
1

Cortex-M0+ CPU Core and

ARM Instruction Set Architecture

2

Microcontroller vs. Microprocessor
▪ Both have a CPU core to

execute instructions

▪ Microcontroller has

peripherals for embedded

interfacing and control

▪ Analog

▪ Non-logic level

signals

▪ Timing

▪ Clock generators

▪ Communications
▪ point to point

▪ network

▪ Reliability

and safety

3

Cortex-M0+ Core

4

ARM Processor Core Registers

▪ R0-R12 - General purpose, for data processing

▪ SP - Stack pointer (R13)
▪ Can refer to one of two SPs

▪ Main Stack Pointer (MSP)

▪ Process Stack Pointer (PSP)

▪ Uses MSP initially, and in Handler mode

▪ In Thread mode, can select either MSP or PSP

using SPSEL flag in CONTROL register.

▪ LR - Link Register (R14)
▪ Holds return address when called with Branch &

Link instruction (B&L)

▪ PC - program counter (R15)

5

Operating Modes

▪ Which SP is active depends on operating mode, and SPSEL (CONTROL register bit 1)

▪ SPSEL == 0: MSP

▪ SPSEL == 1: PSP

Thread
Mode.

MSP or PSP.

Handler
Mode
MSP

Reset

Starting
Exception
Processing

Exception
Processing
Completed

6

ARM Program Status Register

▪ Three views of same register

▪ Application PSR (APSR)

▪ Condition code flag bits Negative, Zero, oVerflow, Carry used for

conditional branches, extended precision math, error detection

▪ Interrupt PSR (IPSR)

▪ Holds exception number of currently executing ISR

▪ Execution PSR (EPSR)

▪ Thumb state

7

ARM Processor Core Registers

▪ PRIMASK - Exception mask register

▪ Bit 0: PM Flag

▪ Set to 1 to prevent activation of all exceptions with configurable priority

▪ Access using CPS, MSR and MRS instructions

▪ Use to prevent data race conditions with code needing atomicity

▪ CONTROL

▪ Bit 1: SPSEL flag

▪ Selects SP when in thread mode: MSP (0) or PSP (1)

▪ Bit 0: nPRIV flag

▪ Defines whether thread mode is privileged (0) or unprivileged (1)

▪ With OS environment,

▪ Threads use PSP

▪ OS and exception handlers (ISRs) use MSP

8

Different Instruction Sets for Different Design Spaces?

▪ ARM instructions optimized for resource-rich high-

performance computing systems

▪ Deeply pipelined processor, high clock rate, wide (e.g. 32-

bit) memory bus

▪ https://en.wikipedia.org/wiki/ARM_Cortex-

M#Instruction_sets

▪ Low-end embedded computing systems are different

▪ Slower clock rates, shallow pipelines

▪ Different cost factors – e.g. code size matters much more

▪ Bit and byte operations critical

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

9

The Memory Wall

▪ It has been easier to speed up the CPU than the memory

▪ Facts of life

▪ Off-chip memory is slower than on-chip memory. May not want

to put all memory on-chip, even if possible.

▪ Flash is slower to read or write than RAM.

▪ Fast RAM is more expensive than slow RAM. Same for flash.

▪ Design for high-performance CPUs

▪ Use caches (small fast RAM) to make main memory (large slow

RAM, flash) look faster at a low cost.

▪ Put cache(s) on chip if possible.

▪ Increase bandwidth by widening memory bus, improving protocol,

reducing overhead, split transactions, using page mode, etc.)

▪ Design for low-performance CPUs

▪ Put memory on-chip with CPU. RAM, flash ROM

▪ Increase flash ROM bandwidth by widening memory bus, adding

prefetch buffer, branch target buffer, etc.

▪ Add cache

▪ Change instruction set size to reduce instruction bandwidth needed

Low
Performance

High
Performance

Double flash
bus width

10

ARM and Thumb Instructions

▪ Thumb reduces program memory size and

bandwidth requirements

▪ Subset of instructions re-encoded into fewer bits (most 16

bits, some 32 bits)

▪ Not all 32-bit instructions available

▪ Most 16-bit instructions can only access low registers (R0-R7), but

a few can access high registers (R8-R15)

▪ 1995: Thumb-1 instruction set

▪ 16-bit instructions

▪ 2003: Thumb-2 instruction set

▪ Adds some 32 bit instructions

▪ Improves speed with little memory overhead

▪ Arm Architecture supports different instruction set

states, which define:

▪ How memory contents are decoded into instructions

▪ Which instructions are available

▪ Instruction set states

▪ ARM state: full 32-bit ARM instruction set

▪ Thumb state: Thumb instruction set

▪ CPUs and states

▪ Cortex-M CPUs support only Thumb instruction set, are

always in Thumb state

▪ Cortex-A CPUs support both instruction sets and states, can

switch between them

▪ State selection – “interworking”

▪ Some instructions (BX, BLX, POP {PC}) also can exchange

instruction set

▪ Last bit of target program counter indicates desired state

(Thumb = 1, ARM = 0)

▪ See ARMv6-M Architecture Reference Manual for

more (Section A1.1.1, A4.1, A4.1.1, A6.7)

11

Cortex-M Instruction Groups

Group
Instr

bits
Instructions M0,M0+,M1 M3 M4 M7 M23 M33,M35P

Thumb-1 16

ADC, ADD, ADR, AND, ASR, B, BIC, BKPT, BLX, BX, CMN, CMP, CPS, EOR, LDM, LDR, LDRB, LDRH,

LDRSB, LDRSH, LSL, LSR, MOV, MUL, MVN, NOP, ORR, POP, PUSH, REV, REV16, REVSH, ROR, RSB, SBC,

SEV, STM, STR, STRB, STRH, SUB, SVC, SXTB, SXTH, TST, UXTB, UXTH, WFE, WFI, YIELD

Yes Yes Yes Yes Yes Yes

Thumb-1 16 CBNZ, CBZ No Yes Yes Yes Yes Yes

Thumb-1 16 IT No Yes Yes Yes No Yes

Thumb-2 32 BL, DMB, DSB, ISB, MRS, MSR Yes Yes Yes Yes Yes Yes

Thumb-2 32 SDIV, UDIV No Yes Yes Yes Yes Yes

Thumb-2 32

ADC, ADD, ADR, AND, ASR, B, BFC, BFI, BIC, CDP, CLREX, CLZ, CMN, CMP, DBG, EOR, LDC, LDM,

LDR, LDRB, LDRBT, LDRD, LDREX, LDREXB, LDREXH, LDRH, LDRHT, LDRSB, LDRSBT, LDRSH,

LDRSHT, LDRT, LSL, LSR, MCR, MCRR, MLA, MLS, MOV, MOVT, MRC, MRRC, MUL, MVN, NOP, ORN,

ORR, PLD, PLDW, PLI, POP, PUSH, RBIT, REV, REV16, REVSH, ROR, RRX, RSB, SBC, SBFX, SEV, SMLAL,

SMULL, SSAT, STC, STM, STR, STRB, STRBT, STRD, STREX, STREXB, STREXH, STRH, STRHT, STRT, SUB,

SXTB, SXTH, TBB, TBH, TEQ, TST, UBFX, UMLAL, UMULL, USAT, UXTB, UXTH, WFE, WFI, YIELD

No Yes Yes Yes No Yes

DSP 32

PKH, QADD, QADD16, QADD8, QASX, QDADD, QDSUB, QSAX, QSUB, QSUB16, QSUB8, SADD16,

SADD8, SASX, SEL, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8, SMLABB, SMLABT, SMLATB,

SMLATT, SMLAD, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD, SMLAWB, SMLAWT, SMLSD,

SMLSLD, SMMLA, SMMLS, SMMUL, SMUAD, SMULBB, SMULBT, SMULTT, SMULTB, SMULWT, SMULWB,

SMUSD, SSAT16, SSAX, SSUB16, SSUB8, SXTAB, SXTAB16, SXTAH, SXTB16, UADD16, UADD8, UASX,

UHADD16, UHADD8, UHASX, UHSAX, UHSUB16, UHSUB8, UMAAL, UQADD16, UQADD8, UQASX,

UQSAX, UQSUB16, UQSUB8, USAD8, USADA8, USAT16, USAX, USUB16, USUB8, UXTAB, UXTAB16,

UXTAH, UXTB16

No No Yes Yes No Optional

SP Float 32
VABS, VADD, VCMP, VCMPE, VCVT, VCVTR, VDIV, VLDM, VLDR, VMLA, VMLS, VMOV, VMRS, VMSR,

VMUL, VNEG, VNMLA, VNMLS, VNMUL, VPOP, VPUSH, VSQRT, VSTM, VSTR, VSUB
No No Optional Optional No Optional

DP Float 32
VCVTA, VCVTM, VCVTN, VCVTP, VMAXNM, VMINNM, VRINTA, VRINTM, VRINTN, VRINTP, VRINTR,

VRINTX, VRINTZ, VSEL
No No No Optional No No

TrustZone 16 BLXNS, BXNS No No No No Optional Optional

TrustZone 32 SG, TT, TTT, TTA, TTAT No No No No Optional Optional

Co-processor 16 CDP, CDP2, MCR, MCR2, MCRR, MCRR2, MRC, MRC2, MRRC, MRRC2 No No No No No Optional

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

https://en.wikipedia.org/wiki/ARM_Cortex-M#Instruction_sets

12

Reference for ARM Instruction Set Architecture

▪ ARM V6-M Architecture Reference Manual,

Chapter A5. The Thumb Instruction Set Encoding

▪ 16- or 32-bit instruction?

▪ Bits [15:11]

▪ 0b11101, 0b1110, 0b11111: 32-bit instruction. Page A5-91

▪ Else 16-bit instruction. Page A5-84

13

Example Instruction Encoding: ADC (register)

▪ Page A6-106 of ARM-V6M ARM

14

Example Instruction Encoding: ADD (register)

▪ Page A6-109 of ARM-V6M ARM

15

Assembler Instruction Format

▪ <operation> <operand1> <operand2> <operand3>

▪ There may be fewer operands

▪ First operand is typically destination (<Rd>)

▪ Other operands are sources (<Rn>, <Rm>)

▪ Examples

▪ ADDS <Rd>, <Rn>, <Rm>

▪ Add registers: <Rd> = <Rn> + <Rm>

▪ AND <Rdn>, <Rm>

▪ Bitwise and: <Rdn> = <Rdn> & <Rm>

▪ CMP <Rn>, <Rm>

▪ Compare: Set condition flags based on result of computing <Rn> - <Rm>

16

Update Condition Codes in APSR?

▪ “S” suffix indicates the instruction updates APSR

▪ ADD vs. ADDS

▪ ADC vs. ADCS

▪ SUB vs. SUBS

▪ MOV vs. MOVS

17

USING REGISTERS

18

AAPCS Register Use Conventions

▪ Make it easier to create modular, isolated and integrated code

▪ Scratch registers are not expected to be preserved upon returning from a called

subroutine

▪ r0-r3

▪ Preserved (“variable”) registers are expected to have their original values upon

returning from a called subroutine

▪ r4-r8, r10-r11

19

AAPCS Core Register Use

Must be saved, restored by callee-

procedure if it will modify them.

Calling subroutine expects these to

retain their value.

Must be saved, restored by callee-

procedure if it will modify them.

Calling subroutine expects these to

retain their value.

Don’t need to be saved. May

be used for arguments,

results, or temporary values.

20

INSTRUCTION SUMMARY

21

Instruction Set Summary

Instruction Type Instructions

Move MOV

Load/Store LDR, LDRB, LDRH, LDRSH, LDRSB, LDM, STR, STRB, STRH, STM

Add, Subtract, Multiply ADD, ADDS, ADCS, ADR, SUB, SUBS, SBCS, RSBS, MULS

Compare CMP, CMN

Logical ANDS, EORS, ORRS, BICS, MVNS, TST

Shift and Rotate LSLS, LSRS, ASRS, RORS

Stack PUSH, POP

Branch B, BL, B{cond}, BX, BLX

Extend SXTH, SXTB, UXTH, UXTB

Reverse REV, REV16, REVSH

Processor State SVC, CPSID, CPSIE, SETEND, BKPT

No Operation NOP

Hint SEV, WFE, WFI, YIELD

Barriers DMB, DSB, ISB

22

PSEUDO-INSTRUCTIONS

23

Load Literal Value into Register

▪ Assembly pseudo-instruction: LDR <rd>,

=value
▪ Assembler generates code to load <rd> with

value

▪ Assembler selects best approach depending

on value
▪ Load immediate
▪ MOV instruction provides 8-bit unsigned immediate operand

(0-255)

▪ Load and shift immediate values
▪ Can use MOV, shift, rotate, sign extend instructions

▪ Load from literal pool
▪ 1. Place value as a 32-bit literal in the program’s literal pool

(table of literal values to be loaded into registers)

▪ 2. Use instruction LDR <rd>, [pc,#offset] where offset

indicates position of literal relative to program counter value

▪ Example formats for literal values (depends

on compiler and toolchain used)
▪ Decimal: 3909

▪ Hexadecimal: 0xa7ee

▪ Character: ‘A’

▪ String: “44??”

24

Move (Pseudo-)Instructions

▪ Copy data from one register to another without

updating condition flags

▪ MOV <Rd>, <Rm>

▪ Assembler translates pseudo-

instructions into equivalent

instructions (shifts, rotates)

▪ Copy data from one register to another

and update condition flags
▪ MOVS <Rd>, <Rm>

▪ Copy immediate literal value (0-255)

into register and update condition flags
▪ MOVS <Rd>, #<imm8>

25

INSTRUCTIONS FOR MEMORY

26

Load and Store Register Instructions

▪ ARM is a load/store architecture, so must

process data in registers (not memory)

▪ LDR: load register with word (32 bits) from

memory

▪ LDR <Rt>, source address

▪ STR: store register contents (32 bits) to

memory

▪ STR <Rt>, destination address

▪ Source and destination addresses are

specified using available addressing modes

▪ Offset Addressing mode: [<Rn>, <offset>]

accesses address <Rn>+<offset>

▪ Base Register <Rn> can be R0-R7, SP or PC

▪ <offset> is added or subtracted from base

register to create effective address

▪ Can be an immediate constant

▪ Can be another register, used as index <Rm>

▪ Auto-update: Can write effective address

back to base register

▪ Pre-indexing: use effective address to access

memory, then update base register

▪ Post-indexing: use base register to access

memory, then update base register

27

Memory Maps For Cortex M0+ and MCU

0x0000_0000

0x0001_FFFF

16 KB SRAM

128KB Flash

0x2000_0000

0x2000_2FFF

0x1FFF_F000

SRAM_U (3/4)

SRAM_L (1/4)

KL25Z128VLK4

Some RAM is located in
Code segment, allowing
code to run from RAM
to allow flash
reprogramming or for
better speed on faster
systems

28

Memory Maps For Cortex M0+ and MCU

0x0000_0000

0x0001_FFFF

16 KB SRAM

128KB Flash

0x2000_0000

0x2000_2FFF

0x1FFF_F000

SRAM_U (3/4)

SRAM_L (1/4)

KL25Z128VLK4

29

Memory
7 0

Address A B0 msbyte

A+1 B1

A+2 B2

A+3 B3 lsbyte

Endianness

▪ For a multi-byte value, in

what order are the bytes

stored?

▪ Little-Endian: Start with

least-significant byte

▪ Big-Endian: Start with most-

significant byte

Register
31 24 23 16 15 8 7 0

B3 B2 B1 B0

Memory
7 0

Address A B3 msbyte

A+1 B2

A+2 B1

A+3 B0 lsbyte

Register
31 24 23 16 15 8 7 0

B3 B2 B1 B0

30

ARMv6-M Endianness

▪ Instructions are always little-endian

▪ Loads and stores to Private Peripheral Bus are always little-endian

▪ Data: Depends on implementation, or from reset configuration

▪ Kinetis processors are little-endian

31

Loading/Storing Smaller Data Sizes

▪ Some load and store instructions can handle half-word (16 bits) and byte (8 bits)

▪ Store just writes to half-word or byte

▪ STRH, STRB

▪ Loading a byte or half-word requires padding or extension: What do we put in the upper bits of the

register?

▪ Example: How do we extend 0x80 into a full word?

▪ Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128

▪ Signed? Then 0x80 = -128, so sign-extend to word 0xFFFF_FF80 = -128

Signed Unsigned

Byte LDRSB LDRB

Half-word LDRSH LDRH

32

In-Register Size Extension

▪ Can also extend byte or half-word already in a register

▪ Signed or unsigned (zero-pad)

▪ How do we extend 0x80 into a full word?

▪ Unsigned? Then 0x80 = 128, so zero-pad to extend to word 0x0000_0080 = 128

▪ Signed? Then 0x80 = -128, so sign-extend to word 0xFFFF_FF80 = -128

Signed Unsigned

Byte SXTB UXTB

Half-word SXTH UXTH

33

Load/Store Multiple

▪ LDM/LDMIA: load multiple registers starting from [base register], update base register afterwards

▪ LDM <Rn>!,<registers>

▪ LDM <Rn>,<registers>

▪ STM/STMIA: store multiple registers starting at [base register], update base register after

▪ STM <Rn>!, <registers>

▪ LDMIA and STMIA are pseudo-instructions, translated by assembler

34

STACK INSTRUCTIONS

35

Stack Operations

▪ Push some or all of registers (R0-R7, LR) to stack

▪ PUSH {<registers>}

▪ Decrements SP by 4 bytes for each register saved

▪ Pushing LR saves return address

▪ Always pushes registers in same order:

▪ Smaller register number -> smaller memory address. LR = r14

▪ So larger number register numbers are pushed before smaller (i.e. LR to r0)

▪ PUSH {r1, r2, LR}

▪ Pop some or all of registers (R0-R7, PC) from stack

▪ POP {<registers>}

▪ Increments SP by 4 bytes for each register restored

▪ If PC is popped, then execution will branch to new PC value after this POP instruction (e.g. return address)

▪ Always pops registers in same order (opposite of pushing)

▪ Smaller memory address -> register number. PC = r15

▪ So smaller number registers are popped before larger (i.e. r0 to PC)

▪ POP {r5, r6, r7}

36

Stack Operations

▪ Push some or all of registers (R0-R7, LR) to stack

▪ PUSH {<registers>}

▪ Always pushes registers in same order:

▪ Smaller register number -> smaller memory address. LR =

r14

▪ So larger number registers are pushed first (i.e. LR to r0)

▪ Decrements SP by 4 bytes for each register saved

▪ Pushing LR saves return address

▪ Example: PUSH {r1, r2, LR}

▪ Pop some or all of registers (R0-R7, PC) from stack

▪ POP {<registers>}

▪ Always pops registers in same order (opposite of

pushing)

▪ Smaller memory address -> register number. PC = r15

▪ So smaller number registers are popped first (i.e. r0 to

PC)

▪ Increments SP by 4 bytes for each register restored

▪ If PC is popped, then execution will branch to new PC

value after this POP instruction (e.g. return address)

▪ Example: POP {r5, r6, r7}

37

INSTRUCTIONS FOR DATA

PROCESSING

38

Add Instructions

▪ Add registers, update condition flags

▪ ADDS <Rd>,<Rn>,<Rm>

▪ Add registers and carry bit, update condition flags

▪ ADCS <Rdn>,<Rm>

▪ Add registers

▪ ADD <Rdn>,<Rm>

▪ Add immediate value to register

▪ ADDS <Rd>,<Rn>,#<imm3>

▪ ADDS <Rdn>,#<imm8>

39

Add Instructions with Stack Pointer

▪ Add SP and immediate value

▪ ADD <Rd>, SP, #<imm8>

▪ ADD SP, SP, #<imm7>

▪ Add SP and register

▪ ADD <Rdm>, SP, <Rdm>

▪ ADD SP, <Rm>

40

Address to Register Pseudo-Instruction

▪ Add immediate value to PC, write result in register

▪ ADR <Rd>,<label>

▪ How is this used?

▪ Enables storage of constant data near program counter

▪ First, load register R2 with address of const_data

▪ ADR R2, const_data

▪ Second, load const_data into R2

▪ LDR R2, [R2]

▪ Value must be close to current PC value

41

Subtract

▪ Subtract immediate from register, update condition flags

▪ SUBS <Rd>, <Rn>, #<imm3>

▪ SUBS <Rdn>, #<imm8>

▪ Subtract registers, update condition flags

▪ SUBS <Rd>, <Rn>, <Rm>

▪ Subtract registers with carry, update condition flags

▪ SBCS <Rdn>, <Rm>

▪ Subtract immediate from SP

▪ SUB SP, SP, #<imm7>

42

Multiply

▪ Multiply source registers, save lower word of result in destination register, update condition flags

▪ MULS <Rdm>, <Rn>, <Rdm>

▪ <Rdm> = <Rdm> * <Rn>

▪ Signed multiply

▪ Note:

▪ 32-bit * 32-bit = 64-bit

▪ Upper word of result is truncated

43

Logical Operations

▪ All of these instructions update the condition flags

▪ Bitwise AND registers

▪ ANDS <Rdn>,<Rm>

▪ Bitwise OR registers

▪ ORRS <Rdn>,<Rm>

▪ Bitwise Exclusive OR registers

▪ EORS <Rdn>,<Rm>

▪ Bitwise AND register and complement of second register

▪ BICS <Rdn>,<Rm>

▪ Move inverse of register value to destination

▪ MVNS <Rd>,<Rm>

▪ Bitwise AND two registers, discard result

▪ TST <Rn>, <Rm>

44

Compare

▪ Compare - subtracts second value from first, updates condition flags, discards result

▪ CMP <Rn>,#<imm8>

▪ CMP <Rn>,<Rm>

▪ Compare negative - adds two values, updates condition flags, discards result

▪ CMN <Rn>,<Rm>

45

Shift and Rotate

▪ Common features

▪ All of these instructions update APSR condition flags

▪ Shift/rotate amount (in number of bits) specified by last operand

▪ Logical shift left - shifts in zeroes on right

▪ LSLS <Rd>,<Rm>,#<imm5>

▪ LSLS <Rdn>,<Rm>

▪ Logical shift right - shifts in zeroes on left

▪ LSRS <Rd>,<Rm>,#<imm5>

▪ LSRS <Rdn>,<Rm>

▪ Arithmetic shift right - shifts in copies of sign bit on left (to maintain arithmetic sign)

▪ ASRS <Rd>,<Rm>,#<imm5>

▪ Rotate right

▪ RORS <Rdn>,<Rm>

46

Reversing Bytes

▪ REV - reverse all bytes in word

▪ REV <Rd>,<Rm>

▪ REV16 - reverse bytes in both half-words

▪ REV16 <Rd>,<Rm>

▪ REVSH - reverse bytes in low half-word

(signed) and sign-extend

▪ REVSH <Rd>,<Rm>

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB LSB

Sign extend

47

INSTRUCTIONS FOR CONTROL FLOW

48

Changing Program Flow - Branches

▪Unconditional Branches

▪ B <label>

▪ Target address must be within 2 KB of

branch instruction (-2048 B to +2046 B)

▪ Takes 2 cycles to execute (flush pipeline

fetch stage)

▪Conditional Branches

▪ B<cond> <label>

▪ <cond> is condition - see next page

▪ B<cond> target address must be within

of branch instruction

▪ B target address must be within 256 B of

branch instruction (-256 B to +254 B)

▪ Not-taken branch (condition false) needs

1 cycle to execute

▪ Taken branch (condition true) needs 2

cycles to execute (flush pipeline fetch

stage)

49

Condition Codes

▪ Append to branch instruction

(B) to make a conditional branch

▪ Full ARM instructions (not

Thumb or Thumb-2) support

conditional execution of

arbitrary instructions

▪ Note: Carry bit = not-borrow

for compares and subtractions

50

Changing Program Flow - Subroutines

▪ Call

▪ BL <label> - branch with link to return address

▪ Call subroutine at <label>

▪ PC-relative, range limited to PC+/-16MB

▪ Save return address in LR

▪ BLX <Rd> - branch with link to return address

and instruction set exchange

▪ Call subroutine at address in register Rd

▪ Supports full 4GB address range

▪ Save return address in LR

▪ Return

▪ BX <Rd> branch and instruction set exchange

▪ Branch to address specified by <Rd>

▪ Supports full 4 GB address space

▪ BX LR - Return from subroutine

▪ POP {PC} with instruction set exchange

▪ Interworking: Changing instruction set state

▪ Cortex-A processors can interwork with BX,

BLX, POP by specifying state with LSB of target

address (1: Thumb, 0: ARM)

▪ Cortex-M processors must always be in Thumb

state, so BX, BLX, POP {PC} must have odd

target addresses (LSB = 1)

51

SPECIAL INSTRUCTIONS

52

Special Register Instructions

▪ Move to Register from Special Register

▪ MSR <Rd>, <spec_reg>

▪ Move to Special Register from Register

▪ MRS <spec_reg>, <Rd>

▪ Change Processor State - Modify PRIMASK

register

▪ CPSIE - Interrupt enable

▪ CPSID - Interrupt disable

53

Other

▪ No Operation - does nothing!

▪ NOP

▪ Breakpoint - causes hard fault or debug halt - used to implement software breakpoints

▪ BKPT #<imm8>

▪ Wait for interrupt - Pause program, enter low-power state until a WFI wake-up event occurs (e.g. an

interrupt)

▪ WFI

▪ Supervisor call generates SVC exception (#11), same as software interrupt

▪ SVC #<imm>

	Platform
	Slide 1: Cortex-M0+ CPU Core and ARM Instruction Set Architecture
	Slide 2: Microcontroller vs. Microprocessor
	Slide 3: Cortex-M0+ Core
	Slide 4: ARM Processor Core Registers
	Slide 5: Operating Modes
	Slide 6: ARM Program Status Register
	Slide 7: ARM Processor Core Registers
	Slide 8: Different Instruction Sets for Different Design Spaces?
	Slide 9: The Memory Wall
	Slide 10: ARM and Thumb Instructions
	Slide 11: Cortex-M Instruction Groups
	Slide 12: Reference for ARM Instruction Set Architecture
	Slide 13: Example Instruction Encoding: ADC (register)
	Slide 14: Example Instruction Encoding: ADD (register)
	Slide 15: Assembler Instruction Format
	Slide 16: Update Condition Codes in APSR?
	Slide 17: Using Registers
	Slide 18: AAPCS Register Use Conventions
	Slide 19: AAPCS Core Register Use
	Slide 20: Instruction Summary
	Slide 21: Instruction Set Summary
	Slide 22: Pseudo-Instructions
	Slide 23: Load Literal Value into Register
	Slide 24: Move (Pseudo-)Instructions
	Slide 25: Instructions for Memory
	Slide 26: Load and Store Register Instructions
	Slide 27: Memory Maps For Cortex M0+ and MCU
	Slide 28: Memory Maps For Cortex M0+ and MCU
	Slide 29: Endianness
	Slide 30: ARMv6-M Endianness
	Slide 31: Loading/Storing Smaller Data Sizes
	Slide 32: In-Register Size Extension
	Slide 33: Load/Store Multiple
	Slide 34: Stack Instructions
	Slide 35: Stack Operations
	Slide 36: Stack Operations
	Slide 37: Instructions for Data Processing
	Slide 38: Add Instructions
	Slide 39: Add Instructions with Stack Pointer
	Slide 40: Address to Register Pseudo-Instruction
	Slide 41: Subtract
	Slide 42: Multiply
	Slide 43: Logical Operations
	Slide 44: Compare
	Slide 45: Shift and Rotate
	Slide 46: Reversing Bytes
	Slide 47: Instructions for Control Flow
	Slide 48: Changing Program Flow - Branches
	Slide 49: Condition Codes
	Slide 50: Changing Program Flow - Subroutines
	Slide 51: Special Instructions
	Slide 52: Special Register Instructions
	Slide 53: Other

