
7

Energy-Aware Scheduling for Real-Time Systems: A Survey

MARIO BAMBAGINI and MAURO MARINONI, Scuola Superiore Sant’Anna
HAKAN AYDIN, George Mason University
GIORGIO BUTTAZZO, Scuola Superiore Sant’Anna

This article presents a survey of energy-aware scheduling algorithms proposed for real-time systems. The
analysis presents the main results starting from the middle 1990s until today, showing how the proposed
solutions evolved to address the evolution of the platform’s features and needs. The survey first presents
a taxonomy to classify the existing approaches for uniprocessor systems, distinguishing them according to
the technology exploited for reducing energy consumption, that is, Dynamic Voltage and Frequency Scaling
(DVFS), Dynamic Power Management (DPM), or both. Then, the survey discusses the approaches proposed
in the literature to deal with the additional problems related to the evolution of computing platforms toward
multicore architectures.

CCS Concepts: � General and reference → Surveys and overviews; � Computer systems
organization → Real-time operating systems; � Software and its engineering → Scheduling;
Power management

Additional Key Words and Phrases: Energy, power, real-time scheduling, dynamic voltage and frequency
scaling, dynamic power management, low power, sleep, idle, single core, multicore

ACM Reference Format:
Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016. Energy-aware scheduling for
real-time systems: A survey. ACM Trans. Embed. Comput. Syst. 15, 1, Article 7 (January 2016), 34 pages.
DOI: http://dx.doi.org/10.1145/2808231

1. INTRODUCTION

In the last two decades, energy management has become a prime design and operation
dimension for many real-time embedded platforms. In fact, effective energy manage-
ment is crucial for all battery-powered embedded systems, such as those deployed
in autonomous mobile robots, wearable devices, industrial controllers, and wireless
sensor networks. In many of these systems, recharging or replacing the batteries is
not always practical or feasible; hence, minimizing energy consumption translates to
a longer lifetime and clear operational and financial advantages. Even for systems
that are directly connected to the power grid, reducing energy consumption provides
significant monetary and environmental gains.

In real-time embedded systems, two widely used techniques for reducing energy
consumption in the processing unit are Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management (DPM). DVFS approaches trade energy with
performance by decreasing the voltage and the frequency of the processor to reduce
the overall energy consumption. Since reducing the frequency increases the task exe-
cution times, a common objective in real-time systems is to derive processor/task speed
values that still guarantee the timing constraints while minimizing the total energy

Authors’ addresses: M. Bambagini, M. Marinoni, and G. Buttazzo, Scuola Superiore Sant’Anna, Pisa 56127,
Italy; emails: m.bambagini@sssup.it; g.buttazzo@sssup.it; m.marinoni@sssup.it; H. Aydin, Department of
Computer Science, George Mason University, Fairfax, VA 22030; email: aydin@cs.gmu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2016 ACM 1539-9087/2016/01-ART7 $15.00
DOI: http://dx.doi.org/10.1145/2808231

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

http://dx.doi.org/10.1145/2808231
http://dx.doi.org/10.1145/2808231

7:2 M. Bambagini et al.

consumption. On the other hand, DPM techniques switch the processor to a low-power
inactive state as long as possible, while guaranteeing that all real-time tasks will finish
within their deadlines.

In CMOS technology, which is still the dominant approach in the VLSI circuit design,
the power consumption has both dynamic and static components, which are due to the
system activity and leakage dissipation, respectively. Unless the system is in an off
state, the static contribution is always present, regardless of the actual performance
level. Thus, DVFS approaches that modify the voltage and clock frequency are more
suitable for reducing the dynamic power, whereas DPM solutions are best suited for
decreasing the impact of the static power component. These techniques also can be
integrated to exploit their complementary features, in order to further increase the
energy savings.

Historically, CMOS circuits used to operate at a supply voltage level much higher
than the threshold voltage, making the impact of dynamic power consumption domi-
nant with respect to the static power consumption. This resulted in the proliferation of
DVFS approaches that are more suitable for reducing the dynamic power consumption.
With the progress of the VLSI technologies, miniaturization has considerably shrunk
the transistor size, lowering the supply voltage, thereby reducing the dynamic power
consumption. Even though the threshold voltage has also been lowered, the gap be-
tween supply and threshold voltages has been reduced. This led to a significant increase
in the leakage consumption, because the smaller the gap, the higher the subthreshold
dissipation [Soudris et al. 2002; Narendra and Chandrakasan 2010]. As a result, the
static power consumption has become as important as the dynamic power consumption,
and DPM approaches that target reducing the leakage power have recently increased
in popularity.

This article presents a survey of energy-aware scheduling algorithms for unipro-
cessor and multiprocessor hard real-time systems. Although several surveys have
been published on energy management algorithms, most of them focused on DVFS
approaches only or did not take real-time constraints into account. The increasing
relevance of leakage dissipation led to interesting integrated DVFS-DPM approaches,
which were not considered in previous surveys.

For instance, Chen and Kuo [2007] addressed single- and multiprocessor systems
by classifying algorithms according to the task periodicity, but they mainly focused
on DVFS algorithms. Similarly, Kim [2006] surveyed the intra- and intertask DVFS
algorithms by considering only the single-core systems. Saha and Ravindran [2012]
reported a performance comparison of a number of single-core DVFS algorithms for
an implementation in the GNU/Linux kernel. More recently, Mittal [2014] presented
a general survey of energy management techniques for embedded systems, including
the microarchitectural techniques.

The present survey, on the other hand, provides an in-depth overview of the existing
DVFS- and DPM-based approaches, analyzing integrated DVFS-DPM algorithms and
offering a wider spectrum of analysis. Considering the space limitations and the large
number of proposed approaches, we decided to focus on methods for hard real-time
systems, briefly discussing some solutions for soft real-time systems in Section 9, which
has been dedicated to present other related problems.

Article Organization. The rest of this article is organized as follows: Sec-
tion 2 presents the main system models adopted in the literature. Section 3 details
the proposed taxonomy for the various algorithms under consideration. Section 4
introduces the DVFS algorithms for uniprocessor real-time systems, whereas Section 5
discusses the relevant DPM algorithms. Section 6 considers the integrated algorithms
that combine both DVFS and DPM approaches. Section 7 introduces the algorithms
for multiprocessor systems with independent frequencies, whereas Section 8 presents

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:3

the integrated solutions for multiprocessor systems based on voltage islands. Section 9
presents an overview of other problems related to energy management in real-time
systems. Section 10 concludes the survey with final remarks.

2. MODELS

This section presents the most relevant models used in the literature for the design
and analysis of energy-aware scheduling algorithms. Specifically, Section 2.1 overviews
various power models, and Section 2.2 presents the computational workload models.

2.1. Power Model

The power consumption of a single active gate in CMOS technology has been mod-
eled accurately in the literature [Chandrakasan et al. 1995]. Specifically, the power
consumption Pgate of a gate is a function of the supply voltage V and clock frequency:

Pgate = αCLV 2 f + αV Ishort + V Ileak, (1)

where CL is the total capacitance driven by the gate, α is the gate activity factor (i.e.,
the probability of gate switching), Ishort is the current between the supply voltage and
ground during gate switching, and Ileak is the leakage current, which is independent of
the actual frequency and system activity. The three components of the sum in Equa-
tion (1) correspond to dynamic, short circuit, and static power components, respectively.

In essence, the dynamic power is the power required to load and unload the out-
put capacitors of the gates. Unlike the dynamic component, the short circuit current
Ishort depends on the temperature, size, and process technology. The leakage current
is a quantum phenomenon where mobile charge carriers (electrons or holes) pass by
tunnel effect through an insulating region, leading to a current that is independent
from switching activity and frequency. That dissipation is due to three causes: gate
leakage (from gate to source losses), drain junction leakage (losses in the junctions),
and subthreshold current (from drain to source losses).

In Equation (1), the two variables that do not depend on the physical parameters
are the supply voltage V and the clock frequency f . However, they are not completely
independent, because the voltage level limits the highest frequency that can be used:
the lower the voltage, the higher the circuit delay. Specifically, the circuit delay is
related to the supply voltage V by the following equation:

circuit delay = V
(V − VT)2 , (2)

where VT denotes the threshold voltage, which is defined as the minimum voltage
needed to create a channel from drain to source in a MOSFET transistor.

In the literature, the processor is assumed to be able to dynamically scale the clock
frequency f in a given range [fmin, fmax]. Often, the analysis is performed by replacing
the clock frequency by the processor speed s, defined as the normalized frequency
s = f/ fmax, so that the maximum processor speed is considered as smax = 1.0. In some
work, the speed range is assumed to be continuous (for processors where the frequency
can be varied with a fine granularity), whereas other works consider a discrete set of
k frequencies { f1, . . . , fk}, based on the observation that current processors typically
offer a small number of discrete frequency levels.

To characterize the power consumption P(s) of the system as a function of the pro-
cessor speed, one of the most general formulations has been proposed in Martin and
Siewiorek [2001]:

P(s) = K3s3 + K2s2 + K1s + K0. (3)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:4 M. Bambagini et al.

The K3 coefficient expresses the weight of the power consumption components that vary
with both voltage and frequency. The second-order term (K2) captures the nonlinearity
of DC-DC regulators in the range of the output voltage. The K1 coefficient is related to
the hardware components that can only vary the clock frequency (but not the voltage).
Finally, K0 represents the power consumed by the components that are not affected by
the processor speed.

Another variant of Equation (3) used in the literature (e.g., Zhu and Aydin [2009]) is

P(s) = Pind + Pdyn(s), (4)

where the power dissipation is explicitly divided into static (Pind) and dynamic (Pdyn(s))
power components. Pind is assumed to be independent of the system speed, and Pdyn is
assumed to be a polynomial function of the speed s. In some work [Pillai and Shin 2001;
Aydin et al. 2001], such a polynomial function is assumed to be equal to P(s) = β · sα,
where (2 ≤ α ≤ 3).

A more specific power model adopted in Bini et al. [2009] considered the set of
operating modes supported by the processor. Each mode is described by the fre-
quency f , the lowest voltage V that supports that frequency level, and the corre-
sponding power consumption. To some extent, Martin’s equation can be considered a
generalization of this model, as it provides an interpolation of the various operating
points on an ideal processor where the speed/voltage can be adjusted in a continuous
manner.

Switching from one speed level to another one involves both a time and energy
overhead. These overheads depend both on the original and final speed levels [Xu et al.
2007; Mochocki et al. 2007]. When scaling the speed, the execution is suspended and
the overhead is mostly due to the time required to switch the crystal on and/or adjust
the Phase-Locked Loop (PLL). Generally, the wider the difference between the two
frequencies, the higher the introduced overhead. In this article, we use the notation
μs1→s2 to denote the time overhead when transitioning from the speed level s1 to the
speed level s2.

An additional feature provided by almost all the current processors is the ability to
switch to low-power states when the task execution is suspended. Each low-power state
σx is characterized by its power consumption (Pσx) and the time and energy overheads
involved in entering and exiting that state, denoted as δs→x, δx→s, Es→x, and Ex→s,
respectively. For the sake of simplicity, we use the overall time and energy overheads
associated with the low-power state σx, namely, δx and Ex, as the sum of the initial and
final transition overheads. In general, the “deeper” a low-power state, the lower the
power consumption is, but also the higher time and energy overheads involved in the
transition. An exhaustive analysis of the low-power states in actual architectures has
been undertaken by Benini et al. [2000].

Considering the time and energy overheads involved in transitions to low-power
states, there is, in general, a minimum time interval that justifies switching to a
specific low-power state; this is because, if the system returns to an active state too
quickly, the energy overhead of the transition would offset the power savings of the
low-power state. Consequently, the parameter Bx, referred to as the break-even time,
corresponds to the length of the shortest idle interval that must be available in the
schedule to effectively exploit the sleep state σx. Specifically, Bx is the maximum of the
time required to perform a complete transition and the minimum idle time length that
can amortize the switching energy [Quan et al. 2004; Zhao and Aydin 2009]:

Bx = max
(

δx,
Ex − δx · Pσx

Pref − Pσx

)
, (5)

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:5

Fig. 1. An example with two low-power states.

where Pref is the power consumption of the processor in a default state when tasks
do not execute. For instance, Pref can be a particular inactive state that requires
a negligible transition overhead, or, in case the processor is kept active during idle
intervals, it may be the power consumption at the minimum speed level.

Different low-power states are characterized by different parameters. Figure 1 il-
lustrates two different state transitions. The first case illustrates a low-power state
σ1 with a medium power consumption and a relatively short break-even time. On the
other hand, the second low-power state σ2 guarantees the lowest power consumption
but introduces a significant temporal overhead from active to sleep and back to active.
Finding the most suitable low-power state depends on the length of the available idle
interval, which, in turn, is determined by the timing constraints.

Different solutions have been proposed to provide DVFS capabilities to multicore
processors. In particular, they can be distinguished based on the capability of setting
the clock frequencies independently among cores. Historically, the first platform model
considered core frequencies to be independent and has been used to analyze architec-
tures where each core is located in a dedicated chip. However, as noted by Herbert and
Marculescu [2007], the potential energy gains of such an architectural solution are not
significant enough to justify the higher design complexity of the hardware. Therefore,
in modern multicore and many-core architectures, a good tradeoff between flexibility
and complexity is obtained by grouping CPUs in voltage islands sharing the same
voltage and frequency.

2.2. Workload Model

In hard real-time systems, the computational workload is typically characterized by a
set � of n periodic or sporadic tasks {τ1, τ2, . . . , τn}. Each task τi is cyclically activated on
different input data and therefore generates a potentially infinite sequence of instances
τi,1, τi,2, . . . , referred to as jobs. The jobs of a periodic task τi are regularly separated by
a period Ti, so the release time of a generic job τi,k can be computed as

ri,k = �i + (k − 1)Ti,

where �i denotes the activation time of the first job, also referred to as the task
offset. On the other hand, in the case of sporadic task τi, the period Ti indicates the
minimum interarrival time of its jobs: ri,k+1 ≥ ri,k + Ti ∀k. A real-time task τi is also
characterized by a relative deadline Di, which specifies the maximum time interval

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:6 M. Bambagini et al.

(relative to its release time) within which the job should complete. Depending on the
specific assumptions, relative deadlines can be less than, equal to, or greater than
periods. In the most common case, the relative deadlines are equal to periods, which
is commonly called implicit-deadline task sets. Once a job τi,k is activated, the time
at which it should finish its execution is called the absolute deadline and is given by
di,k = ri,k + Di.

Each task τi is also characterized by a worst-case execution time (WCET) Ci(s), which
is a function of the processor speed. In a large body of works, WCET is considered to be
fully scalable with the speed, that is, Ci(s) = Ci/s. However, a number of research works
[Seth et al. 2003; Aydin et al. 2006] noted that this is only an upper bound, because
several I/O and memory operations are performed on devices and memory units that do
not share the clock frequency with the CPU. For instance, if a task moves data to/from
a hard disk drive, the operation depends mostly on the bus clock frequency, the hard
disk reading/writing speed, and the interference caused by other tasks accessing the
bus. To take the speed-independent operations into account, the task’s WCET can be
split into a fixed portion C f ix

i not affected by speed changes and a variable portion Cvar
i ,

which is fully scalable with the speed. Hence,

Ci(s) = C f ix
i + Cvar

i /s.

To better characterize the complexity of modern parallel applications, more detailed
task models have been proposed.

A frame-based system is composed by a task set � where all tasks τi are repeated
every frame of length D. Hence, they share the same deadline Di = D.

A more general model considers applications composed by tasks with dependencies
described as a directed acyclic graph (DAG), where vertexes represent tasks and edges
denote precedence relations among tasks.

In terms of CPU scheduling, tasks may be assigned a fixed-priority level Pi, repre-
senting the relative importance or urgency of the task with respect to the others. In
systems with dynamic priorities, the priority levels of jobs of a given task may vary
over time: for instance, with the Earliest Deadline First (EDF) policy [Liu and Layland
1973], the priorities are determined according to the absolute deadlines of the current
active jobs of the periodic tasks and hence naturally vary over time.

In most algorithms, tasks are assumed to be fully preemptive, meaning they can
be suspended at arbitrary points in favor of higher-priority tasks. Preemption sim-
plifies the schedulability analysis but introduces a runtime overhead ξ (preemption
cost) during task execution due to context switch cost, the pipeline invalidation delay,
and the cache-related preemption delay. The preemption cost is often assumed to be
constant and speed independent. On the other hand, nonpreemptive scheduling, while
characterized by negligible runtime overhead, introduces significant blocking delays
on high-priority tasks that heavily penalize schedulability.

Scheduling approaches for multicore systems can mainly be divided into two classes:
partitioned approaches, which statically assign tasks to dedicated cores and schedule
them with uniprocessor scheduling algorithms, and global approaches, where tasks
are handled through a single ready queue and can migrate between cores during their
execution. Typical algorithms belonging to such a class are the multicore extensions
of Rate Monotonic and EDF, called Global Rate Monotonic (GRM) and Global Earliest
Deadline First (GEDF), respectively.

3. TAXONOMY OF ENERGY-AWARE SCHEDULING ALGORITHMS

This section presents the taxonomy used to organize the energy-aware CPU scheduling
algorithms discussed in this survey. First, it presents the approach used to classify the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:7

Fig. 2. Taxonomy for single-core algorithms.

algorithms for platforms powered by a single-core CPU, and then it introduces the
parameters considered to cope with the extra degrees of freedom that are present in
multicore systems. Figure 2 illustrates the taxonomy for algorithms running on single-
core CPUs. They are first classified along the DVFS and DPM dimensions, based on
the primary power management technique that they use. The DVFS algorithms are
then divided according to the type of slack (the unused CPU time) that they reclaim for
scaling speed to save energy: static, dynamic, or both. Specifically, the algorithms that
exploit only the static slack consider the residual processor utilization in the worst-
case execution, whereas those that reclaim the dynamic slack take advantage of the
difference between the worst-case and the actual execution time of the jobs. In other
words, the DVFS algorithms that exploit the dynamic slack take advantage of the
runtime variability of the workload, since in practice many real-time jobs complete
earlier than their worst-case work-case finishing time.

Such a classification does not immediately apply to DPM algorithms, since, due
to their work-conservative nature, the dynamic slack is automatically accounted in
almost all the cases. Thus, they are classified as offline and online approaches. Finally,
the algorithms that use both DVFS and DPM techniques are designated as integrated
algorithms. These algorithms are further divided according to when the task speed
assignment decisions are made, that is, either offline or online.

Besides the main features considered in the proposed taxonomy and task characteris-
tics (such as periodicity and priority assignment), several algorithms are characterized
by other specific assumptions and details that will be discussed in due course. For
example, the following aspects also must be considered for the DVFS algorithms:

—Speed set: continuous versus discrete
—Computation time: fully versus partially scalable with the processor speed
—Time/energy overhead due to speed changes: accounted versus neglected

For DPM algorithms, additional features include whether they consider the state
transition overhead and whether they explicitly consider task early terminations.

When multicore technology became sufficiently reliable for the market, the CMOS
technology already presented a nonnegligible leakage current. Therefore, most of the
energy-aware scheduling algorithms for multicore systems integrate DVFS and DPM.
Even in the cases where this is not explicitly done, some issues regarding feasible
integrations are discussed, typically using slightly modified algorithms for the single-
core CPU.

The taxonomy used to classify the multicore algorithms is illustrated in Figure 3. The
main classification is made according to the flexibility in the DVFS support provided

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:8 M. Bambagini et al.

Fig. 3. Taxonomy for multicore algorithms.

by the platform. If the hardware allows setting a different frequency for each core,
the DVFS algorithms are classified as Independent Frequencies, whereas if a single
frequency is shared among a subset of cores, the algorithms are classified as Voltage
Islands. The DVFS multiprocessor algorithms for independent frequencies can be fur-
ther distinguished between approaches that assign frequencies to cores independently
of the running tasks (Per-CPU algorithms) and those that compute a frequency for
each task and use it for the core executing that task (Per-Task algorithms).

Other aspects considered for the classification are as follows:

—Task scheduling: partitioned versus global
—Order used for the DVFS, DPM, and scheduling phases

Finally, the algorithms are evaluated according to their computational complexity.

4. UNIPROCESSOR DVFS ALGORITHMS

DVFS-based algorithms rely on the system’s capability of adjusting the processor sup-
ply voltage and frequency (hence, the speed) to reduce power consumption while still
meeting the real-time constraints. Historically, such a speed scaling technique was the
first approach proposed to deal with energy management, as in CMOS circuits dynamic
power consumption was more significant than static power consumption. Most of the
early DVFS algorithms assumed a power function equal to P(s) = sα (2 ≤ α ≤ 3), im-
plicitly ignoring the leakage power. Using such a power function, the lower the speed,
the lower the consumed energy; hence, this model favors the algorithms that use the
lowest speed that can still meet the deadlines, leaving no idle intervals.

When the leakage power dissipation is not negligible (i.e., K0 �= 0 and Pind �= 0
in Equation (3) and Equation (4), respectively), scaling the system speed down also
increases the computation times and leakage energy consumption, which in turn may
increase the total energy figures. To address this issue, the concept of critical speed
(also known as the energy-efficient speed), denoted by s∗, was introduced to denote the
lowest available speed that minimizes the total energy consumption, which consists of
dynamic and static power figures [Aydin et al. 2006; Chen and Kuo 2006]. Specifically,
if we assume P(s) as in Equation (3), it becomes strictly convex, and s∗ is defined as the
lowest speed that minimizes the energy consumption per cycle, which is equivalent to
the speed value that makes the derivative of P(s)/s null.

For instance, let us consider the power function P(s) = 0.2 + 0.8s3. The derivative
of P(s)/s is δP(s)/s

δs = 1.6s − 0.2/s2, which is null for s = s∗ = 0.5, implying that scaling
the speed below 0.5 is not energy efficient. This can be easily shown by considering a
task with WCET = 10 time units while assuming that it can be executed at any speed

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:9

Table I. Sample Task Set

Task T=D (ms) C(smax) (ms) AET (smax) (ms) UWCET (smax) UAET (smax)
τ1 50 20 10, 20, 15, 12, 10, 10 0.4 0.256
τ2 100 20 15, 10, 18 0.2 0.143
τ3 150 15 12, 10 0.1 0.073

Total 0.7 0.473

∈ {0.2, 0.5, 0.7, 1.0} without missing its deadline. The relative energy consumptions for
executing the task at the different speed assignments are E(0.2) = P(0.2) ∗ 10/0.2 =
10.32, E(0.5) = P(0.5) ∗ 10/0.5 = 6, E(0.7) = P(0.7) ∗ 10/0.7 = 6.8, and E(1.0) =
P(1.0) ∗ 10 = 10. The minimum energy consumption is indeed obtained for s∗, while it
increases at both lower and higher speeds. One can see that the energy consumption
of a task is a quadratic function with global minimum at s∗. Such an analysis mini-
mizes only the energy consumption during the time intervals when tasks are executed,
because it implicitly assumes a negligible power consumption during the CPU idle
intervals.

The slack of a job refers to the CPU time that it does not use before its deadline.
Hence, the static slack available to any job of a task τi can be computed offline as
slacki = Di − Ri, where Ri is the worst-case response time of τi. At runtime, extra slack
(referred to as dynamic slack) may become available when the job completes early,
without consuming its WCET.

The DVFS solutions also can be classified as intertask and intratask algorithms.
In intertask algorithms, when a job is dispatched, it is guaranteed to execute at the
same speed level until it completes or is preempted by another (high-priority) job.
When it resumes execution (after preemption), the scheduler may readjust its speed by
considering the available slack at that time. The intertask algorithms form the majority
of the current DVFS solutions, as it requires only the information about the WCET of
the jobs and involves low runtime overhead. On the other hand, if the information about
the execution time of the job is available, in particular its probability distribution, then
there may be benefits in adjusting the job’s speed while it is in progress, at well-
determined points. This is the main idea behind the intratask algorithms [Xu et al.
2004, 2005; Shin et al. 2001], in which the job starts to execute at a low-speed level
(relying on the fact that its early completion is more likely than the worst-case scenario),
and then its speed is increased gradually at well-determined power management points
(PMPs) as it continues to execute. Thus, for each task, a speed schedule is computed
offline, showing what speed level will be assigned to its jobs during their execution, and
at what point. The intratask algorithms aim at minimizing the expected dynamic energy
consumption; however, they also require that the compiler generate code to enable the
application to make system calls to the operating system at the well-determined PMPs
during job execution, and they involve more overhead due to more frequent speed
changes.

In this section, the task set shown in Table I is used as a running example. For each
task, the Actual Execution Time (AET) of its jobs within the hyperperiod (defined as
the least common multiple of all the task periods) is reported in the AET column. Note
that the worst-case utilization of the task set at the maximum speed is equal to 0.7,
whereas its average utilization is 0.473. For the sake of simplicity, in the examples,
the speed scaling overhead and the power consumption in the idle state are considered
negligible and the processor is assumed to have five discrete speed levels: 0.2, 0.4, 0.6,
0.8, and 1.0. The power function P(s) = s3 is assumed when the processor is in the
active state. In addition, it is assumed that the task execution times scale linearly with
the processing speed.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:10 M. Bambagini et al.

Table II. Summary of DVFS Algorithms with Static Slack Reclaiming

Algo. Reference
Speed

Set C(s) Periodicity
Scaling

Overhead P(s) Scheduler Complexity
YDS Yao et al. [1995] cont. C/s aper. no sα EDF O(n log2 n)
SVS Pillai-Shin

[2001]
disc. C/s per. no βsα EDF O(n)

SVS Pillai-Shin
[2001]

disc. C/s per. no βsα RM pseudo-poly.

AMMA Aydin et al.
[2001]

cont. C/s per. no βsα EDF O(n2 log n)

ADZ Aydin et al.
[2006]

cont. x/s+y per. no Pind+
Pdep(s)

EDF O(n3)

BBL Bini et al.
[2009]

disc. x/s+y any yes op. modes EDF/RM O(2n)

AVR Yao et al. [1995] cont. C/s aper. no sα EDF O(n)
QGF Qadi et al.

[2003]
cont. C/s spor. no βsα EDF O(1)

Table III. DVFS Algorithm Summary with Dynamic Slack Reclaiming

Algorithm Reference Speed Set Periodicity

Speed
Scaling

Overhead P(s) Complexity
OLDVS Lee and Shin

[2004]
discrete aperiodic no βs3 O(1)

ZMu Zhu and Mueller
[2005]

continuous periodic no βs3 O(n)

OLDVS* Gong et al. [2007] discrete aperiodic no βs3 O(1)
LSP Lawitzky et al.

[2008]
discrete sporadic yes βs3 O(k)

BSDVFS Bambagini et al.
[2011]

discrete periodic yes βs + γ O(k)

BSDVFS* Bambagini et al.
[2011]

discrete periodic yes βs + γ O(k)

Table IV. DVFS Algorithm Summary with Both Static and Dynamic Slack Reclaiming

Algorithm Reference Speed Set Scheduler Complexity
cc-EDF Pillai and Shin [2001] discrete EDF O(n)
cc-RM Pillai and Shin [2001] discrete RM pseudo-polynomial

LA-DVS Pillai and Shin [2001] discrete EDF O(n)
DRA-OTE Aydin et al. [2004] continuous EDF O(n)

AGR Aydin et al. [2004] continuous EDF O(n)

The overall energy consumption in a hyperperiod under the EDF scheduling policy
is E = 210mJ and E = 142mJ considering the WCET and AET scenarios, respectively.

The rest of this section provides an overview of the most relevant DVFS algorithms,
divided according to the type of slack they exploit: static slack (Section 4.1), dynamic
slack (Section 4.2), or both (Section 4.3). The presented algorithms, classified according
to the slack exploitation mechanism, are summarized in Tables II, III, and IV.

4.1. Static Slack Reclaiming

One of the first papers on DVFS-based energy-aware scheduling was by Yao et al. [1995].
The paper presented three algorithms by considering aperiodic tasks, continuous CPU
speed, no speed scaling overhead, negligible power consumption during idle intervals,
and task computation times inversely proportional to CPU speed (C(s) = C/s). The

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:11

first algorithm, hereafter referred to as YDS, consists of recursive identification of time
intervals with maximum computational density (defined as the sum of CPU cycles of
the tasks with arrival and deadline within the interval, divided by the length of the
interval length). Specifically, the algorithm identifies the interval with the maximum
intensity, sets the CPU speed to the intensity value for that interval, and is recursively
reinvoked for the remaining execution intervals in the schedule. The offline algorithm
is proved to be optimal and has an O(n log2 n) complexity for n aperiodic jobs. A second
algorithm, executed online, considers jobs that may arrive dynamically. The algorithm
recomputes the optimal schedule at each arrival time considering only the new and
pending jobs. The third algorithm (AVR) sets the speed, for each instant, equal to the
sum of density of those jobs whose arrival and deadline range contains the time instant
under consideration. Although the complexity of AVR is lower than the previous optimal
approaches, deadline misses may occur. In fact, since the speed is set equal to the sum
of the worst-case utilization of the active jobs, the processor can be significantly slowed
down when there are few active tasks, so the system may not terminate the jobs by
their deadlines if additional tasks arrive.

Ishihara and Yasuura [1998] provided an analysis for synchronous frame-based real-
time tasks (with identical release time and period), proving that under their assumed
system model (no overhead and all tasks consume the same amount of energy), the
energy is minimized when each job completes just at its respective deadline. That result
implies that on a system with continuous speed/voltage, the total energy is minimized
at the speed/voltage that reduces the idle time to zero. While that result is also implicit
in the optimal YDS algorithm mentioned earlier, the main contribution of Ishihara and
Yasuura [1998] is the derivation of an important property of the systems with discrete
speed levels: when the system is constrained to use a finite set of speed/voltage, the
energy is minimized by using the two speed/voltage values adjacent to the speed value
that is optimal assuming a continuous range.

Aydin et al. [2001] proposed an optimal offline algorithm (abbreviated as AMMA
in this survey) for selecting the running speed of periodic tasks with different energy
features (e.g., due to the use of different system components, such as FPU). The paper’s
main contribution consists of showing that each task τi can execute at a constant speed
si whenever it is dispatched, without affecting the energy optimality. The paper also
proposed an algorithm with complexity O(n2 log n) to compute the optimal speed for
each task, while preserving feasibility under EDF.

Aydin et al. [2006] proposed another algorithm (referred to as ADZ) considering peri-
odic independent tasks with a more general computational model, where task execution
time includes a speed-dependent portion and a constant part, and a more sophisticated
power model with leakage power, frequency-dependent power (e.g., due to processing
core), and frequency-independent power (e.g., due to the peripherals and memory)
components. On the other hand, the speed range is continuous and the speed scaling
overhead is neglected. The authors formulated a nonlinear optimization problem with
convex constraints, where the objective is to minimize the overall energy consumption
by finding the optimal speed for each task while guaranteeing their deadlines under
EDF. The authors also showed that the problem can be solved in time O(n3) thanks to
the Kuhn-Tucker optimality conditions for this class of convex problems. The analysis
is enhanced by an online improvement that considers early task completions.

One of the earliest efforts that exclusively focused on sporadic tasks is Qadi et al.
[2003]. The algorithm proposed in the paper, abbreviated as QGF in this survey, starts
by running the task set at the lowest possible speed. When a new job is released, the
speed is increased by the task utilization (WCET divided by the minimum interarrival
time) only for an interval whose length is equal to the minimum interarrival time. The

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:12 M. Bambagini et al.

algorithm was implemented in a μC/OS-II system and tested on a real platform while
considering a continuous speed spectrum.

The problem of finding an optimal solution on a system with discrete speed levels was
discussed in Bini et al. [2009] for a set of periodic or sporadic tasks under both EDF and
Fixed-Priority (FP) scheduling policies. The authors provided a method (referred to as
BBL) to compute the optimal speed offline (first assuming a continuous speed spectrum)
and then introduced a speed modulation technique to achieve the target speed using two
discrete values. The analysis selects the pair of available frequencies that minimize the
energy consumption by also incorporating time and energy switching overheads. The
execution time consists of a part that is speed dependent and another one that is not.

Yun and Kim [2003] proved that under fixed-priority assignments, the energy-aware
scheduling problem with real-time constraints is NP-hard. Hence, the authors pre-
sented a Fully Polynomial Time Approximation Scheme (FPTAS), which, for each ε > 0,
guarantees an energy consumption that is greater than the optimal one at most by a
factor of 1 + ε. Quan and Hu [2002] presented a deadline transformation algorithm for
expressing the problem as a set of EDF-based problems, whose optimal schedules can
be computed using the method proposed by Yao et al. [1995]. Since the transformation
process is expensive, a more efficient strategy is also provided.

4.2. Dynamic Slack Reclaiming

In this section, we address the DVFS algorithms that exploit the dynamic slack, with a
summary presented in Table III. All the algorithms here considered are based on EDF
and assume that the computational times scale linearly with the speed (C(s) = C/s).

Lee and Shin [2004] proposed an algorithm (referred to as OLDVS) that accumulates
the dynamic slack due to early completions and exploits it to decrease the CPU speed
so that the current task is completed at the same time that it would complete in the
schedule with the worst-case workload. The idea was improved in Gong et al. [2007]
through the intratask algorithm OLDVS∗, which divides each job execution in two
parts: the first part is executed at a low-speed level and the speed is increased if it does
not complete by the end of the first part. This approach implicitly assumes that the
probability of completing the job in the first part is significantly higher than finishing
in the second half. Both algorithms assume a discrete set of speeds, negligible power
consumption during the idle intervals, and zero switching overhead.

Bambagini et al. [2011] extended the previous approaches by considering the switch-
ing overheads. More precisely, the enhanced algorithms (BSDVFS and BSDVFS∗) check
whether the dynamic slack is long enough to execute the next job at the desired speed,
considering the overhead for switching to the new speed and then restoring the nominal
speed (which guarantees the task set feasibility in the worst case). The two algorithms
were implemented on a real embedded platform and the experiments showed also the
negative impact of the leakage consumption on the overall energy figures.

Zhu and Mueller [2005] combined the DVFS mechanism with feedback control theory
to save energy for periodic real-time task sets with uncertain execution times. Their
approach, abbreviated as ZMu, uses a PID controller to compute the estimated exe-
cution time of the next job as a function of the difference between the actual and the
expected execution time of the previous job of the same task. The plant in the closed
control loop is represented by the EDF scheduler. The frequency/voltage selection is
greedy, as it considers the estimated execution time for the running task and WCET
for the others. Moreover, the frequency spectrum is assumed to be continuous and the
speed scaling overhead is considered negligible. It is also assumed that the CPU uses
the lowest speed level during the idle intervals.

Lawitzky et al. [2008] implemented an energy-saving algorithm (referred to as LSP)
based on the Rate-Based Earliest Deadline (RBED) framework [Brandt et al. 2003],

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:13

Fig. 4. SVS algorithm with early terminations.

which supports CPU time budget allocation and dispatching. The paper took speed
scaling overhead into account and offers a system-wide view by considering not only the
CPU but also bus and memory. The speed scaling overhead is automatically accounted
within the CPU budget assigned to each task. In addition, the authors proposed to
manage the static slack, which otherwise would be entirely allocated to non-real-time
tasks. Their proposal consists of increasing the utilization values of real-time tasks to
exploit the entire remaining static slack, even though the actual execution times are
not changed. In such a way, at runtime, the overestimated utilization is automatically
transformed into dynamic slack, which is in turn easily handled within the presented
framework.

4.3. Dynamic and Static Slack Reclaiming

In this section, we overview the DVFS algorithms that reclaim both dynamic and
static slack. The algorithms’ main features are reported in Table IV. All the algorithms
reported here consider periodic tasks whose computational times scale linearly with
the speed (C(s) = C/s). Moreover, the speed scaling overhead is considered negligible
and the power consumption is modeled by the function P(s) = β · s3.

Pillai and Shin [2001] proposed three algorithms considering both EDF and RM
scheduling policies. The first approach, referred to as Static Voltage Scaling (SVS), runs
offline and exploits only the static slack: when the system starts, the running speed is
set equal to the lowest available speed level that guarantees the task set feasibility.
Figure 4 shows the SVS execution on our example task set with early terminations.
The speed is set equal to 0.8, which is the slowest one higher than or equal to the
worst-case utilization, 0.7, consuming 90.88mJ in a hyperperiod.

Then, the cycle-conserving algorithm (cc-EDF and cc-RM) is introduced. The algo-
rithm, at every scheduling event, sets the running speed to the lowest level that guar-
antees timing constraints using the actual execution time for the completed jobs and
the WCET information for future jobs. Notice that the cc-EDF algorithm generates a
schedule identical to the SVS schedule if the actual workload is identical to the worst
case. An instance of cc-EDF execution with early completions is reported in Figure 5,
where the average execution speed is 0.684 and the overall dissipation is 70.58mJ.

The last proposed algorithm, called Look-Ahead RT-DVS (LA-DVS), runs only under
EDF and aims at further reducing the running speed of the current (earliest-deadline)
job as much as possible, while still guaranteeing the deadlines of other jobs. Hence,
although the actual speed until the next deadline can be quite low, it may be necessary
to execute future jobs at high-speed levels to meet their timing constraints, in case
the current job takes (close to) its WCET. However, this side effect is significantly
reduced thanks to frequent early task completions in practice. As shown in Figure 6,
this algorithm can be considered proactive (in contrast to cc-EDF, which is reactive), in
that it scales the speed down whenever possible and then, any task early termination

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:14 M. Bambagini et al.

Fig. 5. cc-EDF algorithm with early terminations.

Fig. 6. LA-DVS algorithm with early terminations.

further improves the energy saving. The average execution speed is 0.518, which is
slightly higher than the actual utilization, and the energy consumption is 50.04mJ.

Aydin et al. [2004] proposed three algorithms at increasing complexity and sophis-
tication levels, for periodic real-time tasks. All the algorithms assume a continuous
speed range and a negligible switching overhead. The first algorithm computes the
running speed as the utilization of the task set (similar to SVS) and it is not changed
at runtime. The algorithm works with all the scheduling algorithms that guarantee
the full utilization of the processor while guaranteeing the feasibility, such as EDF and
Least Laxity First (LLF).

The second algorithm (Dynamic Reclaiming Algorithm, DRA) uses a queue structure
called α-queue where each element contains the deadline and the remaining execution
time remi of task τi. When a task arrives, its absolute deadline and execution time at the
optimal speed are inserted in the α-queue. At every scheduling event, the remi field of
the α-queue’s head is decreased by the amount of the elapsed time since the last event.
In other words, the α-queue represents the ready queue in the worst-case schedule at
that specific time. Once a new job is about to be scheduled, its remaining execution time
is summed with the remi values in α-queue whose deadlines are less than or equal to
the task in question, and then the speed is scaled accordingly. This procedure enables
the current job to reclaim the dynamic slack of already completed higher-priority jobs,
while still ensuring it does not complete later than the instant when it would complete
in the worst-case schedule. The algorithm is improved by incorporating the One Task
Extension (DRA-OTE) technique, which, when there is only one task in the ready
queue and its worst-case completion time at the current speed falls earlier than next
scheduling event, slows the speed down to let the task terminate at the next event.
The schedule produced by DRA, associated with our running example, is reported in
Figure 7(a), giving an average speed of 0.67. In addition, the OTE feature further
improves the performance, reducing the average speed down to 0.625, as depicted

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:15

Fig. 7. DRA and DRA-OTE algorithms.

in Figure 7(b). During the hyperperiod, DRA and DRA-OTE consume 68.88mJ and
65.48mJ of energy, respectively.

The third algorithm, Aggressive Speed Reduction - AGR 1, relies on the idea that
when all the ready tasks have deadlines earlier than the next task arrival time, the
computational budget can be exchanged among those tasks without affecting the fea-
sibility. Specifically, in such a situation, the algorithm reduces the speed of the cur-
rent job by allocating some of the CPU time of other low-priority ready tasks. This
approach may force other pending tasks to execute at very high-speed levels to meet
their deadlines in some execution scenarios. To mitigate this, another algorithm (AGR-
2) is proposed, which limits the extent of the slowdown for the current task by consid-
ering the information about the average case workload.

Saewong and Rajkumar [2008] presented a framework for fixed-priority periodic real-
time tasks and batch (non-real-time) tasks. Specifically, the objective is to minimize
the energy consumption while providing enough computational capability to guarantee
reasonable response times to batch tasks without missing any deadline. The first al-
gorithm, called Background Preserving (BG-PRSV), increases the system frequency to
execute the incoming batch tasks, while the second, denoted as Background on Demand
(BG-OND), alternates the execution between a normal mode and a turbo mode (the
latter using a higher frequency) according to the pending batch workload. The speed
selection at the scheduling point involves the analysis of the available slack (both static
and dynamic) to find the lowest possible frequency that still meets the deadlines. The
proposed algorithms assume a discrete frequency range, negligible power consumption
at idle state, and cubic power function. Moreover, the effect of the limited number of
speed levels on the algorithm performance has been studied in Saewong and Rajkumar
[2003]. Several solutions have been proposed and implemented for different types of
architectures and fixed-priority periodic tasks:

—Sys-Clock (for systems with considerable speed/voltage scaling overhead): a single
(system-wide) frequency is computed and kept constant until the workload changes.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:16 M. Bambagini et al.

Table V. Summary of Offline DPM Algorithms

Algorithm Reference Periodicity
Dynamic

Slack Scheduler Offline Complexity
HSCTB1 Huang et al. [2009b] aperiodic no EDF pseudo-polynomial
HSCTB2 Huang et al. [2009a] aperiodic implicit EDF/FP pseudo-polynomial

RHS Rowe et al. [2010] periodic implicit RM O(1)
ES-RHS Rowe et al. [2010] periodic implicit RM O(1)

—PM-Clock (for systems with low-speed/voltage scaling overhead): for each task a
separate frequency is computed and the speed is adjusted at each context switch.

—Opt-Clock: a nonlinear offline optimization problem formulation is used to determine
the optimal speed for each task to minimize the overall energy consumption.

—DPM-Clock: the dynamic slack is managed at runtime and is assigned to the next
job in its entirety.

5. UNIPROCESSOR DPM ALGORITHMS

DPM-based energy management algorithms are based on the principle of putting the
processor to low-power (sleep) states at runtime. A main problem involved in DPM
research is to make sure that the transitions are beneficial in terms of energy savings,
because as explained in Section 2.1, there is a minimum time interval (called the
break-even time) that amortizes the time and energy overhead associated with each
transition. In fact, a common technique is to use the task procrastination technique,
which postpones the execution of the ready jobs as much as possible by exploiting
the system slack at that time, thereby compacting busy periods and yielding long
idle intervals. By doing so, the number of runtime transitions and overhead are also
reduced. On the other hand, utmost care must be taken to avoid the violation of the
timing constraints in real-time systems when employing the procrastination technique.

In recent years, the DPM-based techniques have received more attention compared
to the DVFS-based schemes, which previously dominated the research area. There
are several reasons for this trend. First, with increased scaling in CMOS technology,
DVFS is able to save a smaller amount of energy by reducing the dynamic energy
consumption. On the other hand, DPM techniques have been motivated by the rising
impact of leakage power in modern computing platforms, as highlighted by Kim et al.
[2003]. In addition, new processors are equipped with multiple low-power states, each
offering different energy and overhead characteristics, and give increased runtime
flexibility.

Moreover, DPM techniques can also mitigate some problems associated with the
DVFS technique as reported in the literature, including reliability degradation and
increased preemption overhead. For instance, Zhang and Chakrabarty [2003] and Zhu
et al. [2004] report that scaling down the voltage and frequency has a negative impact
on the system reliability, as it may increase the rate of transient faults by several
orders of magnitude. Another side effect of DVFS techniques has been identified by
Kim et al. [2004] as increased number of preemptions, which leads to higher runtime
overhead and higher energy consumption.

The rest of this section introduces the most common DPM approaches proposed in
the literature. The offline and online DPM algorithms are discussed in Sections 5.1 and
5.2, respectively. The respective summaries of the main features of the algorithms are
presented in Tables V and VI.

All the algorithms discussed in this section consider the break-even times for the
CPU explicitly in their analysis. Even though some papers consider only a single
low-power state, we note that their approach can be easily extended to systems with

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:17

Table VI. Summary of Online DPM Algorithms

Algorithm Reference Periodicity
Dynamic

Slack Scheduler Online Complexity
LC-EDF Lee et al. [2003] periodic implicit EDF O(n)
LC-DP Lee et al. [2003] periodic implicit RM O(1)
ERTH Awan and Petters [2011] sporadic explicit EDF pseudo-polynomial

multiple low-power states by exploiting the “deepest” inactive state with break-even
time shorter than or equal to the length of the available idle interval.

5.1. Offline DPM Algorithms

Huang et al. [2009b] proposed an offline analysis technique to devise a periodic scheme
that defines active and sleep phases for event streams. The analysis computes the
duration of the phases assuming that event arrivals are described using Real-Time
Calculus [Thiele et al. 2000]. During the active phase, the execution takes place at
the maximum speed. The sleep intervals that result from this approach are typically
shorter and more frequent than those obtained through the procrastination algorithms.
The algorithm does not consider task early terminations in the analysis. Huang et al.
[2009a] proposed an online algorithm that procrastinates job executions by considering
the pattern of arrivals observed in recent history and the ones estimated by the analysis
through the Real-Time Calculus. Unlike the first algorithm, dynamic slack is implicitly
exploited by the work-conservative nature of the algorithm. The algorithms are referred
to as HSCTB1 and HSCTB2, respectively. Standby and sleep states are considered,
assuming a negligible and nonnegligible transition overhead, respectively.

Rowe et al. [2010] presented two techniques to harmonize task periods with the aim
of clustering task executions (i.e., to combine processor idle times whenever possible).
The framework assumes a system without the DVFS feature. The first algorithm,
Rate-Harmonized Scheduler (RHS), introduces the concept of harmonizing period (TH).
The scheduler is notified by the task arrivals only at the integer multiples of the
harmonizing period. The harmonized period is computed as a function of the shortest
period. For instance, if the effective arrival time is at 3.5 and the harmonizing period
is 1, then the scheduler considers this arrival only at time 4. Since all the arrivals
are considered at integer multiples of the harmonizing period, if there is no task
to execute, then the processor can be put in sleep state until the next period. The
approach considered fixed-priority tasks whose priorities are assigned by the Rate
Monotonic policy. Although the exact schedulability can be checked by evaluating the
worst-case response time through the Time Demand Analysis, the utilization bound
for schedulability reduces to 0.5, in the general case. The second algorithm, called
Energy-Saving RHS (ES-RHS), introduces a new task with period equal to TH (highest
priority). Its computation time is evaluated by considering TH and the spare utilization.
The new task enables putting the processor to sleep state when it is invoked and when
its computational budget is longer than or equal to the break-even time. The main
advantage of ES-RHS with respect to RHS is that the idle times generated by task
early terminations extend the sleep interval in the next period. In such a way, multiple
short idle intervals can be combined to a single long interval, giving an advantage over
RHS. Two low-power states are taken into account, idle and sleep, considering a short
and long break-even time, respectively.

An example for the RHS and ES-RHS algorithms is presented in Figures 8(a)
and 8(b), respectively, considering three tasks with overall utilization U = 0.5: τ1
(C1 = 10ms and T1 = 50ms), τ2 (C2 = 15ms and T2 = 75ms), and τ3 (C3 = 15ms and
T3 = 150ms). All the algorithms harmonize periods with respect to TH = T1 = 50ms.
ES-RHS introduces the new task τs, characterized by a period Ts = TH and execution

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:18 M. Bambagini et al.

Fig. 8. RHS and ES-RHS algorithms.

time Cs = (1 − U) · Ts = 25ms. We assume a system with the following power char-
acteristics: P(1.0) = 1.0 W, Pσ = 0.2 W, Bσ = 6ms, and Eσ = 6mJ. Both algorithms
generate feasible schedules with frequent state transitions. We observe that RHS is not
always able to exploit the sleep state during idle intervals, leading to an overall energy
consumption of 208mJ. On the other hand, ES-RHS manages to exploit the sleep state
more effectively, consuming 198mJ of energy during the hyperperiod.

5.2. Online DPM Algorithms

Lee et al. [2003] proposed two leakage control algorithms for procrastinating task exe-
cutions as long as possible, to prolong and compact idle intervals, both under dynamic
(LC-EDF) and fixed (LC-DP) priority scheduling. Both algorithms assume periodic
tasks with periods equal to the deadlines and a system without DVFS feature. The
main idea behind the algorithms is to compute at each job arrival the maximum time
the job can be delayed without missing its deadline. Under EDF scheduling, whenever
the CPU becomes idle, LC-EDF computes the maximum time duration �k that the task
with the earliest arrival time (τk) can be delayed by using the following equation:

∑
i∈{1,...,n}/{k}

Ci

Ti
+ Ck + �k

Tk
= 1.

Then, the system is put to the low-power state (procrastinated) for �k time units. If
another higher-priority task τ j with absolute deadline shorter than the τk’s deadline
arrives before the end of the procrastination interval, the procedure is executed again,
by considering the length of the idle interval already elapsed, δk, and obtaining the new

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:19

Fig. 9. LC-EDF algorithm in the worst case.

value of the procrastination interval � j through the following equation:
∑

i∈{1,...,n}/{k, j}

Ci

Ti
+ Ck + δk

Tk
+ Cj + � j

Tj
= 1.

For fixed-priority systems, the authors resort to the dual priority scheme [Davis and
Welling 1995] in order to compute the length of the procrastination interval. More
precisely, the additional sleep time is computed as the minimum promotion time Yi
(relative deadline minus the worst-case response time) among the tasks in the lower run
queue. The promotion time of each task is computed statically as the difference between
its relative deadline and the worst-case response time, derived from Time Demand
Analysis. The main limitation of such an approach is that it requires a dedicated
hardware to implement the algorithms and manage sleep and wake-up operations.
Although task early terminations are not directly involved in the analysis, the work-
conserving (nonidling) nature of the algorithms can indirectly incorporate the dynamic
slack at runtime.

As an example, consider the task set with parameters C1 = 10ms, T1 = 50ms, C2 =
10ms, T2 = 100ms, C3 = 7.5ms, and T3 = 150ms. The processor’s power characteristics
are characterized by the following parameters: P(1.0) = 1.0W, Pσ = 0.2W, Bσ = 15ms,
and Eσ = 6mJ. The schedule that is generated by the LC-EDF algorithm is shown in
Figure 9. We observe that there are three idle intervals in the schedule, lasting for 40,
20, and 25ms, respectively. In addition, the overall energy dissipation is 236mJ.

Awan and Petters [2011] proposed an algorithm under EDF, called Enhanced Race-to-
Halt (ERTH), which targets dynamically monitoring and accumulating both static and
dynamic slack, in order to apply the DPM technique effectively. The authors considered
sporadic tasks with different criticality (hard, soft real-time, and best effort) and a
processor model with several low-power states. Essentially, the algorithm uses a single
counter to keep track of both static and dynamic slack. When the system is idle, the
processor is put to the deepest low-power state with break-even time not exceeding the
amount of the existing slack at that time. Similarly, if there are some ready tasks, and
the amount of available slack is longer than or equal to the break-even time, then the
processor is switched off as long as possible without causing any deadline miss. On
the other hand, if the amount of slack is less than the break-even times, the processor
executes the current workload at the maximum speed and then attempts to switch to
a sleep state when idle.

6. INTEGRATED DVFS-DPM ALGORITHMS FOR UNIPROCESSOR SYSTEMS

This section considers the algorithms that use both DVFS and DPM techniques. Specif-
ically, these integrated algorithms exploit both speed scaling and low-power states to
maximize energy savings, unlike the techniques that use only one feature.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:20 M. Bambagini et al.

Table VII. Summary of Integrated Algorithms That Compute Speed Scaling
Factors at Design Time (Offline)

Algorithm Reference Scheduler Online Complexity
CD-DVS-P Jejurikar et al. [2004] EDF O(1)
CD-DVS-P1 Jejurikar and Gupta [2004] FP O(1)
CD-DVS-P2 Jejurikar and Gupta [2004] DP O(1)

OSS Chen and Kuo [2006] RM O(n log(n))
VOSS Chen and Kuo [2006] RM O(n log(n))
BBMB Bambagini et al. [2013] FP O(1)

Table VIII. Summary of Integrated Algorithms That Compute Speed Scaling
Factors at Runtime (Online)

Algorithm Reference Dynamic Slack Scheduler Online Complexity
DVSLK Niu and Quan [2004] implicit EDF pseudo-polynomial
FPLK Quan et al. [2004] implicit FP O(1)

DSR-DP Jejurikar and Gupta [2005a] explicit EDF O(1)

The simplest solution consists of exploiting a feature when the other is not applicable
at a specific point during the execution. For example, if the available slack is shorter
than the processor’s break-even time and the jobs cannot be procrastinated, then the
system may choose to scale speed to reduce energy, while meeting deadlines. Conversely,
if there is ample slack at runtime, it is possible that the speed to exploit all the available
slack is less than the critical speed s∗. In that case, the system can scale the speed only
up to s∗ and then the processor can be put in sleep state during the remaining idle
interval. However, more sophisticated techniques give the same importance to the two
techniques, with the objective of compacting idle intervals together (to make better use
of DPM) and using speed scaling (DVFS) at appropriate levels to reduce the dynamic
energy.

We examine the integrated algorithms in two sections: in Section 6.1, we overview
the algorithms that make the speed scaling decisions offline, and in Section 6.2, we
consider those that compute the speed scaling factors online. The main features of the
offline and online algorithms are summarized in Tables VII and VIII, respectively.

As a running example in this section, we consider a periodic task set with three
tasks and the following parameters: C1 = 10ms, T1 = 50ms, C2 = 10ms, T2 = 100ms,
C3 = 7.5ms, and T3 = 150ms. For the sake of simplicity, computational times are
supposed to scale linearly with the speed (C(s) = C/s). Let us consider the following
power characteristics: P(s∗) = 1.0W, Pσ = 0.2W, Bσ = 15ms, and Eσ = 6mJ. We assume
that the critical speed for this system is s∗ = 0.5 and the task set is feasible under
Rate Monotonic (i.e., fixed) priority assignments at such a speed. Since idle intervals
are usually shorter than the break-even time (15ms), it is not possible to switch to the
sleep states during them, leading to an overall energy dissipation of 253mJ.

6.1. Offline Speed Scaling

This section discusses a number of algorithms that statically assign speed scaling
factors to individual tasks during the design (i.e., offline) phase and, at runtime, exploit
low-power states to further reduce energy dissipation. Moreover, all these algorithms
are designed for periodic real-time tasks and do not explicitly consider dynamic slack.

Jejurikar et al. [2004] proposed an approach (CS-DVS-P) based on the critical speed
analysis and task procrastination for periodic preemptive tasks executed under the
EDF scheduling policy. Offline, the algorithm first computes the lowest speed (higher
than or equal to the critical speed, s∗) that guarantees the task set feasibility. Then, the
maximum amount of time (Zi) each job of task τi can spend in the sleep state within its

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:21

Fig. 10. CS-DVS-P1 algorithm in the worst case.

period without leading to any deadline miss is evaluated using the following equation:

Zi

Ti
+

i∑
k=1

Ck

Tk
= 1.

At runtime, when there is no pending job, the processor is put in a low-power sleep
state (as deep as justified by the break-even time and available slack) until the next
job arrival. When a job arrives and the processor is still in sleep mode, an external
controller continues to keep the processor in sleep state for an additional time period
computed as the minimum of the remaining time to wake up and the precomputed
delay of the newly arriving job.

Jejurikar and Gupta [2004] extended the algorithm to fixed-priority (CS-DVS-P1)
and dual-priority (CS-DVS-P2) systems. With respect to the original algorithm given
in Jejurikar et al. [2004], only the computation of the Zi values is different, leaving the
online step the same. Moreover, the authors showed that the dual-priority scheduler
is able to guarantee longer Zi values than the fixed-priority scheduler. The resulting
schedule of CS-DVS-P1 for the task set under analysis is reported in Figure 10 while
executing the task set at the critical speed s = s∗ = 0.5. The promotion times are
Y1 = 30ms, Y2 = 60ms, and Y3 = 75ms. The schedule has two idle intervals lasting for
55 and 35ms, respectively. In a hyperperiod, the overall energy dissipation is 234mJ.

Chen and Kuo [2006] showed that the DPM part of the algorithm proposed by
Jejurikar and Gupta [2004] may lead to deadline misses; thus, they proposed two
solutions to avoid them, Online Simulated Scheduling (OSS) and Virtual OSS (VOSS).
Both algorithms consider periodic independent tasks for fixed-priority systems where
priorities are assigned according to the Rate Monotonic policy. Initially, all tasks are
assigned the lowest speed that still guarantees the feasibility, subject to the lower
bound of critical speed. OSS runs when the ready queue is empty and simulates the
execution of tasks that arrive earlier than the earliest absolute deadline, accounting for
their idle time. Then, the arrivals of those tasks are delayed for the relative accounted
time, while the processor is put in sleep mode until the first job arrival (if and only
if the available idle time is longer than the break-even time). VOSS enhances OSS
by combining the online simulation with the virtual blocking time. Specifically, in the
simulation phase, the algorithm considers as arrival time the value of ri,k+ Zi, where Zi
represents the maximum blocking tolerance that each task can afford without causing
deadline misses. Zi is computed offline through the response time analysis. In this
way, the arrivals of the tasks taken into account result in further delays than those
provided in OSS, leading to longer sleep intervals. The complexity of the online step is
due to the simulation phase, which is O(n · log(n)), while the offline computation of the
virtual blocks has pseudo-polynomial complexity. The OSS execution is illustrated in
Figure 11, while VOSS provides a schedule equivalent to CS-DVS-P1’s (Figure 10). Note

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:22 M. Bambagini et al.

Fig. 11. OSS algorithm in the worst case.

that OSS leads to three idle intervals of length 35, 25, and 30ms, while VOSS compacts
them in two longer intervals of length 55 and 35ms. In both cases, the critical speed
is used for all the tasks, since it yields a feasible schedule. The energy consumption
within the hyperperiod is 237mJ and 234mJ, respectively.

Bambagini et al. [2013] proposed an algorithm for fixed priority tasks, hereafter ab-
breviated as BBMB, which exploits the limited preemptive scheduling model [Buttazzo
et al. 2013] to further reduce energy consumption with respect to the fully preemp-
tive model. More precisely, the algorithm consists of an offline and an online step. At
design time, when the nonpreemptive regions are computed, the lowest feasible speed
(not lower than the critical speed s∗) and the minimum value among all task blocking
tolerances are both evaluated. The blocking tolerance for a task is the maximum time
interval during which a task can be blocked by lower-priority tasks. At runtime, when
the system is idle, the inactivity is extended for the minimum blocking tolerance among
all the tasks, delaying the execution of the incoming jobs and prolonging the time spent
in a low-power state.

6.2. Online Speed Scaling

In this section, we consider integrated schemes that make both DPM and DVFS deci-
sions at runtime to reduce the energy consumption of periodic real-time tasks.

Jejurikar and Gupta [2005a] extended the algorithm in Jejurikar et al. [2004] to
explicitly consider task early terminations on dynamic priority systems. The algorithm
is called Dynamic Slack Reclamation with Dynamic Procrastination (DSR-DP). The
first improvement consists of collecting unused computation times (dynamic slack) in
a Free Run Time (FRT) list, which also includes information on the priority of the task
that generated it. To prevent any deadline miss, each job can only use the dynamic
slack generated by tasks with higher or equal priority. Such additional CPU time is
partially exploited to slow down the processor speed while the job is executing and also
to extend the time spent in sleep state. Specifically, the slack distribution algorithm
primarily uses the additional slack to scale the speed down, and if the critical speed is
reached, the residual time is used to extend the sleep interval.

Niu and Quan [2004] proposed the DVSLK algorithm, which reduces both leakage
and dynamic power consumption, rather than focusing on a single component. The
algorithm considers periodic tasks scheduled by EDF. When there are ready tasks, the
algorithm selects for each task the speed that minimizes the power consumption due
to both static and dynamic energy. Conversely, when the system is idle, the algorithm
computes the latest starting time to put the system in a low-power state and postpone
task execution as long as possible without leading to a deadline miss. Since all the jobs
within the next busy period are considered, the complexity is pseudo-polynomial.

Quan et al. [2004] proposed an enhanced version (FPLK) for systems with fixed-
priority tasks. The algorithm has a significantly lower complexity than DVSLK.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:23

Basically, at design time, the algorithm computes the latest activation time for each
task, and then, when the processor is idle, it is put to the low-power state until the
first job arrival time augmented by the precomputed delay time. Although the delays
computed at design time are pessimistic, the online complexity is constant.

Irani et al. [2007] introduced two techniques for dynamic speed scaling with and
without low-power states: DSS-S and DSS-NS. DSS-NS is based on using mostly speed
scaling, while DSS-S executes the workload at the maximum speed to maximize the use
of the low-power states. Both the P(s) and P(s)/s functions are assumed to be convex
and the scheduler implements the EDF policy. An offline algorithm for DSS-S and two
online solutions for DSS-S and DSS-NS were presented. The main idea behind the
offline algorithm is to procrastinate tasks and execute them at a speed no lower than
the critical speed. Under the assumptions of convexity, the proposed offline algorithm
achieves an approximation ratio of 3 with respect to the optimal solution. However, the
overheads due to the speed scaling and state transition are not taken into account.

7. DVFS MULTIPROCESSOR ALGORITHMS

Resource management for multiprocessors has been an active research area in real-
time systems for decades. When (approximately around 2003) the ever-increasing
power densities presented the so-called power wall challenge to the designers, it be-
came clear that further increasing the clock frequency was not sustainable and further
performance improvements would have to be provided through multicore systems. This
has been accompanied by gradually increasing research activity in real-time systems
to extend the existing energy-aware scheduling results to multiprocessor platforms.

Most of the existing work in this area considers homogeneous multiprocessor systems,
although in recent years some efforts have been carried out to generalize the results
to heterogeneous systems with different characteristics. Similarly, most of the early
papers focused exclusively on dynamic power consumption and implicitly ignored the
static power while applying the DVFS technique. Gradually, the research community
incorporated the static power into the power management frameworks in various ways.

In terms of the DVFS models, early papers adopted settings with a set of processing
cores where the voltage and frequency of each processor can be configured indepen-
dently. These algorithms can be divided between those fixing a constant frequency for
each core (i.e., per-CPU DVFS) and those assigning a frequency for each task (i.e.,
per-task DVFS), as done for single-core algorithms. Algorithms belonging to the first
group are characterized by the computation of a single frequency for each processor
that is used independently of the currently running task. The other group consists of
algorithms that determine a speed for each task and adapt the CPU frequency depend-
ing on the running task. More recently, considering the implementation complexity of
the underlying hardware platforms, researchers started to explore the implications of
having a common voltage/frequency level shared by multiple cores (also known as the
voltage island framework).

In addition, the multicore platforms have driven the creation of new programming
models to exploit the full computational power provided by their architecture. Some
authors considered those programming paradigms while defining the task model. To
express code parellelism, some authors extended the classical sporadic task model by
considering tasks described by directed acyclic graphs (DAGs).

7.1. Per-CPU DVFS Multicore Algorithms

This section discusses the algorithms computing a set of fixed frequencies, one for each
core. All the algorithms consider task sets composed of periodic tasks with implicit
deadlines. Table IX summarizes the main characteristics of the presented algorithms.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:24 M. Bambagini et al.

Table IX. DVFS Algorithm Summary for Multicore Platforms with Per-Core Frequencies

Algorithm Reference Scheduler P(s)
Speed

Set
Switch

Overhead Complexity
Reservation Aydin-Yang [2003] part. EDF βs3 cont. 0 O(nm)

LA+LTF Chen et al. [2006] part. EDF βs3+γ cont. 0 O(n)
LA+LTF+FF Chen et al. [2006] part. EDF βs3+γ cont. Esw O(n)

AMBFF Zeng et al. [2009] part. EDF/FP measured disc. measured O(nmk)
GMF Moreno-DeNiz

[2012]
global

U-LLREF
βs3 disc.

δ_step
0 poly.

In one of the earliest DVFS-based multiprocessor real-time scheduling papers, Ay-
din and Yang investigated the problem of partitioning periodic real-time tasks on a
homogeneous multiprocessor platform with the eventual objective of applying DVFS
on each processor separately [Aydin and Yang 2003]. They considered only dynamic
power and ignored runtime overheads. One contribution of the paper is to show that
in the settings where each processor can be fully utilized (e.g., through EDF schedul-
ing algorithm), the most balanced partitioning is also the most energy-efficient one.
Even though partitioning a set of real-time tasks is known to be intractable for
multiprocessor systems, they showed that the problem of computing the most energy-
efficient partitioning is NP-hard in the strong sense, even for trivially schedulable task
systems with total utilization not exceeding 1. They also experimentally analyzed the
behavior of the well-known partitioning heuristics Worst-Fit, Best-Fit, and First-Fit
and concluded that the Worst-Fit heuristic generally outperforms the others.

Chen et al. [2006] presented some approximation algorithms to solve the Leakage-
Aware Multiprocessor Energy-Efficient Scheduling (LAMS) problem that aims at min-
imizing the energy required to schedule a set T of periodic tasks partitioned over m
identical processors having a continuous range of frequencies [smin, smax] and requiring
an energy overhead Esw to switch to the inactive mode. The first proposed algorithm is
called LA+LFT and works under the hypothesis of negligible energy overhead to switch
back and forth from the active mode (Esw = 0). It sorts tasks in nonincreasing order and
assigns each of them to a core using the Largest Task First (LTF) strategy. The speed of
each core is set to the sum of the utilizations of the tasks assigned to it and every core
is switched to the inactive mode as soon as it becomes idle. Then, a second algorithm is
presented for nonnegligible switching overheads (Esw �= 0) that performs a second phase
in which tasks are reassigned in order to avoid cores to execute at a speed lower than
the critical one. The new algorithm, called LA+LFT+FF, produces a partitioning using
fewer cores than the available ones, switching the unused cores to inactive for the whole
hyperperiod. Finally, they proposed an extension for both algorithms that provides fur-
ther energy reduction by procrastinating the insertion of an activated task to the ready
queue in order to merge the idle intervals and decrease the number of state switches.

Zeng et al. [2009] proposed an algorithm called Adaptative Minimal Bound First-Fit
(AMBFF) that is a polynomial-time heuristic that partitions a set of periodic tasks
over a multicore platform and sets CPU speeds. The focus of the paper is the use
of a more realistic platform model where each speed is selected from a finite set of
available frequencies and the power consumption of each one is not computed using
a mathematical model but extracted from a lookup table containing the results of a
profiling phase on the real hardware platform. The algorithm works on the reduction
of the static energy consumption assigning as many tasks as possible to a core with
the First-Fit (FF) heuristic, while the reduction of the dynamic energy is pursued
dynamically setting the bound for the heuristic to the values of the discrete speeds.
The complexity of the algorithm is O(nmk), where n is the number of tasks, m is the
number of cores in the platform, and k is the number of available frequencies.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:25

Table X. DVFS Algorithm Summary for Multicore Platforms with Per-Task Frequencies

Algorithm Reference Scheduler P(s) Speed Set Complexity
GSSR Zhu et al. [2003] global NP βs3 discrete polynomial
FLSSR Zhu et al. [2003] global NP βs3 discrete polynomial
SPA2 Lu and Guo [2011] partitioned βs3 continuous polynomial
PHD Lu and Guo [2011] partitioned βs3 continuous polynomial

FFDH rigid Xu et al. [2012] partitioned (Pi, si) discrete O(kn)
FFDH mold. Xu et al. [2012] partitioned (Pi, si) discrete O(kmn2)
DVFS-DPM Chen et al. [2013] time triggered Pdyn(s)+Psta discrete MILP solving

Unlike the other approaches previously presented in this section, the algorithm pro-
posed by Moreno and De Niz [2012], namely, Growing Minimum Frequency (GMF),
produces an optimal DVFS assignment. It considers periodic tasks that will be sched-
uled using the U-LLREF algorithm, which is an extension of the LLREF scheduling
policy [Cho et al. 2006] allowing the task set to be executed on uniform multiprocessors
with the cores running at different speeds. The approach considers uniform multipro-
cessors with a set of discrete frequencies evenly separated by a frequency step δ. The
overhead due to the speed change is avoided because the frequency is fixed offline
and the static power consumption is considered negligible; thus, no DPM support is
provided. The GMF algorithm starts by sorting the tasks in nonincreasing order of uti-
lization and all the frequencies are set to the minimum one. The algorithm evaluates a
set of i tasks running on i cores, where the values of i start from 1 and grow up to the
number of processors (m). The utilization of the i tasks is compared with the sum of the
i frequencies and, in case it is greater, the slowest core is incremented with steps δ till
the cores can accommodate the task set. If all the i cores reach the maximum frequency
before satisfying the condition, then the task set is infeasible; otherwise, i is increased
by one. When the value of i reaches the number of cores m, the last round is executed
considering all the n tasks. This methodology allows maintaining the complexity of the
algorithm polynomial.

7.2. Per-Task DVFS Multicore Algorithms

This section presents DVFS algorithms for uniform multicore platforms that exploit
the flexibility of the power management infrastructure to assign a frequency computed
offline for each task. Table X summarizes the main characteristics of the presented
algorithms

Zhu et al. [2003] proposed one of the first approaches for multicore systems that
considers a large number of characteristics of the platforms and the typical applica-
tions running on it. In particular, it proposes the support for a frame-based task set
with a common implicit deadline among all tasks, and precedence constraints in tasks’
execution. The task set is scheduled in a global fashion and tasks are executed nonpre-
emptively. Regarding the energy model, the paper considers a negligible static power
and thus proposes algorithms addressing only the DVFS method, which is compatible
with the weight of dynamic power with respect to the static one when the paper was
written. Nevertheless, the authors added some remarks about when it is possible to
put the system in sleep state, thus enabling the integration of a DPM mechanism.
The proposed approaches are first presented for a continuous frequencies range and
negligible switching overhead, and then extended to address a more realistic scenario
of discrete speeds and nonnegligible frequency switch overhead. The first proposed
algorithm is called Global Scheduling with Shared Slack Reclamation (GSSR) and is
invoked every time a new frame starts or when a task ends its execution on a proces-
sor. It computes the minimum speed used to execute the selected task without missing
the deadline for the current frame. This mechanism automatically includes in the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:26 M. Bambagini et al.

computation all the slack from tasks that have already terminated the job for the cur-
rent frame, while maintaining a polynomial complexity. Then, the authors propose the
First-order Scheduling with Shared Slack Reclamation (FLSSR), which extends GSSR
by considering the precedence constraints between tasks of the same frame. This is ob-
tained by taking into account tasks that are released but not yet in the ready queue due
to precedence constraints and executing the algorithm also when a task is unblocked
and enters the ready queue.

Lu and Guo [2011] proposed two DVFS algorithms to deal with energy management
in multiprocessor platforms. The authors assume to deal with split tasks, that is, tasks
consisting of subtasks that must be executed sequentially but that can be allocated
to different cores. Such a task model is useful to overcome the performance limitation
of partitioned scheduling approaches in the presence of tasks with a high utilization
factor. Split tasks are periodic with implicit deadlines and are scheduled using Deadline
Monotonic. Energy is saved by applying DVFS before or after partitioning split tasks.
The resulting algorithms extend the approaches called SPA2 proposed by Guan et al.
[2010] and PDMS_HPTS_DS (PHD) presented by Lakshmanan et al. [2009].

Xu et al. [2012] proposed an algorithm to deal with the problem of energy man-
agement on multicore platforms of parallel tasks. The authors address frame-based
tasks with an implicit deadline. For each task, the level of parallelism can be fixed
(rigid task) or decided at each job activation (moldable task). In terms of energy model,
the paper considers processors with a set of discrete frequencies with a lookup table
to store the power consumption related with each speed. For both types of task, an
integer linear programming (ILP) formulation and an efficient heuristic are proposed
to find a valid solution. In the case of rigid tasks, the heuristic has two steps: in the
first step, tasks are allocated using an efficient level-packing algorithm (e.g., First Fit
Decreasing Height, Best Fit Decreasing Height, Next Fit Decreasing Height), and then
the proposed algorithm iterates through the available frequencies for all cores till it
finds the set minimizing the total energy consumption. The complexity of the algorithm
is O(kn), where n is the number of tasks and k is the number of available frequencies.
Dealing with moldable tasks requires computing the level of parallelism for each task,
and this is done through a heuristic able to reduce the complexity from exponential to
linear with respect to the number of tasks (n) and cores (m). For each possible solution,
the algorithm for the rigid task is executed; thus, the total complexity of the approach
is O(kmn2).

Chen et al. [2013] presented an approach based on mixed integer linear programming
(MILP) to perform an optimization of DVFS and DPM at the same time. The approach
manages groups of applications, each one composed by a set of tasks with precedence
constraints described using a direct acyclic graph (DAG) characterized by a common
implicit deadline. The considered energy model takes into account the different sources
of power consumption, a set of discrete frequencies, and time/energy overhead. In par-
ticular, the relative dynamic power consumption is computed using the model proposed
by Martin and Siewiorek [2001]. Regarding the static power consumption, the model
takes into account the time tsw and the energy Esw to switch between active and sleep
mode, also computing the break-even time tBET to discriminate when it is worth per-
forming such a switch. The main contribution of the paper is the characterization of
the idle intervals for the MILP formulation, thus optimizing both DVFS and DPM. To
reduce the search space for the solver, the authors presented a technique called “Exe-
cution Windows Analysis,” able to reduce the set of tasks composing an idle interval to
those that are actually present in the interval under analysis. The algorithm produces
as output the time-triggered schedule for the application together with the execution
frequency for each task.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:27

Table XI. DVFS Algorithm Summary for Multicore Platforms with Global Frequency

Algorithm Reference Scheduler P(s)
Speed

Set Complexity
CVFS* Devadas and Aydin [2010] partitioned EDF βs3 + γ cont. O(m)

SFA Pagani and Chen [2014] partitioned EDF βsα cont. O(m)
milp Gerards et al. [2014] time triggered β1sα +β2s+γ cont. MILP solver
milp Srinivasan and Chatha [2007] partitioned (Pi, si) disc. MILP solver

LPPWU Srinivasan and Chatha [2007] partitioned βsα cont. polynomial

8. MULTIPROCESSOR DVFS ALGORITHMS BASED ON VOLTAGE ISLANDS

The platform flexibility exploited by the algorithms presented in the previous section is
not without cost. Herbert and Marculescu [2007] showed that the hardware complexity
needed to provide independent DVFS to each core exceeds the advantages in terms of
energy reduction in modern VLSI architectures. On the other hand, having a single
frequency for all cores does not allow exploiting a significant part of the unused energy,
as shown in Funaoka et al. [2008]. A tradeoff solution adopted in current multicore
platforms is to use voltage islands, which are groups of cores sharing the same voltage
and frequency. This section presents some energy management algorithms that use
single-frequency and single-voltage islands. Table XI summarizes the main character-
istics of the presented algorithms.

Devadas and Aydin [2010] presented an approach to reduce power consumption
on a chip-multiprocessor (CMP) characterized by multiple sleep states and a single-
frequency DVFS common to all cores. The proposed solution consists of an offline and
an online phase. The first part computes the optimal number of processing cores and
the allocation of tasks to cores. The runtime support dynamically recomputes the actual
working frequency and determines which idle cores can be temporally put in a sleep
state without jeopardizing timing constraints. The proposed algorithms deal with a
set of periodic tasks with implicit deadlines and schedule them in a partitioned way
using preemptive EDF on each core. Regarding the power model, the authors consider a
cubic dynamic power consumption and the static one. To determine the number of active
cores and the task-to-core allocation, the authors present three different algorithms
based on the Worst-Fit Decreasing (WFD) allocation. Sequential-Search (SS) explicitly
computes the energy cost obtained by WFD for each value of the number of cores,
from the minimum feasible one up to m, and selects the one with the lowest energy.
Instead, Greedy Load Balancing (GLB) and Threshold-based Load Balancing (TLB)
execute SS only one time for m cores and then reduce the number of active cores by
shifting some tasks to other cores. The authors then present the Coordinated Voltage
and Frequency Scaling (CVFS) algorithm that recomputes the working frequency at
each scheduling point and core state transition setting it equal to the minimum among
the actual utilizations of all active cores and the global critical frequency, which is the
minimum frequency below which the benefits of DVFS are overwhelmed by the impact
of static power consumption. An extension that exploits task early completions is also
proposed, namely, CVFS*, and the complexity of both algorithms is shown to be O(m).

Pagani and Chen [2014] proposed an algorithm called Single Frequency Approxima-
tion (SFA) that is executed after task partitioning and computes the minimum fixed
frequency that guarantees the task set schedulability. The approach considers a set of
periodic tasks with implicit deadlines that have been statically partitioned among the
mavailable cores and are scheduled using the Earliest Deadline First (EDF) algorithm
on each core. The energy model considers both static and dynamic power consumption
and can be integrated with most of the single-core DPM algorithms managing nonneg-
ligible time and energy overhead to switch from active to sleep states. The algorithm

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:28 M. Bambagini et al.

sets the working speed as the minimum among the utilizations of the mgroups of tasks
partitioned to the m cores. Tasks’ early completions can be handled by the approach
proposed by Devadas and Aydin [2010] for the CVFS* extension. The paper focuses
on the analysis of the SFA approach in terms of approximation factor under different
hypotheses with respect to the optimal energy consumption in the hyperperiod.

Gerards et al. [2014] presented a new approach to determine the optimal clock
frequencies and the schedule to minimize energy consumption. Their algorithm con-
siders frame-based tasks with a common implicit deadline and manages precedence
constraints between tasks. The approach considers both static and dynamic power con-
sumption with negligible overhead to switch from active to sleep state. The paper first
analyzes the energy consumption as a function of the level of parallelism, then shows
how to compute the optimal frequencies for a given schedule. Later on, the authors
present the weighted makespan criterion, which is used to compute both the schedule
and the frequencies at the same time.

Srinivasan and Chatha [2007] proposed an approach based on an MILP formulation
to optimize energy consumption using DVFS, DPM, and loop unrolling. The authors
presented three more variants of the initial formulation in order to reduce its com-
plexity in exchange for a small worsening in the quality of the solution. The approach
considers tasks with precedence constraints modeled as a direct acyclic graph (DAG).
The energy model includes discrete frequencies and multiple sleep states with a state
graph diagram modeling time and energy costs for every transition. The paper also
proposes one heuristic to find an approximated solution in polynomial time using some
deterministic approaches or a simulated annealing one. The proposed methods are
tested using some multimedia application as a testbench.

9. RELATED PROBLEMS

This survey primarily focused on scheduling algorithms that target minimizing energy
on uniprocessor and multiprocessor hard real-time systems. In this section, we briefly
discuss some other problems with additional objectives and related research efforts.

An interesting problem is related to the joint scheduling of real-time and non-real-
time tasks, where the goal is to minimize the overall energy consumption while guar-
anteeing real-time constraints and reducing the response time of non-real-time tasks.
As in the case of real-time tasks, reducing response times of non-real-time tasks, in
general, conflicts with the energy-saving objective. Aydin and Yang [2004] investigated
the impact of speed scaling decisions on the responsiveness of non-real-time tasks and
energy consumption while still meeting the timing constraints of hard real-time tasks.
Saewong and Rajkumar [2008] proposed to exploit the available slack time to execute
non-real-time tasks at the maximum speed to minimize their response time. Huang
et al. [2014] formally formulated the minimization problem as a convex program, inte-
grating DVFS with the EDF-VD scheduling technique, to show how the solution space
can be reduced. Then, an optimal algorithm was provided.

Another problem investigated in the literature concerns energy management for soft
real-time tasks. The problem has been addressed in the context of both single-core
[Sharma et al. 2003; Wu et al. 2007] and multicore [Wang and Lu 2008; Chen et al.
2011] platforms.

The energy-aware scheduling of tasks that share resources accessed in nonpreemp-
tive fashion is another important problem that was addressed in Lee et al. [2007] and
Jejurikar and Gupta [2005b].

A more general energy-aware coscheduling problem includes both the CPU and de-
vices in the analysis. Devices are typically considered speed independent, providing
low-power states and requiring nonpreemptive access [Devadas and Aydin 2008; Yang
et al. 2007]. Other authors considered the problem of coscheduling tasks and messages

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:29

[Yi et al. 2009; Marinoni et al. 2011]. The problem has also been addressed in the
context of multicore systems [Gerards and Kuper 2013].

10. CLOSING REMARKS

This survey presented an overview of the state-of-the-art algorithms that addressed
energy-aware scheduling in real-time systems on uniprocessor and multiprocessor plat-
forms. Besides the relevance of each individual solution, the survey showed how the
real-time support has evolved to address new capabilities and challenges due to the
technological innovations.

The presented algorithms have been classified based on their primary energy man-
agement technique (DVFS or DPM) and the basic assumptions made on the system/
power model. In general, DVFS algorithms are more effective on processors in which a
significant energy reduction can be achieved at low clock frequencies, whereas DPM al-
gorithms work better on systems in which the energy consumption is primarily reduced
by putting the processor in low-power states as long as possible and then executing
the workload at the maximum speed. Hybrid approaches that combine both techniques
have also been discussed.

Considering that the effectiveness of the discussed algorithms depends on a large
number of assumptions and characteristics of the hardware and software components,
ranking the presented solutions based on a quantitative evaluation would be mis-
leading, incomplete, and unfair. On the other hand, considering a number of different
platforms, as already done in Saha and Ravindran [2012] and Bambagini et al. [2014],
would be very limiting and not exhaustive, because some solutions are tailored on very
specific hardware features. For such reasons, we opted for a more general assessment of
the basic methodologies, providing a set of best practices that can serve as a guideline
for the users in the selection of the most suitable approach.

Intuitively, DVFS algorithms should be considered whenever the power model can
be described by a convex function of the speed or, more generally, whenever the energy
consumed by executing a task at a lower speed for a longer time is less than executing
it at a higher speed for a shorter time (possibly by exploiting the remaining idle time
in a low-power state). In addition, processors with high static power consumption may
favor algorithms that exploit low-power states instead of speed scaling, as speed scaling
only affects the dynamic component of the consumed power.

Even on platforms whose power model follows a cubic function of the speed, the
frequency granularity and the switching overhead may make aggressive DVFS algo-
rithms less competitive. Many DVFS algorithms consider either continuous or coarse
granularity speed ranges, and working with a smaller speed set may force the selection
of a higher frequency, with the side effect of higher energy consumptions. Although
actual processors can take advantage of coarse granularity speed ranges, the speed
scaling overhead is still significant. More precisely, since the switching overhead is
generally proportional to the difference between the actual and the new speed, ag-
gressive algorithms that attempt to exploit the deepest speed as soon as possible may
waste a significant part of the available slack time. To avoid this, designers should
check the set of available frequency/voltage levels and verify that the available idle
time is sufficiently higher than the scaling overhead.

Aggressive DVFS algorithms that reclaim most of the dynamic slack should be used
only when WCETs are much longer than the average execution times, requiring the
user to derive an execution profile of the application tasks. If the available slack is not
expected to be abundant, the performance of DVFS algorithms becomes very close to
that achievable by simply exploiting static slack. In addition, the runtime overhead of
algorithms with high computational complexity may further exacerbate this issue.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:30 M. Bambagini et al.

Conversely, DPM algorithms may work poorly if the processor break-even time is
generally longer than the available slack time. In this case, any DPM algorithm could
exploit only shallow low-power states, whereas a simple DVFS algorithm that exploits
only static slack (e.g., by setting the lowest feasible speed at the system start time)
could be more effective. Since this kind of situation cannot by detected easily, verifying
that the break-even time is no less than the static slack of the task with the shortest
period may provide a safety guard.

When dealing with multicore systems, the selection between voltage-island-based
DVFS and per-core DVFS depends on the features of the available hardware. Also,
the choice of the specific energy-aware algorithm depends on the characteristics of the
task set. Algorithms designed for independent periodic tasks cannot support parallel
programming paradigms, where tasks are subject to precedence constraints. In such
cases, energy-aware approaches providing support for DAG tasks can make a better
exploitation of the platform features. Those algorithms that produce a time-triggered
schedule based on tasks’ arrival times can fit very well with periodic applications, such
as classical control systems, but they are unsuitable for applications including sporadic
tasks characterized by a high variability in the arrival rates.

REFERENCES

Muhammad Ali Awan and Stefan M. Petters. 2011. Enhanced race-to-halt: A leakage-aware energy man-
agement approach for dynamic priority systems. In Euromicro Conference on Real-Time Systems
(ECRTS’11).

Hakan Aydin, Vinay Devadas, and Dakai Zhu. 2006. System-level energy management for periodic real-time
tasks. In Proceedings of the 27th IEEE International Real-Time Systems Symposium (RTSS’06).

Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejı́a-Alvarez. 2001. Determining optimal processor
speeds for periodic real-time tasks with different power characteristics. In Proceedings of the 13th IEEE
Euromicro Conference on Real-Time Systems (ECRTS’01).

Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mejı́a-Alvarez. 2004. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers 53, 5 (May 2004), 584–600.

Hakan Aydin and Qi Yang. 2003. Energy-aware partitioning for multiprocessor real-time systems. In Pro-
ceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03). IEEE, 9–pp.

Hakan Aydin and Qi Yang. 2004. Energy - Responsiveness tradeoffs for real-time systems with mixed
workload. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’04).

Mario Bambagini, Marko Bertogna, and Giorgio Buttazzo. 2014. On the effectiveness of energy-aware real-
time scheduling algorithms on single-core platforms. In Proceedings of the 19th Conference on Emerging
Technologies and Factory Automation (ETFA’14).

Mario Bambagini, Marko Bertogna, Mauro Marinoni, and Giorgio C. Buttazzo. 2013. An energy-aware
algorithm exploiting limited preemptive scheduling under fixed priorities. In Proceedings of the 8th
IEEE International Symposium on Industrial Embedded Systems (SIES’13).

Mario Bambagini, Francesco Prosperi, Mauro Marinoni, and Giorgio C. Buttazzo. 2011. Energy manage-
ment for tiny real-time kernels. In Proceedings of the IEEE International Conference on Energy Aware
Computing (ICEAC’11).

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A survey of design techniques for system-
level dynamic power management. Transactions on Very Large Scale Integration Systems 8, 3 (2000),
299–316.

Enrico Bini, Giorgio C. Buttazzo, and Giuseppe Lipari. 2009. Minimizing CPU energy in real-time systems
with discrete speed management. ACM Transactions on Embedded Computing Systems 8, 4 (July 2009),
31:1–31:23.

Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. 2003. Dynamic integrated scheduling
of hard real-time, soft real-time and non-real-time processes. In Proceedings of the 24th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’03).

Giorgio C. Buttazzo, Marko Bertogna, and Gang Yao. 2013. Limited preemptive scheduling for real-time
systems. A survey. IEEE Transactions on Industrial Informatics 9, 1 (2013), 3–15.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. 1995. Low power CMOS digital design.
IEEE Journal of Solid State Circuits (1995), 473–484.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:31

Gang Chen, Kai Huang, and Alois Knoll. 2013. Energy optimization for real-time multiprocessor system-on-
chip with optimal DVFS and DPM combination. ACM Transactions on Embedded Computing Systems
13, 3s (June 2013), 111:1–111:21.

Jian-Jia Chen, Heng-Ruey Hsu, and Tei-Wei Kuo. 2006. Leakage-aware energy-efficient scheduling of real-
time tasks in multiprocessor systems. In Proceedings of the 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS’06).

Jian-Jia Chen, Kai Huang, and Lothar Thiele. 2011. Power management schemes for heterogeneous clus-
ters under quality of service requirements. In Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC’11). 546–553.

Jian-Jia Chen and Chin-Fu Kuo. 2007. Energy-efficient scheduling for real-time systems on dynamic voltage
scaling (DVS) platforms. In Proceedings of the IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’07).

Jian-Jia Chen and Tei-Wei Kuo. 2006. Procrastination for leakage-aware rate-monotonic scheduling on a
dynamic voltage scaling processor. SIGPLAN Notices 41, 7 (June 2006).

Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. 2006. An optimal real-time scheduling algorithm
for multiprocessors. In Proceedings of the 27th IEEE International Real-Time Systems Symposium
(RTSS’06).

Robert Davis and Andy J. Welling. 1995. Dual priority scheduling. In Proceedings of the 16th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’05).

Vinay Devadas and Hakan Aydin. 2008. On the interplay of dynamic voltage scaling and dynamic power man-
agement in real-time embedded applications. In Proceedings of the 8th ACM International Conference
on Embedded Software (EMSOFT’08).

Vinay Devadas and Hakan Aydin. 2010. Coordinated power management of periodic real-time tasks on chip
multiprocessors. In Proceedings of the International Green Computing Conference (GREENCOMP’10).

Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki. 2008. Energy-efficient optimal real-time scheduling
on multiprocessors. In Proceedings of the 11th IEEE International Symposium on Object Oriented Real-
Time Distributed Computing (ISORC’08).

Marco E. T. Gerards, Johann L. Hurink, and Jan Kuper. 2014. On the interplay between global DVFS
and scheduling tasks with precedence constraints. IEEE Transactions on Computers 64, 6 (2014),
1742–1754.

Marco E. T. Gerards and Jan Kuper. 2013. Optimal DPM and DVFS for frame-based real-time systems. ACM
Transactions on Architecture and Code Optimization 9, 4 (January 2013), 41:1–41:23.

Min-Sik Gong, Yeong Rak Seong, and Cheol-Hoon Lee. 2007. On-line dynamic voltage scaling on processor
with discrete frequency and voltage levels. In Proceedings of the 2007 International Conference on
Convergence Information Technology (ICCIT’07).

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. 2010. Fixed-priority multiprocessor scheduling with Liu and
layland’s utilization bound. In Proceedings of the 16th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’10). 165–174.

Sebastian Herbert and Diana Marculescu. 2007. Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’07).

Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C. Buttazzo. 2009a. Adaptive dynamic
power management for hard real-time systems. In Proceedings of the Real-Time Systems Symposium
(RTSS’09).

Kai Huang, Luca Santinelli, Jian-Jia Chen, Lothar Thiele, and Giorgio C. Buttazzo. 2009b. Periodic power
management schemes for real-time event streams. In Proceedings of the 48th IEEE International Con-
ference on Decision and Control (CDC’09).

Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar Thiele. 2014. Energy efficient DVFS
scheduling for mixed-criticality systems. In Proceedings of the 14th International Conference on Embed-
ded Software (EMSOFT’14).

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. 2007. Algorithms for power savings. ACM Transactions on
Algorithms 3, 4 (Nov. 2007), 37–46.

Tohru Ishihara and Hiroto Yasuura. 1998. Voltage scheduling problem for dynamically variable voltage
processors. In Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED’98).

Ravindra Jejurikar and Rajesh Gupta. 2004. Procrastination scheduling in fixed priority real-time systems.
In Conference on Languages, Compilers and Tools for Embedded Systems (LCTES’04).

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:32 M. Bambagini et al.

Ravindra Jejurikar and Rajesh Gupta. 2005a. Dynamic slack reclamation with procrastination scheduling
in real-time embedded systems. In Proceedings of the Conference on Design Automation Conference
(DAC’05).

Ravindra Jejurikar and Rajesh Gupta. 2005b. Energy aware non-preemptive scheduling for hard real-time
systems. In Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05).

Ravindra Jejurikar, Cristiano Pereira, and Rajesh K. Gupta. 2004. Leakage aware dynamic voltage scaling
for real time embedded systems. In International Conference on Design Automation Conference (DAC’04).

Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztián Flautner, Jie S. Hu, Mary Jane Irwin,
Mahmut Kandemir, and Vijaykrishnan Narayanan. 2003. Leakage current: Moore’s law meets static
power. Transactions on Computers 36, 12 (Dec. 2003), 68–75.

Taewhan Kim. 2006. Application-driven low-power techniques using dynamic voltage scaling. In Proceedings
of the Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’06).

Woonseok Kim, Jihong Kim, and Sang Lyul Min. 2004. Preemption-aware dynamic voltage scaling in hard
real-time systems. In Proceedings of the Symposium on Low Power Electronics and Design (ISLPED’04).

Karthik Lakshmanan, Ragunathan Rajkumar, and John Lehoczky. 2009. Partitioned fixed-priority preemp-
tive scheduling for multi-core processors. In Proceedings of the 21st Euromicro Conference on Real-Time
Systems (ECRTS’09). 239–248.

Martin Lawitzky, David C. Snowdon, and Stefan M. Petters. 2008. Integrating real-time and power manage-
ment in a real system. In Operating Systems Platforms for Embedded Real-Time Applications.

Cheol-Hoon Lee and Kang G. Shin. 2004. On-line dynamic voltage scaling for hard real-time systems using
the EDF algorithm. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS 04).

Jaewoo Lee, Kern Koh, and Chang-Gun Lee. 2007. Multi-speed DVS algorithms for periodic tasks with
non-preemptible sections. In Embedded and Real-Time Computing Systems and Applications.

Yann-Hang Lee, Krishna P. Reddy, and C. Mani Krishna. 2003. Scheduling techniques for reducing leakage
power in hard real-time systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems
(ECRTS’03).

C. L. Liu and James W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20, 1 (Jan. 1973), 46–61.

Junyang Lu and Yao Guo. 2011. Energy-aware fixed-priority multi-core scheduling for real-time systems. In
Proceedings of the 17th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’11).

Mauro Marinoni, Mario Bambagini, Francesco Prosperi, Francesco Esposito, Gianluca Franchino, Luca
Santinelli, and Giorgio C. Buttazzo. 2011. Platform-aware bandwidth-oriented energy management
algorithm for real-time embedded systems. In Proceedings of the 16th IEEE International Conference on
Emerging Technologies & Factory Automation.

Thomas L. Martin and Daniel P. Siewiorek. 2001. Non-ideal battery and main memory effects on CPU
speed-setting for low power. IEEE Transactions on VLSI Systems 9, 1 (2001), 29–34.

Sparsh Mittal. 2014. A survey of techniques for improving energy efficiency in embedded computing systems.
International Journal of Computer Aided Engineering and Technology (Jan. 2014), 47:1–47:31.

Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan. 2007. Transition-overhead-aware voltage scheduling
for fixed-priority real-time systems. ACM Transactions on Design and Automated Electronics Systems
12, 2 (April 2007).

Gabriel A. Moreno and Dionisio De Niz. 2012. An optimal real-time voltage and frequency scaling for uniform
multiprocessors. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’12).

Siva G. Narendra and Anantha P. Chandrakasan. 2010. Leakage in Nanometer CMOS Technologies. Springer.
Linwei Niu and Gang Quan. 2004. Reducing both dynamic and leakage energy consumption for hard real-time

systems. In Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’04).
Santiago Pagani and Jian-Jia Chen. 2014. Energy efficiency analysis for the single frequency approximation

(SFA) scheme. ACM Transactions on Embedded Computing Systems 13, 5s (September 2014), 158:1–
158:25.

Padmanabhan Pillai and Kang G. Shin. 2001. Real-time dynamic voltage scaling for low-power embedded
operating systems. ACM SIGOPS Operating Systems Review 35, 5 (October 2001).

Ala’ Qadi, Steve Goddard, and Shane Farritor. 2003. A dynamic voltage scaling algorithm for sporadic tasks.
In Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03).

Gang Quan and Xiaobo Hu. 2002. Minimum energy fixed-priority scheduling for variable voltage processor.
In Proceedings of the International Conference on Design, Automation and Test in Europe (DATE’02).

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

Energy-Aware Scheduling for Real-Time Systems: A Survey 7:33

Gang Quan, Linwei Niu, Xiaobo Sharon Hu, and Bren Mochocki. 2004. Fixed priority scheduling for reducing
overall energy on variable voltage processors. In Real-Time Systems Symposium (RTSS’04).

Anthony Rowe, Karthik Lakshmanan, Haifeng Zhu, and Ragunathan Rajkumar. 2010. Rate-harmonized
scheduling and its applicability to energy management. IEEE Transactions on Industrial Informatics 6,
3 (2010), 265–275.

Saowanee Saewong and Raj Rajkumar. 2008. Coexistence of real-time and interactive & batch tasks in DVS
systems. In Proceedings of the Real-Time and Embedded Technology and Applications Symposium.

Saowanee Saewong and Ragunathan (Raj) Rajkumar. 2003. Practical voltage-scaling for fixed-priority RT-
systems. In Proceedings of the Real-Time and Embedded Technology and Applications Symposium.

Sonal Saha and Binoy Ravindran. 2012. An experimental evaluation of real-time DVFS scheduling algo-
rithms. In Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR’12).

Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. 2003. FAST: Frequency-aware
static timing analysis. In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS’03).

Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and Zhijian Lu. 2003. Power-aware QoS
management in web servers. In Proceedings of the 24th IEEE International Real-Time Systems Sympo-
sium (RTSS’03). 63.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. 2001. Intra-task voltage scheduling for low-energy, hard
real-time applications. IEEE Journal on Design & Test 18, 2 (March 2001), 20–30.

Dimitrios Soudris, Christian Piguet, and Costas Goutis. 2002. Designing CMOS Circuits for Low Power.
Springer.

Krishnan Srinivasan and Karam S. Chatha. 2007. Integer linear programming and heuristic techniques for
system-level low power scheduling on multiprocessor architectures under throughput constraints. VLSI
Journal Integration 40, 3 (April 2007), 326–354.

Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. 2000. Real-time calculus for scheduling hard real-
time systems. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’00),
Vol. 4.

Leping Wang and Ying Lu. 2008. Efficient power management of heterogeneous soft real-time clusters. In
Proceedings of the 29th IEEE Real-Time Systems Symposium (RTSSC’08). 323–332.

Haisang Wu, Binoy Ravindran, and E. Douglas Jensen. 2007. Utility accrual real-time scheduling under the
unimodal arbitrary arrival model with energy bounds. IEEE Transactions on Computers 56, 10 (Oct.
2007), 1358–1371.

Huiting Xu, Fanxin Kong, and Qingxu Deng. 2012. Energy minimizing for parallel real-time tasks based on
level-packing. In Proceedings of the 18th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’12).

Ruibin Xu, Daniel Mossé, and Rami Melhem. 2005. Minimizing expected energy in real-time embedded
systems. In Proceedings of the 5th ACM International Conference on Embedded Software (EMSOFT’05).

Ruibin Xu, Daniel Mossé, and Rami Melhem. 2007. Minimizing expected energy consumption in real-time
systems through dynamic voltage scaling. ACM Transactions on Computer Systems 25, 4 (Dec. 2007),
449–456.

Ruibin Xu, Chenhai Xi, Rami Melhem, and Daniel Moss. 2004. Practical PACE for embedded systems. In
Proceedings of the 4th ACM international Conference on Embedded Software (EMSOFT’04).

Chuan-Yue Yang, Jian-Jia Chen, and Tei-Wei Kuo. 2007. Preemption control for energy-efficient task schedul-
ing in systems with a DVS processor and Non-DVS devices. In Proceedings of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications.

Frances Yao, Alan Demers, and Scott Shenker. 1995. A scheduling model for reduced CPU energy. In Pro-
ceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS’95).

Jun Yi, Christian Poellabauer, Xiaobo Sharon Hu, Jeff Simmer, and Liqiang Zhang. 2009. Energy-conscious
co-scheduling of tasks and packets in wireless real-time environments. In Proceedings of the 15th IEEE
Symposium on Real-Time and Embedded Technology and Applications (RTAS’09).

Han-Saem Yun and Jihong Kim. 2003. On energy-optimal voltage scheduling for fixed-priority hard real-time
systems. ACM Transactions on Embedded Computing Systems 2, 3 (Aug. 2003), 393–430.

Gang Zeng, Tetsuo Yokoyama, Hiroyuk. Tomiyama, and Hiroaki Takada. 2009. Practical energy-aware
scheduling for real-time multiprocessor systems. In Proceedings of the 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA’09).

Ying Zhang and Krishnendu Chakrabarty. 2003. Energy-aware adaptive checkpointing in embedded real-
time systems. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE’03).

Baoxian Zhao and Hakan Aydin. 2009. Minimizing expected energy consumption through optimal integration
of DVS and DPM. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’09).

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

7:34 M. Bambagini et al.

Dakai Zhu and Hakan Aydin. 2009. Reliability-aware energy management for periodic real-time tasks. IEEE
Transactions on Computing 58, 10 (2009), 1382–1397.

Dakai Zhu, Rami Melhem, and Bruce R. Childers. 2003. Scheduling with dynamic voltage/speed adjust-
ment using slack reclamation in multiprocessor real-time systems. IEEE Transactions on Parallel and
Distributed Systems 4, 7 (2003), 686–700.

Dakai Zhu, R. Melhem, and D. Mosse. 2004. The effects of energy management on reliability in real-time em-
bedded systems. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’04).

Yifan Zhu and Frank Mueller. 2005. Feedback EDF scheduling of real-time tasks exploiting dynamic voltage
scaling. Journal on Real-Time Systems 31 (December 2005).

Received July 2014; revised April 2015; accepted July 2015

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 1, Article 7, Publication date: January 2016.

