Support — vector fill & copy, convert values
= Interpolation — linear, bilinear

34



NC STATE UNIVERSITY

Example Code — Pythagorean Theorem

— 2 2 Hg3l €t pyth(g31l £t a, g31 t b) {
"c=+a b _ _ _
T g3l t a 2, b 2, sum, result; ? _‘_Lk ]_
- Equivalent C code arm mult g31l(&a, &a, &a 2, __1_.} ; a

arm mult g31 (&b, &b, &b 2, 1);
arm add g3l(&a 2, &b 2, &sum, 1);
arm sgrt g31(sum, &result):;

Z return result;

/L

= ¢ = sqrtf((a*a) + (b*b));

= To use fixed point functions, we need to break
expression into individual operations

= a_2 =a*y

= b_2 = b*b;
= sum=a 2+b 2

= ¢ = sqrtf(sum);

= Note that not all arguments are passed as
pointers

35



Performance Evaluation

= How much faster than floating point math is the
fixed point math?

= |t depends... measure it with your data

36

NC STATE UNIVERSITY




	Untitled Section
	Slide 1: Native Integer and Fixed-Point Math
	Slide 2: Native Device Integer Math
	Slide 3: Native Device Integer Math
	Slide 4: Fixed-point math
	Slide 5: Limitations of Integer and Floating-Point Data Types
	Slide 6: Further Issues with Floating Point: IEEE-754
	Slide 7: Fixed Point Math – Why and How
	Slide 8: Dealing with Signed Values
	Slide 9: Support Operations
	Slide 10: Mathematical Operations
	Slide 11: Addition, Subtraction (qf1 ± qf2)
	Slide 12: Multiplication (qf1 * qf2)
	Slide 13: Overflow
	Slide 14: Division
	Slide 15: Using Integer Division
	Slide 16: Using Integer Division, Part II
	Slide 17: More Fixed Point Math Examples
	Slide 18: Example Code: 28.4 Fixed Point Math
	Slide 19: Fixed-Point Update_PID Function
	Slide 20: Closed-Loop Control System Overview
	Slide 21: Floating-Point PID Controller Implementation
	Slide 22: Fixed-Point Update PID Controller Function
	Slide 23: Fixed-Point PID Controller Implementation: Types, + and -
	Slide 24: Signed 16.16 * 16.16
	Slide 25: Signed 16.16 * 16.16 Explained
	Slide 26: Speed?
	Slide 27: Object Code for __aeabi_lmul in MicroLib C Library
	Slide 28: Object Code for __aeabi_lmul in Regular C Library
	Slide 29: Do We Really Need a Full 64x64 Multiply?
	Slide 30: Timing Analysis and Room for Further Improvement
	Slide 31: Cortex-M0+ and CMSIS-DSP  Fixed Point Math Support
	Slide 32: Cortex M0+ CPU Core Support
	Slide 33: CMSIS-DSP Support for Fixed Point Math
	Slide 34: CMSIS-DSP Software Library
	Slide 35: Example Code – Pythagorean Theorem
	Slide 36: Performance Evaluation


