
1

APPROXIMATING WITH

LOOK-UP TABLES AND POLYNOMIALS

2

Approximations

▪ C math library has very accurate mathematical functions

▪ Sin, cos, sqrt, etc. calculated with approximations

▪ Accuracy takes computation time

▪ May be more accurate than needed for your application

▪ Can simplify approximation of functions to save time

▪ Consider cosine function

3

▪ Very fast

▪ Convert input X to index i of table

element

▪ Read value from table[i]

▪ Potentially large memory

requirements

▪ Element size * number of elements

▪ Number of elements depends on

accuracy required and how

quickly function changes

(derivative)

Look-Up Table

X

Y

4

▪ Optimize by interpolating between adjacent

data points

▪ A little slower

▪ Find table entry i containing X – divide, or

multiply by reciprocal

▪ Subtract to find X offset of sample from table

entry i

▪ Multiply X offset by slope for table entry i

▪ Add Y offset for table entry i

▪ Much less error

▪ Can reduce table size and memory requirements

▪ Example of approximation using linear

interpolation

Look-Up Table with Interpolation

X

Y

5

One-Element Look-Up Table

▪ How about a one-element look-up table?

▪ Constant approximation

▪ cos(0) = 1

▪ For very small values of x, cos(x) ≈ 1

▪ Error increases quickly as x moves from 0, so

limited use

▪ Linear approximations

▪ cos(x) ≈ 1- x

▪ Error still increases, but more slowly

▪ How about cos(x) ≈ 1- 2x or cos(x) ≈ 1- x/2?

▪ Or adding a constant?

▪ How about a better interpolation than

linear? X

Y

6

Polynomial Approximations

▪ The Small Angle Approximation

▪ cos(x) ≈ 1 - x2/2

▪ Is special case of Taylor series expansion (more

soon)

▪ General case: Polynomial approximation
▪ 𝑓 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 + 𝑎4𝑥

4 +⋯

▪ Can represent any arbitrary function

▪ Improve accuracy by adding terms (𝑎5𝑥
5, etc.)

▪ Reduce accuracy by computing fewer terms

▪ Why use polynomials? Speed!

▪ For a degree n polynomial, need n additions and

(n2+n)/2 multiplications

▪ Can reuse smaller terms (Horner’s rule)

▪ xn+1 = x*xn

▪ 𝑓 𝑥 = 𝑎0 + 𝑥 𝑎1 + 𝑥 𝑎2 + 𝑥 𝑎3 + 𝑥𝑎4

▪ For a degree n polynomial, need n additions and

only n multiplications – much faster!

7

Determining coefficients

▪ Where do coefficients come from?

▪ Can use Taylor or Maclaurin series

▪ Other methods available too, which are more accurate

or can use fewer terms

▪ Taylor Series

▪ Coefficient an is based on nth derivative of the original

function f at reference argument r

▪ σ𝑛=0
∞ 𝑓(𝑛) 𝑟

𝑛!
𝑥 − 𝑟 𝑛

▪ Factorials: 0! = 1

▪ Example: Taylor series for Cosine at r = 0

▪ σ𝑛=0
∞ 𝑐𝑜𝑠(𝑛) 𝑟

𝑛!
𝑥 − 𝑟 𝑛 = σ𝑛=0

∞ 𝑐𝑜𝑠(𝑛) 0

𝑛!
𝑥 − 0 𝑛

▪ FYI: A Taylor series evaluated with r = 0 is called a

Maclaurin series

▪ Derivative of cosine is –sine, derivative of sine is cosine

▪ 𝑐𝑜𝑠 𝑥 =
cos 0 𝑥0

0!
+

−sin 0 𝑥1

1!
+

−cos(0)𝑥2

2!
+

sin 0 𝑥3

3!
+

𝑐𝑜𝑠 0 𝑥4

4!
+

− sin 0 𝑥5

5!
+

−cos(0)𝑥6

6!
+⋯

▪ Odd derivatives of cos are sin, and sin(0) = 0

▪ So, no terms with odd exponent

▪ 𝑐𝑜𝑠 𝑥 =
cos 0 𝑥0

0!
+

−cos(0)𝑥2

2!
+

𝑐𝑜𝑠 0 𝑥4

4!
+

−cos(0)𝑥6

6!
+

⋯

▪ cos(0) = 1, so simplify

▪ 𝑐𝑜𝑠 𝑥 = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+⋯

▪ Note: signs of terms are alternating, and terms get

closer to 0, so maximum error from truncation can be

no larger than first truncated term

8

Accuracy

▪ Accuracy increases with degree of approximation

▪ Accuracy decreases with increased distance from reference input r (r=0)

9

Improving Accuracy without Adding Terms

▪ Using Taylor series expansions for coefficients is simple and easy to understand, but not as good as other

methods

▪ Error is distributed unevenly: small near r, large far from r

▪ Can use other methods to determine coefficients

▪ Get better accuracy

▪ Distribute error more evenly over input range

▪ Typical methods

▪ Chebyshev polynomials

▪ Bessel functions

▪ Minimax optimizations

10

Approximating Periodic Functions

▪ Perform range reduction to approximate

periodic functions

▪ For example, cos is periodic:

cos(x) = cos(x – n2π)

▪ Subtract n2π (or perform modulo

operation) to reduce input range to [-π, π]

▪ Much better, but still bad near n*3π/2

-1.250

-1.000

-0.750

-0.500

-0.250

0.000

0.250

0.500

0.750

1.000

1.250

-3.927 -3.142 -2.356 -1.571 -0.785 0.000 0.785 1.571 2.356 3.142 3.927

Radians

cos(x)

Taylor, Degree 4

11

Approximating Symmetric Functions

▪ Perform range reduction to approximate symmetric
functions

▪ For example, cos is symmetric:
cos(x) = -cos(π-x)

▪ So we can approximate cos(x) from
-π/2 to π/2, where accuracy is high

▪ If - 3π/2 < x < -π/2, return -cos(π-x)

▪ If - π/2 ≤ x ≤ π/2, return cos(x)

▪ If π/2 < x < 3π/2, return cos(π-x)

-1.250

-1.000

-0.750

-0.500

-0.250

0.000

0.250

0.500

0.750

1.000

1.250

-3.927 -3.142 -2.356 -1.571 -0.785 0.000 0.785 1.571 2.356 3.142 3.927

Radians

cos(x)

Taylor, Degree 4

-1.250

-1.000

-0.750

-0.500

-0.250

0.000

0.250

0.500

0.750

1.000

1.250

-3.927 -3.142 -2.356 -1.571 -0.785 0.000 0.785 1.571 2.356 3.142 3.927

Radians

cos(x)

Taylor, Degree 4

-1.250

-1.000

-0.750

-0.500

-0.250

0.000

0.250

0.500

0.750

1.000

1.250

-3.927-3.142-2.356-1.571-0.7850.0000.7851.5712.3563.1423.927

Radians

cos(x)

Taylor, Degree 4

-3π/2 < x < -π/2:

return -cos(π-x)

π/2 < x < 3π/2:

return cos(π-x)

12

Performance Evaluation

▪ How much faster than cosf() is the polynomial

approximation?

▪ It depends…

13

Details of Polynomial Trig Approximations

▪ A Guide to Approximations, Jack Ganssle
▪ http://www.ganssle.com/item/approximations-for-trig-c-code.htm

▪ What object code do we actually get? Source code is in sincos.c

http://www.ganssle.com/item/approximations-for-trig-c-code.htm

14

CFG for cos_xx

▪ Switch statement

uses if/elseif ladder

▪ cos_xxs is inlined

into cos_xx

▪ Generated code

looks efficient

15

CFG for __aeabi_fmul

16

CFG for __aeabi_fadd

