
1

Name:___ Email:____________________@ncsu.edu

ECE 461/561, Spring 2022: Quiz 2 Solution
Analyzing and “Optimizing” Code for Speed
This quiz is closed-computer, closed-notes. You may use one 8.5" x 11" sheet of paper with anything you want written or

printed on its two sides.

Assume the code is built using MDK-ARM (armcc compiler, armlink linker, all settings for maximum optimization for

time) for the Kinetis KL25Z128 MCU used on the FRDM-KL25Z evaluation board and the core clock frequency is fixed at

48 MHz. Students in ECE 561 must answer all questions.

Analysis with a Profile
 Consider the following execution time profile for a program.

Total Samples 1000 Sample count for entire program execution

Update_Screen 400 User-written function

__aeabi_fmul 310 floating point multiply library function

sinf 180 floating point sine library function

analyze_data 80 User-written function

calc_statistics 30 User-written function

1. When trying to optimize the program, which function would you start with, and why?

Update_Screen, since it takes the most time.

2. How can you reduce the time taken by sinf without optimizing or replacing it?

Reduce the number of times it’s called. (Either improve the code (e.g. lazy execution) or cache (reuse) previous

result(s).

OK: --fpmode=fast. We’re just linking to sinf, not compiling it.

Leverage periodicity (with example)

Incorrect: changing to single precision (is already single-precision), changing to fixed-point (not allowed to replace it)

optimizing argument to sinf,

Single precision has only one decimal point

3. You want to replace sinf by replacing it with a faster function. Explain two different ways to calculate the value of

sine faster than sinf.

A lookup table stores pre-calculated values of sine in an array. At run-time the correct entry is identified and read.

A polynomial approximation uses an equation (e.g. based on a Taylor Series expansion) to calculate an approximate

value of sine.

Incorrect: Call cosine instead. Define it as a macro.

4. If you could optimize only the function __aeabi_fmul, what is the minimum possible value of Total Samples?

That function takes 310 samples. If we optimized it down to 0 samples, the minimum possible value of Total Samples

would be 1000 – 310 = 690 samples.

OK: 691

2

Partial: providing value which is not the limit, but with context/justification.

Incorrect/Extra information: Changing position of __aeabi_fmul in profile table. Changing from double to single

precision (is already single precision). Can’t optimize since it’s a library function.

Analysis without a Profile
Consider the following function code. It processes an array d of n integer elements to calculate result.

5. Which line of code is most likely to dominate execution time

if mode == 1? Explain why.

There are two possible answers:

Line 9, because it needs to perform two instructions: an AND

and then an ADD.

Line 8, because it performs a comparison and then conditional

branch (two instructions). It executes once more than lines 9 or

10 (the last time is when t reaches 0).

6. 561 Only: In some situations, your previous answer’s code

won’t dominate execution time. Explain why.

If t is ≤ 0, then the loop doesn’t execute at all. The number of

loop iterations depends on where the most-significant 1 bit is in

the word. The farther it is to the right, the fewer shifts it will

take to zero out t and end the loop.

7. Will the function complete faster with mode == 2 or mode == 3? Explain why.

Mode 3 will be faster, since line 17 (subtract) is faster than line 14 (divide, requires a library routine call).

Also OK: Mode 2 will be faster because compiler may see 1/(*d) can either be 1, 0 or -1, since *d is an integer, so result is

either zeroed, negated or retained.

Partial Credit: “Yes, modes 2 and 3 will be faster than mode 1.” Mode 2 will be slower (division and multiplication) but

mode 3 will be faster (subtraction).

8. You want to optimize the code’s run-time for all values of mode. Describe how would you change the code, and why

it would result in a speed-up.

Exchange the nesting of the switch statement and the do/while loop. Edit each switch case to contain a loop. The switch

test and jumps would only be executed once, not n times.

Wrong: replacing floating point with a faster version (single-precision, or fixed point). There are no floating point data or

operations in the function.

Passing entire array d (vs. just the pointer).

9. 561 Only: Would replacing the variable t with *d be likely to speed up the code? Why or why not?

No, it wouldn’t speed up the code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int Evaluate(int * d, int n, int mode) {
 // d points to an array of integers
 int t, result = 0;
 do {
 switch (mode) {
 case 1: // count 1 bits in element
 t = *d;
 while (t > 0) {
 result += t & 1;
 t >>= 1;
 }
 break;
 case 2:
 result *= 1/(*d);
 break;
 case 3:
 result -= *d;
 break;
 default:
 break;
 }
 d++;
 n--;
 } while (n>0);
 return result;
}

3

The code uses variable t as a temporary variable, so the compiler has probably already optimized it by promoting it to a

register, eliminating extra memory traffic. In fact, it might significantly slow down the code for mode 1 depending on

optimizations. Line 10 might zero out every element in d in memory, one shift at a time.

For the other modes there would be no improvement, since t is not used.

