
1

BETTER DATA ORGANIZATION

FOR FASTER SEARCHES

2

Reduce Search Complexity with Better Data Organization

▪ Reduce the number of items to

examine, by …

▪ Organizing the data better to find

the right items faster, maybe by…

▪ Using a better data structure which

supports better search algorithms

S. Berenstain & J. Berenstain, Random House,1983

3

Optimizing the Execution Time Profiler

▪ Periodic PC-sampling ISR

▪ Determines return address

▪ Searches table with return address for region number

▪ Increments execution count for that region

▪ RegionTable array

▪ Holds start, end addresses of each region to monitor

▪ Search function

▪ Searches for region with addresses bounding the search

address (start address ≤ search value ≤ end address)

▪ RegionTable is an array used as a list (sequential access

starting at element 0)

▪ Execution time performance

▪ Table has n elements

▪ On average, search half of the elements in table (n/2)

▪ => complexity is linear (O(n))

▪ 2x elements => 2x average execution time

▪ Slow execution slows down the program, limits

practical sampling frequency

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

4

Performance Analysis

▪Performance estimate

▪ Table has n elements

▪ Start at first element and go

down until match found

▪ On average, search half of the

elements in table (n/2)

▪ => complexity is linear (O(n))

▪ 2x elements => 2x average

execution time

▪Slows down system, limits

practical sampling frequency

0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Original Table

5

Optimization 1: Sort Table by Frequency

▪ Use estimated or initial

profile information to

generate a new region table

sorted with most frequent

(“hot”) regions at start

▪ Reduces number of

comparisons needed

▪ Must be done at compile

time, after getting initial

profile data

0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Original Table
0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Sorted Table

6

Optimization 1: Sort Table by Frequency

▪ Use estimated or initial profile

information to generate a new

region table sorted with most

frequent (“hot”) regions at start

▪ Reduces number of

comparisons needed

▪ Could be done…

▪ … at compile time, after getting

initial profile data

▪ … adaptively, as program runs

0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Sorted Table

7

Example: Changing the Region Table Layout
▪ New table layout

▪ 0: __aeabi_fmul

▪ 1: __aeabi_fadd

▪ 2: __mathlib_rredf2

▪ 3: _float_epilogue

▪ 4: _float_round

▪ et cetera

▪ Static approach

▪ Use tool in build process

▪ Dynamic approach

▪ At run-time create and update

a translation table

RegionCount RegionTable

8

Estimating Performance Impact Without Profile Data

▪ Estimate hot region characteristics

▪ Assume 5% of regions (hot regions) account

for 90% of execution time

▪ Uniform distribution within these 5% of regions

▪ Estimate cold region characteristics

▪ Remaining 95% of regions account for

remaining 10% of execution time

▪ Uniform distribution within the remaining 95%

of regions

9

Estimating Performance Impact Without Profile Data

▪ Estimate performance impact based on hot and

cold regions

▪ Hot regions

▪ Most samples (90%) are in the first 5% of the table

▪ Niterations(hot) = (S*90%)*(R*5%/2) = S*R*0.0225

▪ Cold regions

▪ Remaining samples (10%) are in last 95% of the table

▪ Niterations(cold) = (S*10%)*(R*(0.95/2 + 0.05)) = S*R*0.0525

▪ Overall performance

▪ Improved layout: S*R*0.075

▪ Original layout: S*R*0.5

▪ Improvement in Niterations = 0.5/0.075 = 6.89x

▪ Performance improves as more samples are

concentrated in fewer regions

10

Estimating Performance Impact with Real Profile Data

▪ More accurate calculation of profiling overhead

▪ Number of loop iterations required for region r

▪ Niterations(r) = (r+1)*RegionCount[r]

▪ Example: __aeabi_fmul is in position r=26

▪ __aeabi_fmul lookups account for Niterations(26)

=(26+1)*1413 = 38151 iterations

▪ Swap __aeabi_fmul with region in position r=0

▪ __aeabi_fmul lookups now account for Niterations(0)

=(0+1)*1413 = 1413 iterations

▪ Old region in position 0 had RegionCount[0] = 0

samples, so it has no impact on performance

▪ Result: we saved (38151 + 0) – (1413 + 0) = 36738

loop iterations

▪ Repeat this for all regions in table

RegionCount RegionTable

11

Performance Impact

▪ Original table takes 55,806

comparisons

▪ Sorted table takes 14,934

comparisons

▪ 26.8% of original value

▪ Profiler speed-up =

55,806/14,934 = 3.73x

0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Original Table
0 200 400 600 800 1000

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Sorted Table

12

Optimization 2: Binary Search

▪ “Divide and conquer” approach

▪ Requirements

▪ Regions in table must be sorted by increasing starting address

▪ For each entry, start address <= end address

▪ Start in middle of the region table

▪ Compare entry’s start and end addresses with search

address

▪ If search address is within start and end addresses, then have

found the region, so search is done

▪ If search address is before start address, then repeat with

upper portion of table

▪ If search address is after end addresses, then repeat with lower

portion of table

▪ Repeat until finding matching region or there’s no table

left to search

Step 1 Step 2 Step 3 Step 4

13

Example: Search for Address 0x380

▪ Start with entire table (entries 0 to 32)

▪ Examine middle entry of table (0 to 32)

▪ Index: (32+0)/2 = 16

▪ 0x380 < 0x411, so repeat with upper

half of this sub-table

▪ Examine middle entry of sub-table (0 to 15)

▪ Index = (15+0)/2 = 7.5 -> 7

▪ 0x380 > 0x272, so repeat with lower

half of this sub-table

▪ Examine middle entry of sub-table (7+1=8 to

15)

▪ Index = (15+8)/2 = 11.5 -> 11

▪ 0x380 < 0x3a1, so repeat with upper half of

sub-table

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

14

Example: Searching for Address 0x380 (continued)

▪ Examine middle entry of sub-table (8 to 11-

1=10)

▪ Index = (10+8)/2 = 9

▪ 0x380 > 0x356, so repeat with lower

half of sub-table

▪ Examine middle entry of sub-table

(9+1=10 to 10)

▪ Sub-table (10 to 10) has only one entry,

so index = 10

▪ 0x380 >= 0x357 and 0x380 <=0x38a, so we

found it! Control_RGB_LEDs was running

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

15

Estimating the Performance Impact

▪ How many iterations are needed?
▪ Will take fewer iterations for regions which are

located at certain entries

▪ 1 iteration: entry n/2

▪ 2 iterations: entries n/4, 3n/4

▪ 3 iterations: entries n/8, 3n/8, 5n/8, 7n/8

▪ etc.

▪ Maximum number of comparisons to find an

address is ceiling(log2(n))

▪ Ceiling(x) = smallest integer which is not smaller

than x

▪ This example
▪ 33 entries in table

▪ ceiling(log2(33)) = ceiling(5.044) = 6

▪ Speed-up over linear search
▪ Linear search: on average takes n/2 iterations

▪ Estimate as (n/2)/ceiling(log2(n)) = 16.5/6 = 2.75x

▪ Speed-up increases as table size n grows
▪ For 256 entry table, speed-up is 128/8 = 16x

▪ Extra Credit
▪ Modify the profiler to use a binary search, and

measure performance impact

16

Examples of Data Structures

▪ List – sequential access, linear

structure

▪ Each node holds a data element,

may be connected to other nodes:

one predecessor, one successor

▪ Sequential access to data – must

traverse list by visiting nodes

▪ Examples: linked list, queue, circular

queue, double-ended queue

▪ Tree – sequential access,

hierarchical structure

▪ Each node holds a data element,

may be connected to other nodes:

parent, one or more children

▪ Sequential access to data – must

traverse by visiting nodes, but

additional connections reduce

number of intermediate nodes

▪ Hierarchical structure – explicit

(with pointers) or implicit (with

index values)

▪ Array – random access

▪ Each node holds one element but

no connection information

▪ Flat structure, same time to access

each element

▪ But how do we know which element

to access?

▪ Depends on data organization and

search algorithm

Extra accesses

	Untitled Section
	Slide 1: Better Data Organization for Faster Searches
	Slide 2: Reduce Search Complexity with Better Data Organization
	Slide 3: Optimizing the Execution Time Profiler
	Slide 4: Performance Analysis
	Slide 5: Optimization 1: Sort Table by Frequency
	Slide 6: Optimization 1: Sort Table by Frequency
	Slide 7: Example: Changing the Region Table Layout
	Slide 8: Estimating Performance Impact Without Profile Data
	Slide 9: Estimating Performance Impact Without Profile Data
	Slide 10: Estimating Performance Impact with Real Profile Data
	Slide 11: Performance Impact
	Slide 12: Optimization 2: Binary Search
	Slide 13: Example: Search for Address 0x380
	Slide 14: Example: Searching for Address 0x380 (continued)
	Slide 15: Estimating the Performance Impact
	Slide 16: Examples of Data Structures

