
1

Native Integer and Fixed-Point Math

2

NATIVE DEVICE INTEGER MATH

3

Native Device Integer Math
▪ Basic idea: don’t do unnecessary conversions

▪ Example: sensor which warns if temperature is at or below freezing (32⁰F)

▪ Sensor indicates temperature with analog voltage

▪ VT = Temperature*12 mV/⁰F

▪ Measure voltage with analog to digital converter

▪ 10 bits, Vref = 3.3 V

▪ Naïve approach

▪ Measure voltage, convert to temperature

▪ temperature = (ADC_result/1024.0)*3.3V / (12 mV/⁰F)

float temperature = ADC_result*0.268555;

if (temperature <= 32.0)

Freeze_Warning();

▪ Native integer approach

▪ Compare ADC result to value corresponding to freezing

▪ #define FREEZE_TEMP_CODE ((32⁰F * 12 mV/⁰F)*1024/3.3V) // is 119

if (ADC_result <= FREEZE_TEMP_CODE)

Freeze_Warning();

4

FIXED-POINT MATH

5

Limitations of Integer and Floating-Point Data Types

▪ Integers truncate the fractional part of the data

▪ Floating point is slow if there is no hardware support (must be emulated in software)

▪ Floating point representation: S, M, E, B

▪ S: indicates sign of value (0=+ or 1=-)

▪ Mantissa M is scaled by base B raised to exponent E

▪ Base B is 2, fixed for the format.

▪ Value = (-1)S*M*BE

▪ Basic steps in performing floating point operation in software
▪ Align mantissas by shifting them, adjusting exponents

▪ Perform operation

▪ Normalize result

6

Further Issues with Floating Point: IEEE-754

▪ Exponent (8 bits) is biased to allow negative

exponents (small values)

▪ Exponent of E is actually stored as E+127

▪ Mantissa (called significand) is 24 bits long, but only 23

bits are stored

▪ Is normalized (shifted) to a value in range [1,2),

▪ Now the first bit (left of binary point) is a 1.

▪ Can delete that bit before storing since it will always

be a 1.

▪ Frees up another bit for better precision!

▪ Resulting value is a fraction in range [0,1) and is used for

storage

▪ These conversions take additional time in software.

▪ Add or remove bias from exponent

▪ Add or remove implicit 1 bit

▪ Good explanation:

http://steve.hollasch.net/cgindex/coding/ieeefloat.html

http://steve.hollasch.net/cgindex/coding/ieeefloat.html

7

Fixed Point Math – Why and How

▪ Basic Idea:

▪ Locate the radix point so the values cover the range you need

to represent with enough resolution

▪ Range: difference between smallest and largest values which can be

represented

▪ Resolution: difference between two adjacent values

▪ Constant number of discrete values possible (2N)

▪ Naming Styles

▪ qf

▪ f = no. of fraction bits

▪ i = ? Implied as

word size - f

▪ Qi.f

▪ i = no. of integer bits

▪ f = no. of fraction bits

Bit 1 1 0 1 0 1 1

Weight 21 20 2-1 2-2 2-3 2-4 2-5

Weight 2 1 ½ ¼ 1/8 1/16 1/32

Radix Point

3.34375 in a fixed point binary representation

Bit Pattern

0000 0000

0001 1100

0110 0011

Integer (q0)

0/1 = 0

28/1 = 28

99/1 = 99

q2

0/4 = 0

28/4 = 7

99/4 = 24.75

q10

0/1024 = 0

28/1024 = 0.0273…

99/1024 = 0.0966…

000

000

000

Radix Point Locations

q2 q0q10

8

Dealing with Signed Values

▪ Two’s complement for integers

▪ Same instructions work for addition, subtraction

▪ Different instruction for multiply, divide

▪ Two’s complement for Fixed Point?

▪ Possible, but more complicated

▪ Many FXP implementations instead use sign-magnitude format, and convert as needed

9

Support Operations

▪ Scaling

▪ Shift a value to change from one (implicit)

exponent to another

▪ Left shift increases the number of fraction bits,

right shift decreases it

▪ Example: Convert from q10 to q6 by shifting

right by 4 bits

▪ Note: for a signed representation, this must

be an arithmetic shift (MSB must remain the

same)

▪ Normalization

▪ Two values are normalized if they have the same

number of fraction bits

▪ Need to normalize values before addition or

subtraction

▪ Promotion

▪ Adds additional bits to improve range and/or

precision

▪ Rounding

▪ Improves accuracy by incrementing value if

truncated bits are > 1/2

10

MATHEMATICAL OPERATIONS

11

Addition, Subtraction (qf1 ± qf2)

▪ Are values aligned (f1 == f2)?

▪ We can treat fixed point numbers like integers

▪ Radix point stays where it started

▪ Otherwise we need to align radix points (normalize)

▪ General Operation

▪ Ensure operands are normalized (scale by f1-f2)

▪ Add or subtract operands

▪ Handle overflow

▪ Set sign of result

i2 f2

i1 f1

+

12

Multiplication (qf1 * qf2)

▪ Operands do not have to be normalized

▪ Radix point moves left, so we need to normalize result afterwards, shifting the result

right

▪ Operation

▪ Multiply terms

▪ Handle overflow

▪ Scale result from q(f1+f2) into desired format

*
10

* 1.25

12.5

6.2 Format
001010.00

*000001.01

00000000 1100.1000

13

Overflow

▪ Causes

▪ Result of operation doesn’t fit into

representation

▪ Adding two N bit values has an N+1 bit result

▪ Multiplying two N bit values has a 2N bit result

▪ C language discards upper N bits of integer

multiplication

▪ Prevention

▪ Promote operands to larger representation

before performing operation

▪ Scale operands down to have fewer fraction bits

▪ Compensation

▪ Detect overflow after operation, then correct the

result

▪ Saturation

▪ Replace overflowing value with closest valid

available value in that representation

▪ May be provided in special instructions

14

Division

▪ Option 1: Multiply by the reciprocal of the divisor

▪ Practical for constants

▪ Also useful if processor has hardware reciprocal instruction but no divide

▪ Option 2: Use C integer division and remainder operations (/ and %, or div (stdlib.h))

▪ /: Result is quotient of integer division, is integer (q0). Fraction bits have been truncated

▪ %: Result is remainder of integer division,

▪ div(): returns structure of type div_t (int quot, int rem)

▪ Option 3: Assembly language integer division instruction

▪ Typically produces two results: integer quotient (q0) and remainder

15

Using Integer Division

▪ Perform integer divide on two fixed point operands with formats qf1 and qf2
▪ How many fraction bits are in the quotient?

▪ If f1=f2, quotient is integer

▪ Otherwise quotient has f1-f2 fraction bits

▪ Remainder has f1 fraction bits

▪ Note: This example doesn’t address signed numbers

Quotient

Remainder

÷
7

÷ 2

3

1

q1 Format
111.0

÷ 010.0

0011

001.0

q2 Format
111.00

÷ 010.00

00011

001.00

Dividend

Divisor

16

Using Integer Division, Part II

▪ What if we want result to have fraction bits?

▪ What if we want to use just the C integer divide operation (and not the modulo

(remainder, %) operation)?

▪ Can scale dividend or divisor so quotient will have fraction bits

▪ To make quotient have same format as dividend and divisor (qf)

▪ Multiply dividend by 2f2 (shift left by f2 bits). Need to keep the extra bits or detect overflow!

▪ Quotient is in qf fixed point format now

Quotient

÷
7

÷ 2

3.5

q1 Format
(7*2)1110.0

÷ 010.0

0011.1

q2 Format
(7*4)11100.00

÷ 010.00

00011.10

Dividend

Divisor

17

More Fixed Point Math Examples

*
9.0625
* 6.5

58.90625

q4 Format
1001.0001

*0110.1000

0011 1010.1110 1000

+
10

+ 1.5

11.5

q4 Format
0000 1010.0000

+0000 0001.1000

00000000 1011.1000

18

Example Code: 28.4 Fixed Point Math

▪ This particular code is for unsigned numbers only! Must be tweaked to support signed numbers.

▪ Representation
▪ typedef int FX_28_4;

▪ Converting to and from fixed point representation
▪ #define Y_BITS (4)

▪ #define SCALE (1<<Y_BITS)

▪ #define FL_TO_FX(a) (int)((a)*SCALE)

▪ #define INT_TO_FX(a) ((a)*SCALE)

▪ #define FX_TO_FL(a) ((a)/((float)SCALE)

▪ #define FX_TO_INT(a) (int)((a)/SCALE)

▪ Math
▪ #define FX_ADD(a,b) ((a)+(b))

▪ #define FX_SUB(a,b) ((a)-(b))

▪ #define FX_MUL(a,b) (((a)*(b))/SCALE)

▪ #define FX_DIV(a,b) (((a)/(b))*SCALE)

▪ #define FX_REM(a,b) (((a)%(b)))

19

FIXED-POINT UPDATE_PID FUNCTION

20

Closed-Loop Control System Overview

▪ Provide closed-loop control of buck converter for correct and

accurate output current control

▪ Sequence of activities

▪ Periodic timer triggers ADC conversion with hardware signal

▪ ADC conversion complete signal triggers ADC interrupt

▪ ADC interrupt handler contains closed-loop controller code, which updates

TPM with new duty cycle of PWM output

▪ Quality of control depends on control frequency fc
▪ Control frequency fc limited by

▪ Overhead of responding to interrupt

▪ Duration of controller code

Timer

ADC

TPM

Buck

Converter

Controller

Code

Load

Fe
e

d
b

ac
k

(A
n

al
o

g
V

o
lt

ag
e)

Control (PWM)

time

Int. Resp. Controller code

IRQ

21

Floating-Point PID Controller Implementation

▪ Design philosophy

▪ Start with easy version (floating

point) and get it working

▪ Then switch it over to fixed point

22

Fixed-Point Update PID Controller Function

▪ UpdatePID_FX called by

ADC interrupt handler to

determine new control signal

(PWM duty cycle)

▪ Multiply operations expected

to take much longer than add

or subtract operations

▪ Can use timing debug output

bit to evaluate progress

through code

23

Fixed-Point PID Controller Implementation: Types, + and -

▪ Simple implementation

▪ Can use native 32-bit

words

▪ Simple because we ignore

overflows and rounding!

24

Signed 16.16 * 16.16

▪ Result of 32x32 multiply should

be 64 bits long

▪ C multiply of 32-bit integers just

returns lower 32 bits of result

▪ Solution

▪ Promote arguments to 64 bits

▪ Multiply 64x64 to get 64-bit

product

▪ Process the result (normalize)

25

Signed 16.16 * 16.16 Explained

▪ Sign-extension to 64 bits
▪ a (r0) and b (r1) to 64 bits pa (r4:r0) and

pb (r3:r2)

▪ ASRS: arithmetic shift right performs sign

extension by setting all of upper word’s

sign bits to match lower word’s sign

▪ Move pa and pb into argument

registers (r1:r0 and r3:r2)

▪ Call __aeabi_lmul for long

multiply

▪ Extract middle 32 bits of result
▪ LSLS: logical shift left extracts lower 16 bits

of r1

▪ LSRS: logical shift right extracts upper 16

bits of r0

▪ ORRS: merges together middle 32 bits

r0 r1

r0r1 r2r3

a b

r0r1

__aeabi_lmul

r0

r1

r1

r0r4 r1r3

26

Speed?

▪ MicroLIB version is much slower than

standard C library version! Why?

27

Object Code for __aeabi_lmul in MicroLib C Library

What’s going on here?

Two nested loops?

Did the compiler forget
about the MULS instruction?

Could use Ghidra to make
sense of function using

control flow graph.

28

Object Code for __aeabi_lmul in Regular C Library

▪ Much shorter code!

▪ Extended precision integer

math computes partial products

▪ Library code computes product

with 6 multiplies

▪ Are 6 really needed?

▪ Could you optimize this for the

fixed point PID controller

knowing it has limited input

data ranges?

29

Do We Really Need a Full 64x64 Multiply?

▪ Need extended precision math

▪ Must compute partial products with native precision (32 bits)

▪ Desired result: p = pa*pb: 64-bit arguments pa & pb, 64-bit return value p (upper 64 bits truncated)

▪ W = weight of single 32-bit register = 232

▪ p = (pah*W + pal)*(pbh*W + pbl)

▪ p = pah*W* pbh*W + pah*W*pbl + pbh*W*pal + pal *pbl

▪ Upper 64 bits are not needed, since truncated to fit 64-bit return value

▪ pLow64 = pah*W*pbl + pbh*W*pal + pal *pbl

▪ Five multiplies and two adds

▪ Replace multiply by W with using upper word register

▪ Three multiplies and two adds

▪ Opportunity for optimization!

30

Timing Analysis and Room for Further Improvement

▪ Evaluate time spent in code

▪ Is 900 ns reasonable for Multiply_FX?

▪ Where else can we trim time?

31

CORTEX-M0+ AND CMSIS-DSP

FIXED POINT MATH SUPPORT

32

Cortex M0+ CPU Core Support

▪ 32-bit data in registers

▪ Add, Subtract

▪ ADDS, ADCS, SUBS, SBCS

▪ Multiply: MULS

▪ Signed multiply

▪ Returns lower 32 bits of 64 bit product

▪ Updates N, Z condition flags in APSR

▪ Shift

▪ Logical shift left, right – does not preserve sign

▪ Arithmetic shift right – preserves sign

▪ Rotate

▪ Rotate right

▪ Extend (sign, zero)

▪ SXTH, SXTB

▪ UXTH, UXTB

33

CMSIS-DSP Support for Fixed Point Math

▪ Three fractional fixed point data types

supported

▪ q31_t: signed, 1 integer bit, 31 fraction bits

▪ q15_t: signed, 1 integer bit, 15 fraction bits

▪ q7_t: signed, 1 integer bit, 7 fraction bits.

Not supported by all functions.

▪ Fractional: range is -1 to +1 (almost)

▪ To use CMSIS-DSP library

▪ #include <arm_math.h>

▪ C/C++ Tab: Define preprocessor symbol

ARM_MATH_CM0PLUS

▪ Linker Tab: Specify ARM math library to use,

with location

34

CMSIS-DSP Software Library

▪ Fast functions and macros for digital signal

processing and other math
▪ Basic math – abs, add, sub, multiply, negate, offset, scale,

shift (all support vector operations)

▪ Fast math – sin, cos, sqrt

▪ Complex math

▪ Filters – IIR, FIR, convolution, correlation, FIR LMS,

interpolator

▪ Matrix

▪ Transforms – FFT, DCT

▪ Motor control – PID control, Clarke & Park (and

inverse) transforms

▪ Statistical – min, max, mean, power, rms, standard

deviation, variance

▪ Support – vector fill & copy, convert values

▪ Interpolation – linear, bilinear

▪ Multiple data types supported
▪ 32-bit floating point

▪ 32-bit integer/fixed point

▪ 16-bit integer/fixed point

▪ 8-bit integer/fixed point

▪ Different versions optimized for core
▪ M0, M0+, M1, M3, M4, M7, M23, M33

▪ Vector functions use SIMD instructions on M4, M7,

M33 (else use loop)

▪ Detailed documentation available in MDK
▪ Help->Open Books Window, then select Tool User’s

Guide-> CMSIS Documentation

35

Example Code – Pythagorean Theorem

▪ 𝒄 = 𝒂𝟐 + 𝒃𝟐

▪ Equivalent C code
▪ c = sqrtf((a*a) + (b*b));

▪ To use fixed point functions, we need to break

expression into individual operations
▪ a_2 = a*a;

▪ b_2 = b*b;

▪ sum = a_2 + b_2;

▪ c = sqrtf(sum);

▪ Note that not all arguments are passed as

pointers

36

Performance Evaluation

▪ How much faster than floating point math is the

fixed point math?

▪ It depends… measure it with your data

	Untitled Section
	Slide 1: Native Integer and Fixed-Point Math
	Slide 2: Native Device Integer Math
	Slide 3: Native Device Integer Math
	Slide 4: Fixed-point math
	Slide 5: Limitations of Integer and Floating-Point Data Types
	Slide 6: Further Issues with Floating Point: IEEE-754
	Slide 7: Fixed Point Math – Why and How
	Slide 8: Dealing with Signed Values
	Slide 9: Support Operations
	Slide 10: Mathematical Operations
	Slide 11: Addition, Subtraction (qf1 ± qf2)
	Slide 12: Multiplication (qf1 * qf2)
	Slide 13: Overflow
	Slide 14: Division
	Slide 15: Using Integer Division
	Slide 16: Using Integer Division, Part II
	Slide 17: More Fixed Point Math Examples
	Slide 18: Example Code: 28.4 Fixed Point Math
	Slide 19: Fixed-Point Update_PID Function
	Slide 20: Closed-Loop Control System Overview
	Slide 21: Floating-Point PID Controller Implementation
	Slide 22: Fixed-Point Update PID Controller Function
	Slide 23: Fixed-Point PID Controller Implementation: Types, + and -
	Slide 24: Signed 16.16 * 16.16
	Slide 25: Signed 16.16 * 16.16 Explained
	Slide 26: Speed?
	Slide 27: Object Code for __aeabi_lmul in MicroLib C Library
	Slide 28: Object Code for __aeabi_lmul in Regular C Library
	Slide 29: Do We Really Need a Full 64x64 Multiply?
	Slide 30: Timing Analysis and Room for Further Improvement
	Slide 31: Cortex-M0+ and CMSIS-DSP Fixed Point Math Support
	Slide 32: Cortex M0+ CPU Core Support
	Slide 33: CMSIS-DSP Support for Fixed Point Math
	Slide 34: CMSIS-DSP Software Library
	Slide 35: Example Code – Pythagorean Theorem
	Slide 36: Performance Evaluation

