

APPROXIMATING WITH LOOK-UP TABLES AND POLYNOMIALS

Approximations

C math library has very accurate mathematical functions

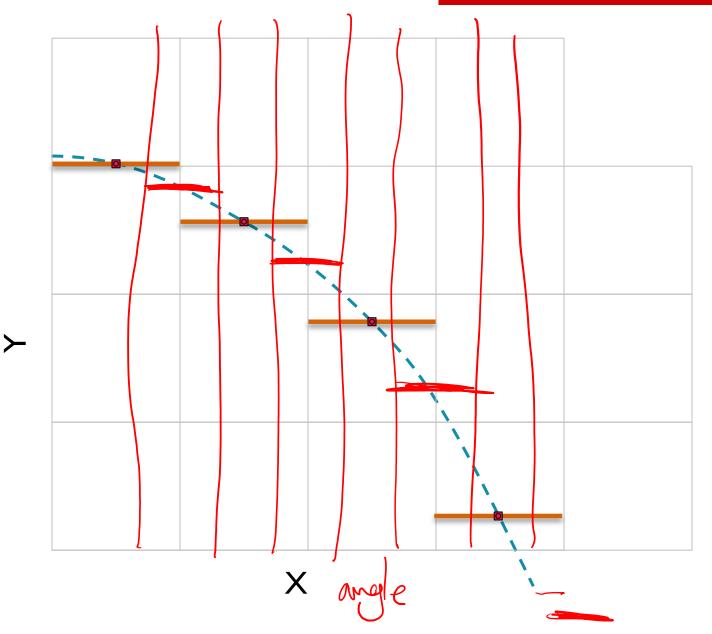
- Sin, cos, sqrt, etc. calculated with approximations
- Accuracy takes computation time
- May be more accurate than needed for your application

Can simplify approximation of functions to save time

Consider cosine function

Look-Up Table

- Very fast
 - Convert input X to index i of table element
 - Read value from table[i]
- Potentially large memory requirements
 - Element size * number of elements
- Number of elements depends on accuracy required and how quickly function changes (derivative)



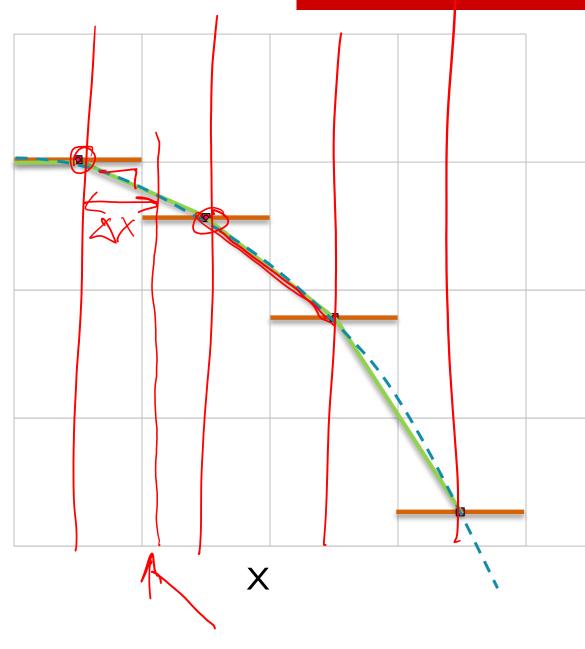
Look-Up Table with Interpolation

- Optimize by interpolating between adjacent data points
- A little slower
 - Find table entry i containing X divide, or multiply by reciprocal
 - Subtract to find X offset of sample from table entry i

 \succ

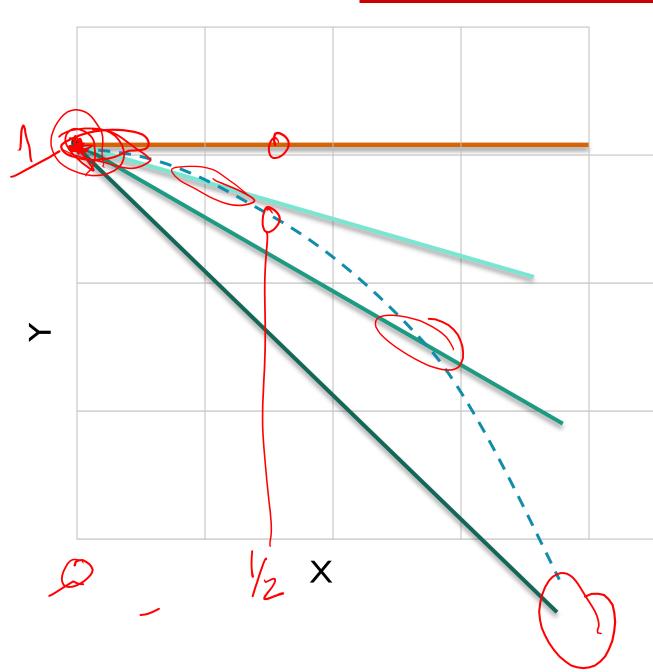
5

- Multiply X offset by slope for table entry i
- Add Y offset for table entry i Cos(X) = MX + h
- Much less error
 - Can reduce table size and memory requirements
- Example of approximation using linear interpolation



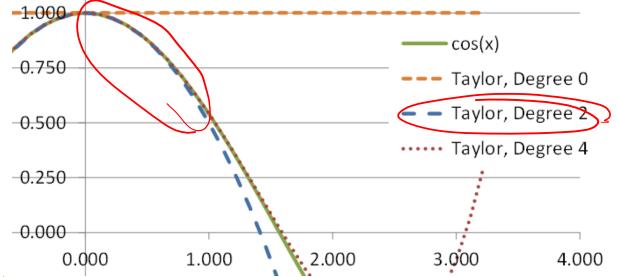
One-Element Look-Up Table

- How about a one-element look-up table?
- Constant approximation
 - cos(0) = I
 - For very small values of x, $cos(x) \approx I$
 - Error increases quickly as x moves from 0, so limited use
- Linear approximations
 - cos(x) ≈ I x
 - Error still increases, but more slowly
 - How about $cos(x) \approx I 2x$ or $cos(x) \approx I x/2$?
 - Or adding a constant?
- How about a better interpolation than linear?



Polynomial Approximations

- The Small Angle Approximation
 - $\cos(x) \approx 1 x^2/2$
 - Is special case of Taylor series expansion (more soon)
- General case: Polynomial approximation
 - $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$
 - Can represent any arbitrary function Continuous
 - Improve accuracy by adding terms $(a_5 x^5, \text{etc.})$
 - Reduce accuracy by computing fewer terms
- Why use polynomials? Speed!
 - For a degree n polynomial, need n additions and (n²+n)/2 multiplications



Can reuse smaller terms (Horner's rule)

$$x^{n+1} = x^* x^n$$

$$f(x) = a_0 + x \left(a_1 + x \left(a_2 + x (a_3 + x a_4) \right) \right)$$

 For a degree n polynomial, need n additions and only n multiplications – much faster!

Determining coefficients

- Where do coefficients come from?
 - Can use Taylor or Maclaurin series
 - Other methods available too, which are more accurate or can use fewer terms

Taylor Series

- Coefficient a_n is based on *nth* derivative of the original function f at reference argument r
- $\sum_{n=0}^{\infty} \frac{f^{(n)}(r)}{n!} (x-r)^n$
- Factorials: 0! = 1
- Example: Taylor series for Cosine at r = 0
 - $\sum_{n=0}^{\infty} \frac{\cos^{(n)}(r)}{n!} (x-r)^n = \sum_{n=0}^{\infty} \frac{\cos^{(n)}(0)}{n!} (x-0)^n$
 - FYI: A Taylor series evaluated with r = 0 is called a Maclaurin series

Derivative of cosine is –sine, derivative of sine is cosine

$$\cos(x) = \frac{\cos(0)x^{0}}{0!} + \frac{-\sin(0)x^{1}}{1!} + \frac{-\cos(0)x^{2}}{2!} + \frac{\sin(0)x^{3}}{3!} + \frac{\cos(0)x^{4}}{4!} + \frac{-\sin(0)x^{5}}{5!} + \frac{-\cos(0)x^{6}}{6!} + \cdots$$

- Odd derivatives of cos are sin, and sin(0) = 0
- So, no terms with odd exponent

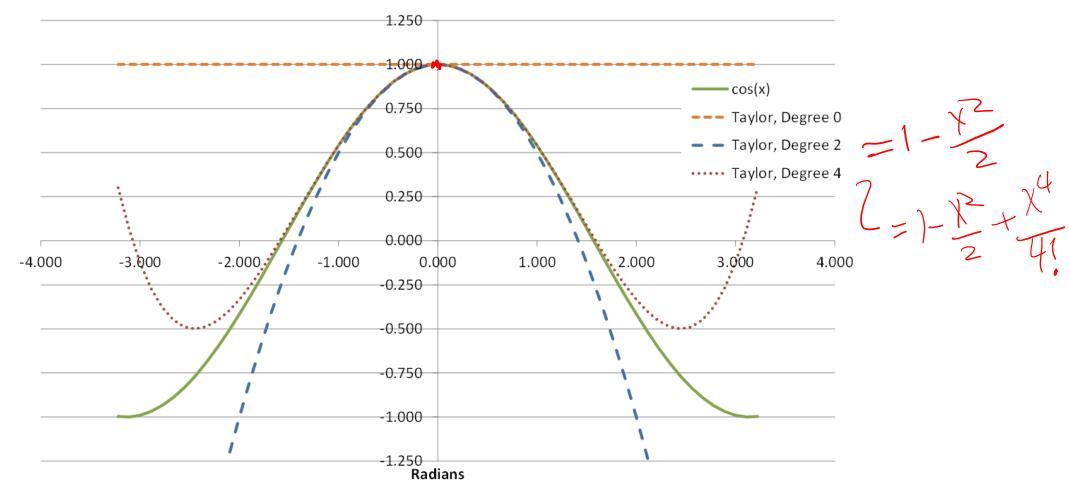
$$\cos(x) = \frac{\cos(0)x^{0}}{0!} + \frac{-\cos(0)x^{2}}{2!} + \frac{\cos(0)x^{4}}{4!} + \frac{-\cos(0)x^{6}}{6!} + \dots$$

cos(0) = 1, so simplify

•
$$cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

 Note: signs of terms are alternating, and terms get closer to 0, so maximum error from truncation can be no larger than first truncated term

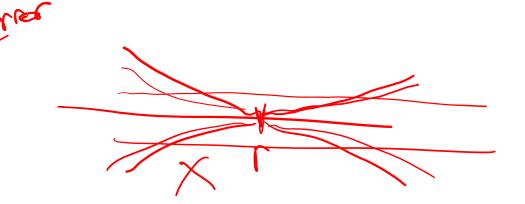
Accuracy



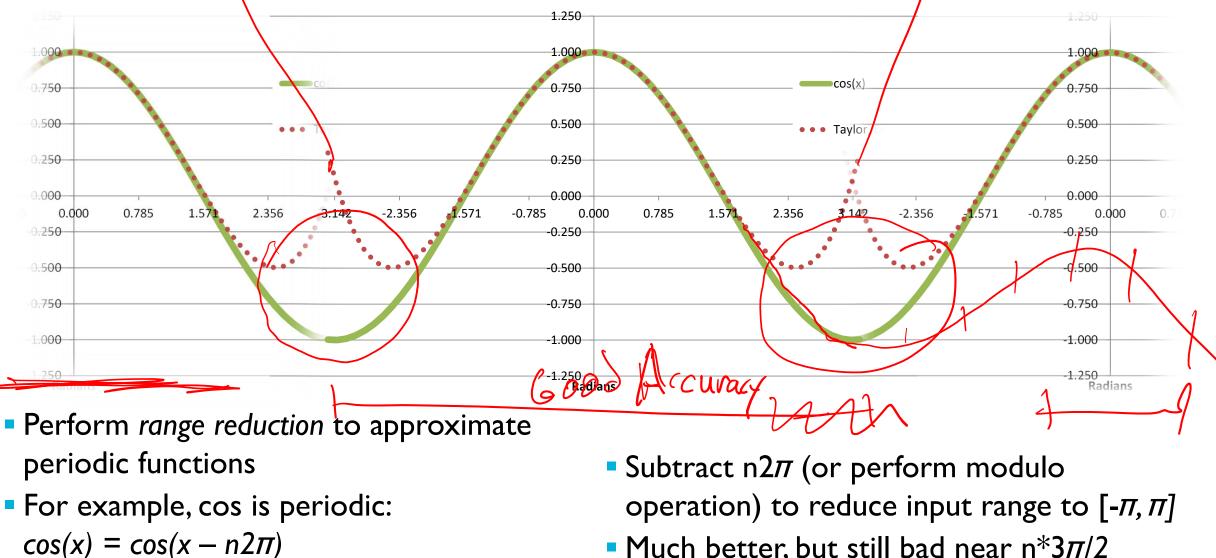
- Accuracy increases with degree of approximation
- Accuracy decreases with increased distance from reference input r (r=0)

Improving Accuracy without Adding Terms

- Using Taylor series expansions for coefficients is simple and easy to understand, but not as good as other methods
 - Error is distributed unevenly: small near r, large far from r
- Can use other methods to determine coefficients
 - Get better accuracy
 - Distribute error more evenly over input range
- Typical methods
 - Chebyshev polynomials
 - Bessel functions
 - Minimax optimizations



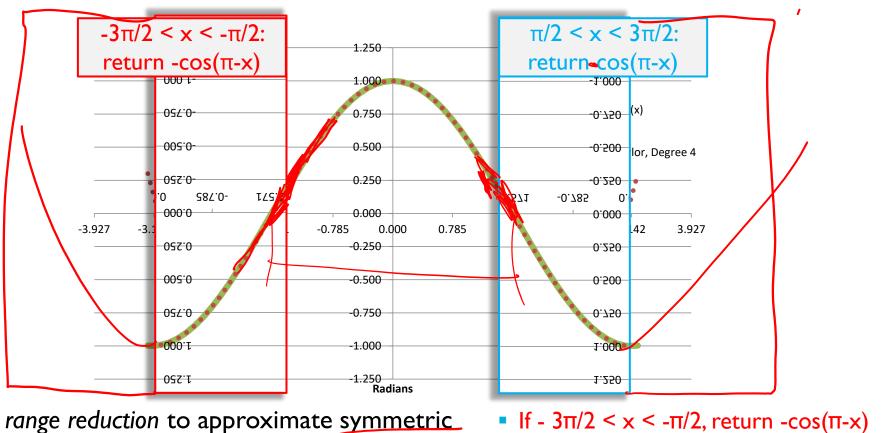
Approximating Periodic Functions



• Much better, but still bad near $n^*3\pi/2$

If $-\pi/2 \le x \le \pi/2$, return $\cos(x) \longrightarrow 2$ If $\pi/2 \le x \le 3\pi/2$, return $\cos(\pi-x)$

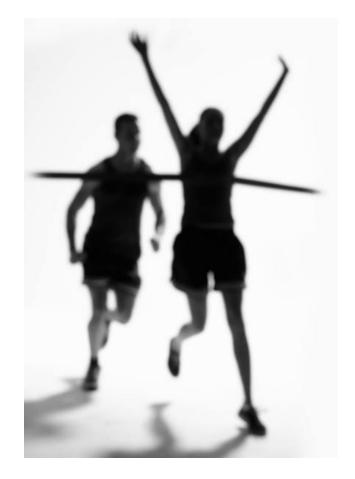
Approximating Symmetric Functions



- Perform range reduction to approximate symmetric functions
- For example, cos is symmetric:
 cos(x) = -cos(π-x)
- So we can approximate cos(x) from -π/2 to π/2, where accuracy is high
- 11

Performance Evaluation

- How much faster than cosf() is the polynomial approximation?
- It depends...



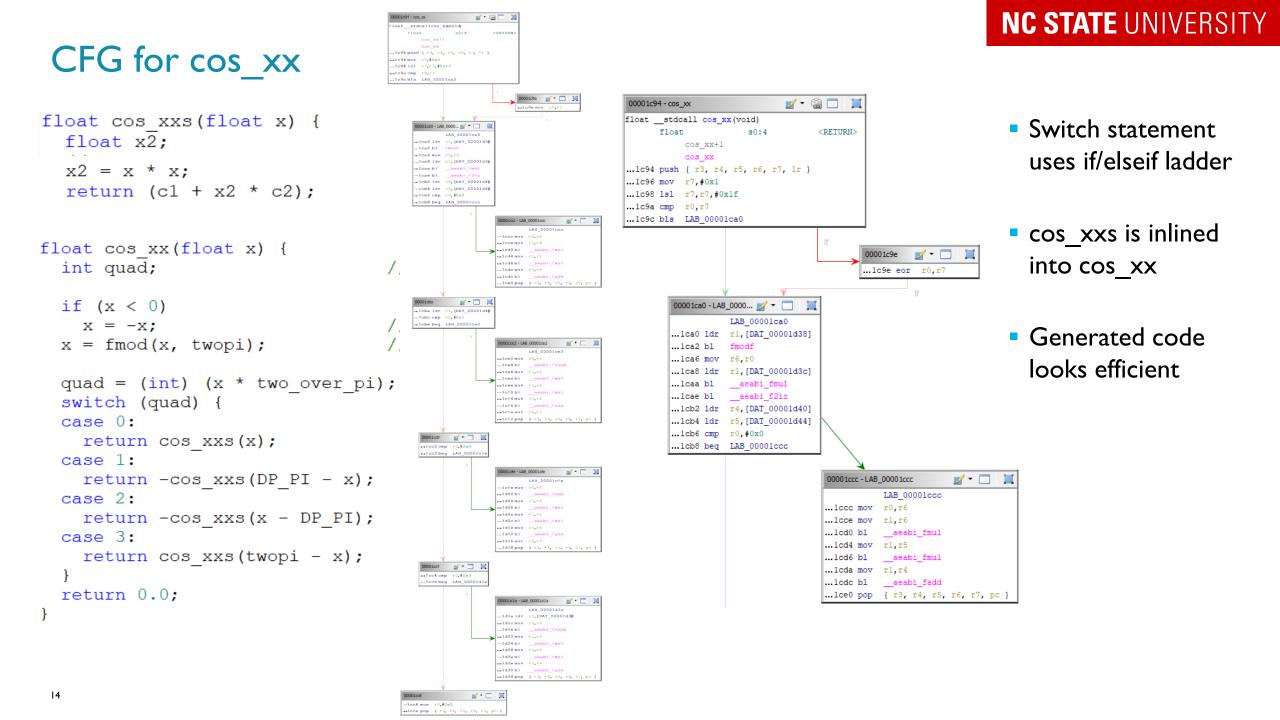
Details of Polynomial Trig Approximations

A Guide to Approximations, Jack Ganssle

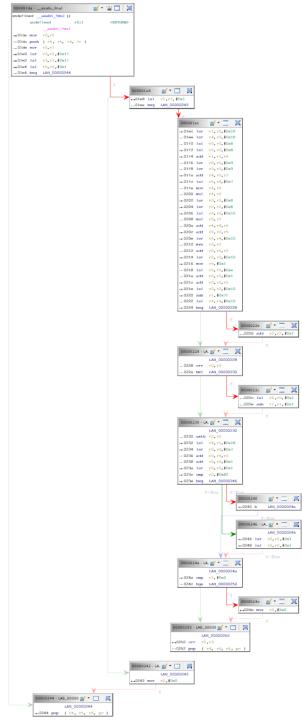
190

 $\left(\right)$

- http://www.ganssle.com/item/approximations-for-trig-c-code.htm
- What object code do we actually get? Source code is in sincos.c



CFG for ____aeabi__fmul



NC STATE UNIVERSITY

000001ec	🗾 - 🗔 🛛 🗮
0lec lsr	r1,r0,#0x18
01ee lsr	r4,r2,#0x18
01f0 lsl	r0,r0,#0x8
01f2 lsl	r2,r2,#0x8
01f4 add	rl,rl,r4
01f6 lsr	r0,r0,#0x9
01f8 lsr	r2,r2,#0x9
01fa add	r4,r0,r2
01fc lsl	r5,r4,#0x7
01fe mov	r4,r0
0200 mul	r4,r2
0202 lsr	r0,r0, # 0x8
0204 lsr	r2,r2,#0x8
0206 lsl	r6,r5,#0x10
0208 mul	r0,r2
020a add	r4,r4,r6
020c add	r2,r0,r5
020e lsr	r0,r4, # 0x10
0210 mvn	r5,r0
0212 add	r2,r5,r2
0214 lsr	r2,r2,#0x10
0216 mov	r5,#0x1
0218 lsl	r5,r5, # 0xe
021a add	r2,r2, # 0x1
021c add	r2,r2,r5
021e lsl	r2,r2,#0x10
0220 sub	rl,#0x7f
0222 lsl	
0224 beq	LAB_00000228

