
Name ______________________________________ Email__________________________

1

ECE 461/561 Sample Final Quizzes

 Spring 2021

Quiz 1: Examining Object Code and Speed Optimizations
This code uses bit-mapped data for a printable symbol (“glyph”) to render it on the LCD. Each bit of the bit-map
was already initialized to 1 if the pixel should be the foreground color, or 0 if the pixel should be the background
color. The object code was generated with –O3 optimization.
Assume:

 CHAR_HEIGHT = 13
 CHAR_WIDTH = 8
 0 < glyph_width < 9

Source Code:

// Initialization code deleted
for (row = 0; row < CHAR_HEIGHT; row++) {
 x_bm = 0; // x position within glyph bitmap, can span bytes
 do {
 bitmap_byte = *glyph_data;
 col = 0;
 num_pixels = 0;
 for (; (x_bm < glyph_width) && (col < 8); col++) {
 if (bitmap_byte & 0x01) // if pixel is to be set
 pixel_color = &fg;
 else
 pixel_color = &bg;
 // Inlined LCD_Write_Rectangle_Pixel
 b1 = (pixel_color->R&0xf8) | ((pixel_color->G&0xe0)>>5);
 b2 = ((pixel_color->G&0x1c)<<3) | ((pixel_color->B&0xf8)>>3);
 GPIO_Write(b1);
 GPIO_ResetBit(LCD_NWR_POS);
 GPIO_SetBit(LCD_NWR_POS);
 GPIO_Write(b2);
 GPIO_ResetBit(LCD_NWR_POS);
 GPIO_SetBit(LCD_NWR_POS);

 bitmap_byte >>= 1;
 x_bm++;
 }
 glyph_data++; // Advance to next byte of glyph data
 } while (x_bm < glyph_width);
 if (x_bm < CHAR_WIDTH) {
 // fill in rest of cell with background color for narrow glyphs
 LCD_Write_Rectangle_Pixel(&bg, CHAR_WIDTH - x_bm);
 }
}

Name ______________________________________ Email__________________________

2

Object Code:

126: bitmap_byte = *glyph_data;
0x01F1E LDR r0,[sp,#0x24]
0x01F20 LDRB r0,[r0,#0x00]
0x01F22 STR r0,[sp,#0x18]
127: col = 0;
0x01F24 MOVS r0,#0x00
0x01F26 STR r0,[sp,#0x08]
128: num_pixels = 0;
0x01F28 STR r0,[sp,#0x04]
129: for (; (x_bm < glyph_width) && (col < 8);
col++) {
0x01F2A B 0x01F9A

130: if (bitmap_byte & 0x01) // if pixel is
set
0x01F2C LDR r0,[sp,#0x18]
0x01F2E LSLS r0,r0,#31
0x01F30 LSRS r0,r0,#31
0x01F32 CMP r0,#0x00
0x01F34 BEQ 0x01F3A

131: pixel_color = &fg;
0x01F36 LDR r5,[pc,#184] ; @0x01FF0
0x01F38 B 0x01F3C

132: else
133: pixel_color = &bg;
0x01F3A LDR r5,[pc,#184] ; @0x01FF4

134: b1 = (pixel_color->R&0xf8) |
((pixel_color->G&0xe0)>>5);
0x01F3C LDRB r0,[r5,#0x00]
; Code at 0x01F3E to 0x01F8B implementing source code
lines 135-141 deleted from listing. It is all part of
same basic block as instruction at 0x01F3C.
135: b2 = ((pixel_color->G&0x1c)<<3) |
((pixel_color->B&0xf8)>>3);

136: GPIO_Write(b1);
137: GPIO_ResetBit(LCD_NWR_POS);
138: GPIO_SetBit(LCD_NWR_POS);
139: GPIO_Write(b2);
140: GPIO_ResetBit(LCD_NWR_POS);
141: GPIO_SetBit(LCD_NWR_POS);
143: bitmap_byte >>= 1;
0x01F8A LDR r0,[sp,#0x18]
0x01F8C ASRS r0,r0,#1
0x01F8E STR r0,[sp,#0x18]
144: x_bm++;
145: }
0x01F90 ADDS r0,r4,#1
0x01F92 UXTB r4,r0
145: }
0x01F94 LDR r0,[sp,#0x08]
0x01F96 ADDS r0,r0,#1
0x01F98 STR r0,[sp,#0x08]

0x01F9A LDR r0,[sp,#0x14]
0x01F9C CMP r4,r0
0x01F9E BGE 0x01FA6

0x01FA0 LDR r0,[sp,#0x08]
0x01FA2 CMP r0,#0x08
0x01FA4 BCC 0x01F2C

146: glyph_data++; // Advance to next byte
0x01FA6 LDR r0,[sp,#0x24]
0x01FA8 ADDS r0,r0,#1
0x01FAA STR r0,[sp,#0x24]
147: } while (x_bm < glyph_width);
0x01FAC LDR r0,[sp,#0x14]
0x01FAE CMP r4,r0
0x01FB0 BLT 0x01F1E

; Basic block 9 starts at 0x01FB2

1. Control Flow Analysis: Identify each basic block in the object code above by listing the hexadecimal start
address (shown in the listing) of its first and last instructions. Indicate the number of instructions per basic
block in “Instruction Count”. Then identify the immediate successor(s) of each basic block by number.
Assume basic block 9 starts at address 0x01FB2.

Basic Block
Number

Starting Address Ending Address Instruction Count Basic Block Number of
Immediate Successor(s)

1

2

3

4

5 47

6

7

8

Name ______________________________________ Email__________________________

3

2. Basic block characteristics:
a. Which basic block will be executed the most times?

b. Which basic blocks will execute the fewest times?

c. Which basic block will dominate overall execution time? Assume each instruction takes one clock

cycle to execute.

3. There are usually “runs” of multiple pixels of the same value (foreground or background) in most glyph

bitmaps. Explain a way to optimize for these runs.

Name ______________________________________

4

Quiz 2: Responsiveness
Consider a real-time system consisting of the following set of independent periodic tasks. Assume each
task’s deadline is equal to its period.

Task Worst Case Execution Time C (ms) Period T (ms) Priority

Fee 3 31

Fi 1 41

Fo 4 59

Fum 11 26

Foo 15 53

4. Complete the table above by assigning a priority (high (A) to low (E)) to each task using the rate-
monotonic approach.

5. Calculate the utilization of the task set.

6. Find the worst-case response time of the …
a. highest priority task when using preemptive fixed-priority scheduling.

b. highest priority task when using non-preemptive fixed-priority scheduling.

c. lowest priority task when using preemptive fixed-priority scheduling.

7. Does the utilization bound test show that this task set is always schedulable using fixed-priority
preemptive scheduling with these priorities? Why or why not?

Name ______________________________________

5

Quiz 3: Memory Size
8. Some functions can be compiled to object code with a stack frame size of zero bytes. For this to

happen, certain conditions are necessary. Note that these conditions are not sufficient; other
conditions will also have to be met to get a zero stack frame size.

a. A necessary condition for arguments to take no space on the stack is …

b. A necessary condition for automatic variables to take no space on the stack is …

c. A necessary condition for the link register to take no space on the stack is …

d. A necessary condition for the return value to take no space on the stack is …

9. The diagram below shows the maximum stack memory use in bytes for each function and two
interrupt handlers in a single-threaded program.

a. What is the sequence of function calls (ignoring interrupts) which causes the maximum stack

depth, and what is that stack depth?

b. What is the maximum possible stack depth considering interrupts? Draw a picture of the call
stack and label the stack frames (activation records) and their sizes. Assume interrupt
handlers are not interruptable. State any other assumptions for full credit.

Description RAM Used (Bytes)

main 8

alpha 40 bravo 20

foxtrot 4 echo 32 zoo 24

charlie 16 delta 36

gopher 44 hotel 18

IRQ_Handler1
16

igloo 32

IRQ_Handler2
8

spar 16

Name ______________________________________

6

10. Consider the following source code fragment which defines several static (not automatic) variables.
Determine the amount of ROM and RAM used by each variable. Assume the compiler does not pack
data structures or compress initialization data.

typedef struct {
 uint8_t R, G, B; // note: using 5-6-5 color mode for LCD.
} COLOR_T;
typedef struct {
 uint8_t FontID;
 uint8_t Orientation;
 uint16_t FirstChar;
 uint16_t LastChar;
 uint8_t Height;
 uint8_t Reserved;
} FONT_HEADER_T;
typedef struct {
 uint32_t Width:8; // pixels
 uint32_t Offset:24; // Offset from start of table
} GLYPH_INDEX_T;
uint8_t * font;
FONT_HEADER_T * font_header;
GLYPH_INDEX_T * glyph_index;
COLOR_T fg=BLACK, bg=GRAY;
uint8_t G_LCD_char_width, G_LCD_char_height;
const uint8_t * fonts[] = {Lucida_Console8x13, Lucida_Console12x19,
Lucida_Console20x31};
const uint8_t char_widths[] = {8, 12, 20};
const uint8_t char_heights[] = {13, 19, 31};

Variable ROM Used (Bytes) RAM Used (Bytes)

Name ______________________________________

7

Quiz 4: Power and Energy
Selected power vs. MCU core frequency characteristics of the KL25Z128 MCU are shown below.

11. Consider the MCU operating at 36 MHz in Run mode at 1.9 V.
a. What is the power consumption?

b. How much energy is used per clock cycle?

12. Consider the MCU operating at 3 MHz in VLP Run mode at 3 V.
a. What is the power consumption?

b. How much energy is used per clock cycle?

y = 0.246x + 5.5689

y = 0.1x + 0.475
0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

0 10 20 30 40 50

Po
w

er
 (m

W
)

Core Frequency (MHz)

Power vs. Frequency, VDD = 3.0 V

Run
VLP Run
Linear (Run)
Linear (VLP Run)

