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Approximations

= C math library has very accurate mathematical functions
= Sin, cos, sqrt, etc. calculated with approximations
= Accuracy takes computation time
= May be more accurate than needed for your application

= Can simplify approximation of functions to save time

= Consider cosine function
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Look-Up Table

= Very fast

= Convert input X to index i of table
element

= Read value from table[i]

* Potentially large memory

requirements

o >
= Element size * number of elements

= Number of elements depends on T %

accuracy required and how '

quickly function changes "
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Look-Up Table with Interpolation

= Optimize by interpolating between adjacent
data points

= A little slower

= Find table entry i containing X — divide, or
multiply by reciprocal

= Subtract to find X offset of sample from table
entry i
= Multiply X offset by slope for table entry i

= AddY offset for table entry i C9>Q<>_—_ M74+%

* Much less error
= Can reduce table size and memory requirements

= Example of approximation using linear
interpolation




One-Element Look-Up Table

= How about a one-element look-up table?

= Constant approximation
= cos(0) = |
= For very small values of x, cos(x) = |

= Error increases quickly as x moves from 0, so
limited use

= Linear approximations
= cos(x) = |- x
= Error still increases, but more slowly
= How about cos(x) = |- 2x or cos(x) = |- x/2?
= Or adding a constant?

= How about a better interpolation than
linear?
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Polynomial Approximations

cos(x)

= The Small Angle Approximation

= cos(x) W

= |s special case of Taylor series expansion (more
soon)

=== Taylor, Degree 0

= Taylor, Degree 5

------ Taylor, Degree 4

= General case: Polynomial approximation

* f() = ag+ agx + apx® + azx® + agx* + - 0.000 1.000 ‘% 2.000 3,000 4.000
= Can represent any arbitrary function (& et Mannes s L '
= Improve accuracy by adding terms (asx>, etc.) = Can reuse smaller terms (Horner’s rule)
= Reduce accuracy by computing fewer terms = x" = xHxn
* Why use polynomials? Speed! * f(x) = ayg+x (a1 + x(a, + x(as + xa4)))
~ 7 _>

= For a degree n polynomial, need n additions and
(n2+n)/2 multiplications —
e

* For a degree n polynomial, need n additions and
only n multiplications — much faster!

—_—




Determining coefficients

* Where do coefficients come from?
= Can use Taylor or Maclaurin series

= Other methods available too, which are more accurate
or can use fewer terms

= Taylor Series

= Coefficient a, is based on nth derivative of the original
function f at reference argument r
™)
e 32 LD
= Factorials: 0! = |

= Example:Taylor series for Cosine at r = 0

(n) ™) (o
¢ 202D (- ) = 3, 2D (x — o)

= FYI:ATaylor series evaluated with r = 0 is called a
Maclaurin series

Derivative of cosine is —sine, derivative of sine is cosine

cos(x) = cos(0)x® N —sin(0)x? n —cos(0)x? N sin(0)x3 N
0! 1! 2! 3!
cos(0)x* = —sin(0)x®> = —cos(0)x®

41 s T T e T

Odd derivatives of cos are sin,and sin(0) =0

= So, no terms with odd exponent

cos(0)x® = —cos(0)x?  cos(0)x* = —cos(0)x®
0! 2! 4! 6!

cos(x) = +

cos(0) = 1, so simplify

x? x*  x®
cos(x) = 1=+ — =+
Note: signs of terms are alternating, and terms get
closer to 0, so maximum error from truncation can be
no larger than first truncated term
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Accuracy

1.250

cos(x)

=== Taylor, Degree 0

\Z—Z_
- = Taylor, Degree 2 — \ - /
------ Taylor, Degree 4 Q
A
2

-4.000 3900 3.000 4.000

= Accuracy increases with degree of approximation
= Accuracy decreases with increased distance from reference input r (r=0)
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Improving Accuracy without Adding Terms

= Using Taylor series expansions for coefficients is simple and easy to understand, but not as good as other
methods
= Error is distributed unevenly: small near r, large far from r

= Can use other methods to determine coefficients 6\@(
= Get better accuracy
= Distribute error more evenly over input range \
T ee——
—

= Typical methods //7< N \\

= Chebyshev polynomials

= Bessel functions
= Minimax optimizations



Approximating\Periodic Functions
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= Perform range reduction to approximate

periodic functions

" For example, cos is periodic:
cos(x) = cos(x — n2im)

Uz
Lapn 43—

= Subtract n217 (or perform modulo
operation) to reduce input range to [-17, I7T]

= Much better, but still bad near n*377/2



Approximating Symmetric Functions

-31/2 < x < -1m/2:
return -cos(Tt-x)

1250
1.209U

/2 < x <

311/2:

return=cos(Tt-x)

000

J4"UUVU

(x)

lor, Degree 4
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= Perform range reduction to approximate symmetric_

functions /-

= For example, cos is symmetric:

_€os(x) = -cos(TT-x)
= So we can approximate cos(x) from
-T1/2 to T1/2, where accuracy is high

= If - 3M/2 < x < -T1/2, return -cos(T-x)
If - /2 < x < /2, return cos(X) /ODW
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If /2 < x < 311/2, return-cos(T-x)
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Performance Evaluation

= How much faster than cosf() is the polynomial
approximation?

= |t depends...
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Details of Polynomial Trig Approximations

= A Guide to Approximations, Jack Ganssle

= http://www.ganssle.com/item/approximations-for-trig-c-code.htm

= What object code do we actually get? Source code s in sipcos.c
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http://www.ganssle.com/item/approximations-for-trig-c-code.htm
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CFG for cos_ xx

-cos H-&@0 M
float COS_XXS (fl{:}at X) -[ float _‘stdcall ccs_xx{void;l . u .
float x2; e <eerome; Switch statement
X2 = X * - icj% push :-_ r4, r5, ré, r7, 1r } uses If/elself Iadder
return (cl + x2 * c2); ess 101

...lc%a cmp
o welcfSc kls  LAR 00001cal

= cos_xxs is inlined

float cos zx(float x) {

iee - W .

lnt quad; ;'( W lcBe eor  rl,z7 |nt0 COS XX
if (x < 0) [B000ica0 - Lae_oo0o... &/ - () I

£ = T . /. ..lcad ldr i?ﬂfgigi;;;:;ldas] - Generated Code
x = fmod(x, twopi); /. = .lca2 bl fmods

wolcat mov  rd,ro o o
. . w.lcad ldr =1, [DAT_00001d3c] IOOkS eff|C|ent

gquad = (int) (x * two over pi); wlcaa bl asabi_fmul

. - - w.lcae bl _ asabi_£2iz
switch (quad) { ..lcb2 1dr r4, [DAT_00001d40]
case 0: ..lcbd 1dr r5, [DAT_00001d44]

..lcbhé cmp =0, #0x0

return COs XXES (=) ; ...1cb8 beq LEB 0000lccc

case 1:
] p

return -cos xxs(DP PI - x); [0000iccc - Lae_o0001ccc -0 MW
case 2 . - - LAB 0000lcce

' - ...lccc mov r0,ré

return -cos xxs(x - DP PI); wlcce mov 11,76

. .1lcdd bl e

case 3: . v

return cos xxs (twopi - x); wlods b1 aca
} - ..lcda mov rl,rd

...lcdc bl __a=abi_rfadd
return D M O; = ...lce0 pop { r3, r4, r5, ré, rl, }
}
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CFG for _ aeabi fmul

0lec lsr
0les lsr
..01£0 131
..01£2 131
L0124 add
L01f6 lsr
L01f3 1lsr
L01fa add
L01fc 1sl
wllfe mov rd,rd
L0200 Ml o rd,r2
L0202 13  r0
..0204 1lsr «r2,r2,4#0x2
..0206 131 ro,r5,#0x10
L0208 Ml o r0,r2
L0208 add rd,rd,ro
..020c add =r2,rz0,rS
L0208 1sr r0,r4,#0x10

L0210 mvn I, o
..0212 add «=r2,r5,r2
B o - B .0214 lsr r2,r2,#0xl0
w0216 mov S, #0xl
L0218 181 3, r5, #0xe
L021la add r2,rZ,#0xl
.021lc add =r2,r2,rS
w02le 181 r2,r2,#0xl0

..0220 sub rl,#0x7f

..0222 1s1 r4,rd,$0x10

..0224 beq LIB 00000228
|

I5 e - o W
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CFG for _ aeabi fadd
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