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Native Integer and Fixed-Point Math
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NATIVE DEVICE INTEGER MATH
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Native Device Integer Math
▪ Basic idea: don’t do unnecessary conversions

▪ Example: sensor which warns if temperature is at or below freezing (32⁰F)

▪ Sensor indicates temperature with analog voltage

▪ VT = Temperature*12 mV/⁰F

▪ Measure voltage with analog to digital converter

▪ 10 bits, Vref = 3.3 V

▪ Naïve approach

▪ Measure voltage, convert to temperature

▪ temperature = (ADC_result/1024.0)*3.3V / (12 mV/⁰F) 

float temperature = ADC_result*0.268555;

if (temperature <= 32.0)

Freeze_Warning();

▪ Native integer approach

▪ Compare ADC result to value corresponding to freezing

▪ #define FREEZE_TEMP_CODE ((32⁰F * 12 mV/⁰F)*1024/3.3V) // is 119

if (ADC_result <= FREEZE_TEMP_CODE) 

Freeze_Warning();
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FIXED-POINT MATH
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Limitations of Integer and Floating-Point Data Types

▪ Integers truncate the fractional part of the data

▪ Floating point is slow if there is no hardware support (must be emulated in software)

▪ Floating point representation: S, M, E, B

▪ S: indicates sign of value (0=+ or 1=-)

▪ Mantissa M is scaled by base B raised to exponent E

▪ Base B is 2, fixed for the format. 

▪ Value = (-1)S*M*BE

▪ Basic steps in performing floating point operation in software
▪ Align mantissas by shifting them, adjusting exponents

▪ Perform operation

▪ Normalize result
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Further Issues with Floating Point: IEEE-754

▪ Exponent (8 bits) is biased to allow negative 

exponents (small values)

▪ Exponent of E is actually stored as E+127

▪ Mantissa (called significand) is 24 bits long, but only 23 

bits are stored

▪ Is normalized (shifted) to a value in range [1,2), 

▪ Now the first bit (left of binary point) is a 1.

▪ Can delete that bit before storing since it will always 

be a 1.

▪ Frees up another bit for better precision!

▪ Resulting value is a fraction in range [0,1) and is used for 

storage

▪ These conversions take additional time in software.

▪ Add or remove bias from exponent

▪ Add or remove implicit 1 bit

▪ Good explanation: 

http://steve.hollasch.net/cgindex/coding/ieeefloat.html

http://steve.hollasch.net/cgindex/coding/ieeefloat.html
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Fixed Point Math – Why and How

▪ Basic Idea:

▪ Locate the radix point so the values cover the range you need 

to represent with enough resolution

▪ Range: difference between smallest and largest values which can be 

represented

▪ Resolution: difference between two adjacent values

▪ Constant number of discrete values possible (2N)

▪ Naming Styles

▪ qf

▪ f = no. of fraction bits

▪ i = ? Implied as 

word size - f

▪ Qi.f

▪ i = no. of integer bits

▪ f = no. of fraction bits

Bit 1 1 0 1 0 1 1

Weight 21 20 2-1 2-2 2-3 2-4 2-5

Weight 2 1 ½ ¼ 1/8 1/16 1/32

Radix Point

3.34375 in a fixed point binary representation

Bit Pattern

0000 0000

0001 1100

0110 0011

Integer (q0)

0/1 = 0

28/1 = 28

99/1 = 99

q2

0/4 = 0

28/4 = 7

99/4 = 24.75

q10

0/1024 = 0

28/1024 = 0.0273…

99/1024 = 0.0966…

000

000

000

Radix Point Locations

q2 q0q10
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Dealing with Signed Values

▪ Two’s complement for integers

▪ Same instructions work for addition, subtraction

▪ Different instruction for multiply, divide

▪ Two’s complement for Fixed Point?

▪ Possible, but more complicated

▪ Many FXP implementations instead use sign-magnitude format, and convert as needed
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Support Operations

▪ Scaling

▪ Shift a value to change from one (implicit) 

exponent to another

▪ Left shift increases the number of fraction bits, 

right shift decreases it

▪ Example: Convert from q10 to q6 by shifting 

right by 4 bits

▪ Note: for a signed representation, this must 

be an arithmetic shift (MSB must remain the 

same)

▪ Normalization

▪ Two values are normalized if they have the same 

number of fraction bits

▪ Need to normalize values before addition or 

subtraction

▪ Promotion

▪ Adds additional bits to improve range and/or 

precision

▪ Rounding

▪ Improves accuracy by incrementing value if 

truncated bits are > 1/2
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MATHEMATICAL OPERATIONS
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Addition, Subtraction (qf1 ± qf2)

▪ Are values aligned (f1 == f2)?

▪ We can treat fixed point numbers like integers

▪ Radix point stays where it started

▪ Otherwise we need to align radix points (normalize)

▪ General Operation

▪ Ensure operands are normalized (scale by f1-f2) 

▪ Add or subtract operands

▪ Handle overflow

▪ Set sign of result

i2 f2

i1 f1

+
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Multiplication (qf1 * qf2)

▪ Operands do not have to be normalized

▪ Radix point moves left, so we need to normalize result afterwards, shifting the result 

right

▪ Operation

▪ Multiply terms

▪ Handle overflow

▪ Scale result from q(f1+f2) into desired format

*
10

* 1.25

12.5

6.2 Format 
001010.00

*000001.01

00000000 1100.1000
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Overflow

▪ Causes

▪ Result of operation doesn’t fit into 

representation

▪ Adding two N bit values has an N+1 bit result

▪ Multiplying two N bit values has a 2N bit result

▪ C language discards upper N bits of integer 

multiplication

▪ Prevention

▪ Promote operands to larger representation 

before performing operation

▪ Scale operands down to have fewer fraction bits

▪ Compensation

▪ Detect overflow after operation, then correct the 

result

▪ Saturation

▪ Replace overflowing value with closest valid 

available value in that representation

▪ May be provided in special instructions
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Division

▪ Option 1: Multiply by the reciprocal of the divisor

▪ Practical for constants

▪ Also useful if processor has hardware reciprocal instruction but no divide

▪ Option 2: Use C integer division and remainder operations (/ and %, or div (stdlib.h))

▪ /: Result is quotient of integer division,  is integer (q0). Fraction bits have been truncated

▪ %: Result is remainder of integer division, 

▪ div(): returns structure of type div_t (int quot, int rem)

▪ Option 3: Assembly language integer division instruction

▪ Typically produces two results: integer quotient (q0) and remainder



15

Using Integer Division

▪ Perform integer divide on two fixed point operands with formats qf1 and qf2
▪ How many fraction bits are in the quotient?

▪ If f1=f2, quotient is integer

▪ Otherwise quotient has f1-f2 fraction bits

▪ Remainder has f1 fraction bits

▪ Note: This example doesn’t address signed numbers 

Quotient

Remainder

÷
7

÷ 2

3

1

q1 Format 
111.0

÷ 010.0

0011

001.0

q2 Format 
111.00

÷ 010.00

00011

001.00

Dividend

Divisor
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Using Integer Division, Part II

▪ What if we want result to have fraction bits?

▪ What if we want to use just the C integer divide operation (and not the modulo 

(remainder, %) operation)?

▪ Can scale dividend or divisor so quotient will have fraction bits

▪ To make quotient have same format as dividend and divisor (qf)

▪ Multiply dividend by 2f2 (shift left by f2 bits). Need to keep the extra bits or detect overflow! 

▪ Quotient is in qf fixed point format now

Quotient

÷
7

÷ 2

3.5

q1 Format 
(7*2)1110.0

÷ 010.0

0011.1

q2 Format 
(7*4)11100.00

÷ 010.00

00011.10

Dividend

Divisor
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More Fixed Point Math Examples

*
9.0625
* 6.5

58.90625

q4 Format 
1001.0001

*0110.1000

0011 1010.1110 1000

+
10

+ 1.5

11.5

q4 Format 
0000 1010.0000

+0000 0001.1000

00000000 1011.1000
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Example Code: 28.4 Fixed Point Math

▪ This particular code is for unsigned numbers only! Must be tweaked to support signed numbers.

▪ Representation
▪ typedef int FX_28_4;

▪ Converting to and from fixed point representation
▪ #define Y_BITS (4)

▪ #define SCALE (1<<Y_BITS)

▪ #define FL_TO_FX(a)  (int)((a)*SCALE)

▪ #define INT_TO_FX(a) ((a)*SCALE)

▪ #define FX_TO_FL(a)  ((a)/((float)SCALE)

▪ #define FX_TO_INT(a) (int)((a)/SCALE)

▪ Math
▪ #define FX_ADD(a,b) ((a)+(b)) 

▪ #define FX_SUB(a,b) ((a)-(b))

▪ #define FX_MUL(a,b) (((a)*(b))/SCALE)

▪ #define FX_DIV(a,b) (((a)/(b))*SCALE)

▪ #define FX_REM(a,b) (((a)%(b)))
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FIXED-POINT UPDATE_PID FUNCTION
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Closed-Loop Control System Overview

▪ Provide closed-loop control of buck converter for correct and 

accurate output current control

▪ Sequence of activities

▪ Periodic timer triggers ADC conversion with hardware signal

▪ ADC conversion complete signal triggers ADC interrupt

▪ ADC interrupt handler contains closed-loop controller code, which updates 

TPM with new duty cycle of PWM output

▪ Quality of control depends on control frequency fc
▪ Control frequency fc limited by 

▪ Overhead of responding to interrupt

▪ Duration of controller code

Timer

ADC

TPM

Buck 

Converter

Controller 

Code

Load

Fe
e

d
b

ac
k 

(A
n

al
o

g 
V

o
lt

ag
e)

Control (PWM)

time

Int. Resp. Controller code

IRQ
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Floating-Point PID Controller Implementation

▪ Design philosophy

▪ Start with easy version (floating 

point) and get it working

▪ Then switch it over to fixed point
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Fixed-Point Update PID Controller Function

▪ UpdatePID_FX called by 

ADC interrupt handler to 

determine new control signal 

(PWM duty cycle)

▪ Multiply operations expected 

to take much longer than add 

or subtract operations

▪ Can use timing debug output 

bit to evaluate progress 

through code
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Fixed-Point PID Controller Implementation: Types, + and -

▪ Simple implementation 

▪ Can use native 32-bit 

words

▪ Simple because we ignore 

overflows and rounding!
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Signed 16.16 * 16.16

▪ Result of 32x32 multiply should 

be 64 bits long

▪ C multiply of 32-bit integers just 

returns lower 32 bits of result

▪ Solution

▪ Promote arguments to 64 bits

▪ Multiply 64x64 to get 64-bit 

product

▪ Process the result (normalize)
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Signed 16.16 * 16.16 Explained

▪ Sign-extension to 64 bits
▪ a (r0) and b (r1) to 64 bits pa (r4:r0) and 

pb (r3:r2)

▪ ASRS: arithmetic shift right performs sign 

extension by setting all of upper word’s 

sign bits to match lower word’s sign

▪ Move pa and pb into argument 

registers (r1:r0 and r3:r2) 

▪ Call __aeabi_lmul for long 

multiply

▪ Extract middle 32 bits of result 
▪ LSLS: logical shift left extracts lower 16 bits 

of r1

▪ LSRS: logical shift right extracts upper 16 

bits of r0

▪ ORRS: merges together middle 32 bits

r0 r1

r0r1 r2r3

a b

r0r1

__aeabi_lmul

r0

r1

r1

r0r4 r1r3
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Speed?

▪ MicroLIB version is much slower than 

standard C library version! Why?
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Object Code for __aeabi_lmul in MicroLib C Library

What’s going on here? 

Two nested loops? 

Did the compiler forget 
about the MULS instruction?

Could use Ghidra to make 
sense of function using 

control flow graph. 
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Object Code for __aeabi_lmul in Regular C Library

▪ Much shorter code!

▪ Extended precision integer 

math computes partial products

▪ Library code computes product 

with 6 multiplies

▪ Are 6 really needed? 

▪ Could you optimize this for the 

fixed point PID controller 

knowing it has limited input 

data ranges?
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Do We Really Need a Full 64x64 Multiply?

▪ Need extended precision math

▪ Must compute partial products with native precision (32 bits)

▪ Desired result: p = pa*pb: 64-bit arguments pa & pb, 64-bit return value p (upper 64 bits truncated)

▪ W = weight of single 32-bit register = 232

▪ p = (pah*W + pal)*(pbh*W + pbl)

▪ p = pah*W* pbh*W + pah*W*pbl + pbh*W*pal + pal *pbl

▪ Upper 64 bits are not needed, since truncated to fit 64-bit return value

▪ pLow64 = pah*W*pbl + pbh*W*pal + pal *pbl

▪ Five multiplies and two adds

▪ Replace multiply by W with using upper word register

▪ Three multiplies and two adds

▪ Opportunity for optimization!
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Timing Analysis and Room for Further Improvement

▪ Evaluate time spent in code

▪ Is 900 ns reasonable for Multiply_FX?

▪ Where else can we trim time?
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CORTEX-M0+ AND CMSIS-DSP 

FIXED POINT MATH SUPPORT



32

Cortex M0+ CPU Core Support

▪ 32-bit data in registers

▪ Add, Subtract

▪ ADDS, ADCS, SUBS, SBCS

▪ Multiply: MULS

▪ Signed multiply

▪ Returns lower 32 bits of 64 bit product

▪ Updates N, Z condition flags in APSR

▪ Shift

▪ Logical shift left, right – does not preserve sign

▪ Arithmetic shift right – preserves sign

▪ Rotate

▪ Rotate right

▪ Extend (sign, zero)

▪ SXTH, SXTB

▪ UXTH, UXTB
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CMSIS-DSP Support for Fixed Point Math

▪ Three fractional fixed point data types 

supported

▪ q31_t: signed, 1 integer bit, 31 fraction bits

▪ q15_t: signed, 1 integer bit, 15 fraction bits

▪ q7_t: signed, 1 integer bit, 7 fraction bits. 

Not supported by all functions.

▪ Fractional: range is -1 to +1 (almost)

▪ To use CMSIS-DSP library

▪ #include <arm_math.h>

▪ C/C++ Tab: Define preprocessor symbol 

ARM_MATH_CM0PLUS

▪ Linker Tab: Specify ARM math library to use, 

with location
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CMSIS-DSP Software Library

▪ Fast functions and macros for digital signal 

processing and other math
▪ Basic math – abs, add, sub, multiply, negate, offset, scale, 

shift (all support vector operations)

▪ Fast math – sin, cos, sqrt

▪ Complex math

▪ Filters – IIR, FIR, convolution, correlation, FIR LMS, 

interpolator

▪ Matrix 

▪ Transforms – FFT, DCT 

▪ Motor control – PID control, Clarke & Park (and 

inverse) transforms

▪ Statistical – min, max, mean, power, rms, standard 

deviation, variance

▪ Support – vector fill & copy, convert values

▪ Interpolation – linear, bilinear

▪ Multiple data types supported
▪ 32-bit floating point

▪ 32-bit integer/fixed point

▪ 16-bit integer/fixed point

▪ 8-bit integer/fixed point

▪ Different versions optimized for core
▪ M0, M0+, M1, M3, M4, M7, M23, M33

▪ Vector functions use SIMD instructions on M4, M7, 

M33 (else use loop)

▪ Detailed documentation available in MDK 
▪ Help->Open Books Window, then select Tool User’s 

Guide-> CMSIS Documentation
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Example Code – Pythagorean Theorem

▪ 𝒄 = 𝒂𝟐 + 𝒃𝟐

▪ Equivalent C code
▪ c = sqrtf((a*a) + (b*b));

▪ To use fixed point functions, we need to break 

expression into individual operations 
▪ a_2 = a*a;

▪ b_2 = b*b;

▪ sum = a_2 + b_2;

▪ c = sqrtf(sum);

▪ Note that not all arguments are passed as 

pointers
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Performance Evaluation

▪ How much faster than floating point math is the 

fixed point math?

▪ It depends… measure it with your data
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