
1

Shield Speed Optimizations

2

Overview

 LCD controller interface

 LCD bitmapped text

 Using SIMD for pixel data formatting

3

LCD CONTROLLER INTERFACE

4

LCD Controller IC – ST7789S

MCU

5

 Different pixel formats
 MCU: 24 bits per pixel (8:8:8)
 LCD Controller:16 bpp (5:6:5)

 Takes two byte-writes to send a
pixel of 16-bpp data

 Control signals: CSX, etc.
 X suffix = Active Low

MSB MSB MSB

LSB LSB LSB

Chip Select

Data/Command

Write

Read

Command Data

Pixel Data (8-Bit interface, 65k colors)

MCU: 24 bpp Interface: 16 bpp
Frame Memory:

18 bpp

6

 Set-up operations
 Set column address: 5 writes
 Set page (row) address: 5 writes

 Data write operation
 Write to memory command: 1 write
 MSB, LSB: 2 bytes, 2 writes

 Total LCD operations: 13/pixel
 Full screen update

 240 x 320 pixels * 13 write operations/pixel
= ~1M write operations

LCD_Plot_Pixel

Columns

Ro
w

s

7

Commands

8

Defining Rectangle Start and End Addresses

9

 Controller can
accept multiple data
values
 Will store data in

consecutive locations
(increasing addresses)

 Will wrap address
based on XS and XE,
YS and YE

Drawing Rectangles

10

 Set-up operations
 Set column address: 5 writes
 Set page (row) address: 5 writes
 Start the 0x2C write command, but

don’t send data yet: 1 write

 Data write operation
 MSB, LSB: 2 writes

 Total LCD Operations: 11 + 2/pixel
 Compare with 13 LCD operations/pixel in

LCD_Plot_Pixel

Drawing Rectangles

11

LCD BITMAPPED TEXT

12

 LCD controller does not have built-in character bitmaps
 Instead, user code has to render (draw) text
 Two options

 Bitmap: Set pixels based on bitmap – fast (but ugly if scaled much)
 Vector: Draw a series of lines – slow (but beautiful with scaling)

 Will use bitmap (for speed)
 Use free tool (GLCD Font Creator) to generate bitmaps from

Windows fonts: https://www.mikroe.com/glcd-font-creator
 Bitmap uses 1 for character foreground, 0 for background
 Code needs to read bitmap and output foreground or

background color for each pixel in bitmap

Providing Text for LCD

13

 Loop iterates over each column in
bitmap

 Calls LCD_Plot_Pixel per pixel
 Slow because of set-up overhead

before each pixel of data

Simple Text Rendering Code
bitmap_byte

0x00

0x1C

0x22

0x38

0x24

0x22

0x5C

0x00
LCD

14

 Draws a rectangle for each run of pixels
 Identifies runs of pixels by examining

existing bitmap data
 If 0000 0000, then draw run of 8

background pixels
 If 1111 1111, then draw run of 8

foreground pixels
 If x000 0000, then draw run of 7

background pixels
 Et cetera
 Draw any remaining pixels in byte

individualy
 Could improve performance further by

changing bitmap data to encode run
information

LCD_PrintChar Optimized for Pixel Runs

15

USING SIMD FOR PIXEL DATA
REFORMATTING

16

Bi
ts

 9
-3

1
un

us
ed

Bi
ts

 9
-3

1
un

us
ed

Bi
ts

 9
-3

1
un

us
ed

MSB MSB MSB

LSB LSB LSB

We’re Using Only Part of 32-bit Data Path in CPU

Bi
ts

 9
-3

1
un

us
ed

Bi
ts

 9
-3

1
un

us
ed

ri rj rk rx

ry

17

 SIMD: Single Instruction, Multiple Data
 Have each register hold multiple data

elements (mini-vector)
 Now one instruction can process

multiple data elements

 Want to process four bytes in parallel
in a 32-bit register

Four-Wide SIMD? Pixel n+3

Pixel n+2

Pixel n+1

Pixel n

ri rj rk
rx ryMSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

18

rx
ryPixel n+3

Pixel n+2

Pixel n+1

Pixel n

ri rj rk
MSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

MSB MSB MSB

LSB LSB LSB

19

 Original code
 Pixel color is in a structure with color

components
 struct { uint8_t R, G, B; } COLOR_T;

 Image is an array of structures
 COLOR_T image[W][H]

 One component of one pixel is loaded
into each register

 Loading register with full word from
memory? Will just get R, G, B
components of single pixel: not useful

 Changes needed
 Pass at least four pixels of data to

function at a time
 Reorganize data in memory so loading

a register with a word will get a
component (e.g. R) from four adjacent
pixels

Must Reorganize Data and Interface

20

 Pass at least four pixels of data to
function at a time

 Reorganize data in memory
 Loading a register (LDR) should get a

component (e.g. R) from four adjacent
pixels

 Reorganize data into structure of arrays
 struct {

uint8_t R[W*H],
G[W*H],
B[W*H];

}

New Data Organization and Interface
void LCD_Write_Rectangle_N_Quad_Pixel_Components(

uint32_t * aR, uint32_t * aG,
uint32_t * aB, int32_t n){

21

 Load three color components into three registers
 R: Four reds, G: four greens, B: four blues

 Mask off and shift color component bits of interest
 Four reds, four high greens, four low greens,

four blues
 Merge to create W1 (set of four first bytes)
 Merge to create W2 (set of four second bytes)
 Send out four pairs of bytes sequentially

 Extract b1 and b2 from W1 and W2
 Write the data
 Shift W1 and W2 to prep for next pair of bytes

Four-Wide SIMD void LCD_Write_Rectangle_N_Quad_Pixel_Components(
uint32_t * aR, uint32_t * aG,
uint32_t * aB, int32_t n){

uint8_t b1, b2; uint8_t i;
uint32_t R, G, B, GH, GL, W1, W2;
do {

R = *aR++;
G = *aG++;
B = *aB++;
R &= 0xf8f8f8f8;
GH = (G&0xe0e0e0e0)>>5;
GL = (G&0x1c1c1c1c)>>2;
B = (B&0xf8f8f8f8)>>3;
W1 = R | GH;
W2 = GL | B;
for (i=0; i<4; i++) {

b1 = W1 & 0x000000ff;
b2 = W2 & 0x000000ff;
LCD_24S_Write_Data(b1);
LCD_24S_Write_Data(b2);
W1 >>= 8;
W2 >>= 8;

}
}

22

APPENDIX

23

Software Reset
Read Display ID
Read Display Status
Read Display Power Mode
Read Display MADCTL
Read Display Pixel Format
Read Display Image Mode
Read Display Signal Mode
Read Display Self-Diagnostic

Result
Sleep In/Out
Partial Display Mode On
Normal Display Mode On
Display Inversion Off/On
Gamma Set
Display Off/On
Column Address Set
Row Address Set
Memory Read/Write
Partial Area

Vertical Scrolling Definition
Tearing Effect Line Off/On
Memory Data Access Control
Vertical Scroll Start Address

of RAM
Idle Mode Off/On
Interface Pixel Format
Read/Write Memory

Continue
Get/Set Tear Scanline
Read/Write Display

Brightness
Read/Write CTRL Display
Read/Write Content Adaptive

Brightness Control and
Color Enhancement

Read/Write CABC Minimum
Brightness

Read ID1
Read ID2

Read ID3
RAM Control
RGB Interface Control
Porch Setting
Frame Rate Control 1 (In

partial mode/ idle colors)
Gate Control
Digital Gamma Enable
VCOM Setting
LCM Control
ID Code Setting
VDV and VRH Command

Enable
VRH Set
VDV Set
VCOM Offset Set
Frame Rate Control in

Normal Mode
CABC Control
Register Value Selection 1

Register Value Selection 2
Power Control 1
Enable VAP/VAN signal output
Positive/Negative Voltage

Gamma Control
Digital Gamma Look-up Table

for Red/Blue
Gate Control
SPI2 Enable
Power Control 2
Equalize time control
Program Mode Control
Program Mode Enable
NVM Setting
Program action

Commands

24

 Reset (X = Active Low)
 Interface Mode
 Data (1) / Command (0)
 Chip Select X
 Write X
 Read X

 Data Bus (18 bits)

Interface Signals

25

Write Command or Data

26

Read Parameter or Display Data

27

Parallel Interface Timing

 66 ns * 48 MHz = 3.168 instruction cycles
 Software–implemented bus probably won’t exceed

this minimum timing requirement
 DMA would be able to (if configured correctly)

28

GLYPH_INDEX_T

uint32_t Width:8;

uint32_t Offset:32;

Font Data Structures FONT_HEADER_T

uint8_t FontID;

uint8_t Orientation;

uint16_t FirstChar;

uint16_t LastChar;

uint8_t Height;

uint8_t Reserved;

GLYPH_INDEX_T

uint32_t Width:8;

uint32_t Offset:32;

GLYPH_INDEX_T

uint32_t Width:8;

uint32_t Offset:32;

Font Array (uint8_t [])

Font Header

Glyph Index
(one per glyph)

Glyph Bitmap Data

uint8_t []

bitmap bytes

uint8_t []

bitmap bytes

uint8_t []

bitmap bytes

uint8_t []

bitmap bytes

uint8_t []

bitmap bytes
GLYPH_INDEX_T

uint32_t Width:8;

uint32_t Offset:32;

