
When we’re writing software
for real-time use or analysis,
we often need to use num-

bers that represent real parameters
such as position, velocity, angle, tem-
perature, and so on. All of these para-
meters are inherently continuous val-
ues, which means they aren’t integers.
Computers, on the other hand, are
inherently integer machines—they
don’t understand decimal points. We
thus have a mismatch between the
kinds of numbers we’d like to manipu-
late and the kinds the computer is com-
fortable with.

To handle this mismatch, most pro-
gramming languages give support for
floating-point arithmetic with built-in
types defined as real, float, double, or
equivalent type names. Most high-end
processors include floating-point hard-
ware, using either built-in commands
or separate math coprocessors.

Unfortunately, many of the smaller
CPUs that find their way into embed-
ded systems don’t include such hard-
ware. Even if the CPU vendor offers a
math coprocessor option, the coproces-
sor is a tempting target for product
cost-cutting efforts and is often elimi-
nated as a dubious economy measure.
For this reason, we sometimes find
ourselves trying to represent real num-
bers in a computer that doesn’t support
them. We can always use floating-point
software—most modern compiler ven-
dors include a floating point to accom-
modate CPUs that don’t have the nec-
essary software. But floating-point
software is notoriously slow, often
much too slow for real-time applica-
tions. What’s more, in many cases
(Microsoft Visual C++, for example),
the floating-point software is not reen-
trant and cannot be used in real-time
applications.

Real-time programmers have en-
countered this problem for years and
found fixed-point arithmetic to be a

workable if not exactly pleasant solu-
tion. Fixed point is sort of a do-it-your-
self floating point where the program-
mer specifies the scaling, exponent,
and so on, at design time rather than
execution time. In essence, we’re trad-
ing ease of programming for speed,
and real-time programmers have long
since accepted this trade as a way of
life, at least until fast floating-point
processors are universally available.

Over the past several months, we’ve
been dealing with the issues associated
with fixed-point arithmetic and ways
of implementing it on a pure-integer
machine. This month, we’re going to
see the results of our labors in action in
the form of a practical example.

As long as we’re developing fixed-
point software, we might as well make
it something useful. The example I’ve
chosen is about as practical as they
come: It’s a function to compute the
sine of an angle. In fact, we’re going to
look at two ways to implement the sine
function: one optimized for speed and
one for size. I’ll be showing you more
than one approach, because each uses
different aspects of fixed-point meth-
ods, so we get to exercise more of what
we’ve learned. Furthermore, if we’re
going to do this at all, we might as well
end up with functions that meet all
your needs, that you can pass down to

your grandchildren. One routine can’t
fill that bill, but perhaps with two, you
may never need to revisit this subject
again. Wouldn’t that be nice?

THE BASICS
We’ve already talked about how best to
represent an angle in fixed point, and
I’ve pointed out that expressing the
angle in pirads (scale B0) is best,
because the angle naturally wraps
around from 359+˚ to zero, as the inte-
ger wraps from 0xffff to 0x0000. For
this particular representation, and this
one only, we can get away with repre-
senting a number that’s seemingly larg-
er than one in B0 format, because of
the way the sign of angles behaves. In
other words, +180˚ is the same thing as
-180 ,̊ and 1.5 pirads is the same as
-0.5. The absolute value of the angle
never passes unity.

We also talked about the best scale
for the sine of an angle and agreed that
B0 would be nice, providing we agree
never to let the value reach unity. This
means we must fudge the values at
angles such as zero and 90˚, represent-
ing the actual value of 1.0 as something
just less. This slight inaccuracy at four
discrete angles is more than offset by
the extra bit of accuracy we get at the
other 65,532 possible angles. However,
the decision means we must be very,
very careful that the algorithm we use
to compute the sine can never produce
a value outside the acceptable range.

Based on these two choices of scal-
ings, we can generate the table of sine
function values shown in Table 1. Our
next challenge is to invent the software
that will generate this table, along with
the values at all intermediate angles.

THE LOOKUP METHOD
Methods to generate the sine function
include two extremes, plus a whole
continuum of methods in between. At
one end of the spectrum, we can simply

PROGRAMMER’S TOOLBOX
by Jack W. Crenshaw

Putting It Together
We’ll look at two

ways to implement

the sine function:

one optimized

for speed and

one for size.

AUGUST 1995 EMBEDDED SYSTEMS PROGRAMMING 9

PROGRAMMER’S TOOLBOX

store a table of numbers and optionally
interpolate between them. A lookup
without interpolation is, of course, the
fastest possible way to compute the
function, since it only involves access-
ing an array element.

Because the array access is clearly
the easiest, we’ll do it first. Assuming
that we have an angle expressed as a
16-bit integer, the angle will have 64K
possible values. This means that if
we’re to represent all the values exact-
ly, we’ll need to allocate 128K of RAM
for the table. Such extravagance would
have seemed out of the question a few
years ago. Today, with desktop com-
puter memories measured in mega-
bytes, it’s not so ridiculous. Still, we’re
far more likely to be willing to settle
for an approximation that uses only,
say, 1024 addresses or 2048 bytes.

First, we need to build the table. The
code in Listing 1 defines the table and
shows a function to fill the table with
values. You wouldn’t actually code this
function into a real-time system,
though, you’d use it offline to build the
table and encode it as an array of con-
stants in ROM. As you might guess,
parameter TABLE_SIZE defines the size
of the target array. Parameter SHIFT,

which must always be changed with
changes in TABLE_SIZE, tells the func-
tion how to compute the angle corre-
sponding to a given index. Parameter
BITE defines the number of counts
between table entries. Stated another
way, BITE is the angular step between
entries, measured in pirads, scaled B0.
Converting this number gives us:

BITE = 65536/1024
= 64
= 0x0040, scale B0
= 0.001953125 pirads
= 0.000621698 radians
= 0.3515625˚

Thus, we have about three steps per
degree.

Several months ago, in my column
entitled “Look It Up” (Jan. 95, pp. 13-
24), we looked at ways of approxi-
mating a general function, using table
lookups. I don’t want to rehash that
column here, but we must revisit the
techniques learned because those tech-
niques were developed for floating-
point arithmetic. We must see how they
should be modified to work with our

fixed-point arithmetic.
We learned that a table lookup con-

sists of two parts, which we might
think of as the course lookup and the
vernier correction. In the first part, we
figured out which index in the table
most closely corresponds to our input
variable. In the second part, we inter-
polated between the two nearest tabular
points. To get the index, we learned
that we must divide the input value by
the table size:

where x is the input value, Dx is the
step size in x between tabular points
(the same as our BITE), and we are sup-
posed to round i to the nearest integer.
In C code, we used the line:

int i = max(0, min(MAX_INDEX, (int)(x/delta
+ 0.5)));

The purpose of the min and max func-
tions was to limit the index to the legal
range, even if the function were given a
bogus value of x.

This process of finding i becomes
much easier in our current case. In the
first place, since trig functions repeat
as the angle goes through a full circle,
we don’t need to bother limiting the
index except, at most, to apply a mod-
ulo function. Secondly, I chose a power
of two for the number of table entries.
Since the full range of the angle is also
a power of two, in our fixed-point rep-
resentation, the division reduces to a
simple right shift:

i = x >> 6;

If we want to round the value of x, we
could add 32 before shifting. More
generally:

i = (x + BITE/2) >> SHIFT;

A simple table lookup for the sine
function is shown in Listing 2. Small,
isn’t it? Fast, too. For the ultimate in
speed, you can implement it in assem-
bly language. Since the algorithm is
basically an add, shift, and indexed

i = x
Dx (1)

10 EMBEDDED SYSTEMS PROGRAMMING AUGUST 1995

TABLE 1
Fixed-point sine function.

Angle Angle, B0 Sine, B0
(degrees) (pirads)

0 0x0000 0x0000
22.5 0x1000 0x30fc
45 0x2000 0x5a82
67.5 0x3000 0x7642
90 0x4000 0x7fff

112.5 0x5000 0x7642
135 0x6000 0x5a82
157.5 0x7000 0x30fc
180 0x8000 0x0000

-157.5 0x9000 0xcf04
-135 0xa000 0xa57e
-112.5 0xb000 0x89be
-90 0xc000 0x8001
-67.5 0xd000 0x89be
-45 0xe000 0xa57e
-22.5 0xf000 0xcf04

0 0x0000 0x0000

LISTING 1
Building a table.

// number of entries in table
#define TABLE_SIZE 1024
// 16 - log2(TABLE_SIZE)
#define SHIFT 6
// step size
#define BITE (65536/TABLE_SIZE)

int sine_table[TABLE_SIZE];

void make_table(void){
for(int i=0; i< TABLE_SIZE; i++){

double ang = pi * (double)(i <<
SHIFT)/32768.0;

double sine = sin(ang);
if(sine >= 1.0)

sine = 0.99997;
if(sine <= -1.0)

sine = -0.99997;
sine_table[i] = (int)(sine *

32768.0);
}

}

12 EMBEDDED SYSTEMS PROGRAMMING AUGUST 1995

load, it will be blazingly fast.

INTERPOLATION
Because the function of Listing 2 does-
n’t use interpolation, we can expect an
accuracy equivalent only to the maxi-
mum change in an increment of
BITE/2. That difference is greatest at
x=0 and is equal to 0.003. Even that
error is not too bad; for some applica-
tions, such as computer graphics where
things must be rounded to the nearest
pixel anyway, it may be good enough.
For most applications, though, it isn’t,
and we must use interpolation to trim
up the result.

In my last column, we also learned
that the interpolation formula is:

where y is the desired output value.
The value (x - x0) is the fractional step
from the beginning of the interval. In
C, we had a simple formula for this as
well:

double dx = mod(x, delta);

Again, in our present state, things are
even simpler. Since BITE is a power of
two, the modulo function becomes a
simple masking process:

dx = x & MASK;

where, for our example:

MASK = 0x3f;

More generally:

MASK = BITE - 1

In Equation 1, the term:

is the slope. We can compute this value
from the known table entries. However,
as I pointed out in “Look It Up,” that’s
a waste of computing power. The value
of M is never going to change, for a
given table entry. Thus, we could build
a second table of slopes, and use it
rather than computing the slope at run
time.

We could build one, but we won’t,
because there happens to be an even
better approach. As we look at this
approach, it’s vitally important that you
totally understand what we’re doing
and how all the shifting and scaling
gets involved, so I’ll explain it in con-
siderable detail.

First, consider the numerator of
Equation 3. This is a simple difference
of two successive table entries. It can
be scaled the same as the entries them-
selves, which in our example is B0.
Because we’re subtracting two nearly
equal numbers, we can expect to get a
lot of zeros in the upper bits of the
words. We may be tempted to rescale
the number in the hope of gaining more
accuracy, but that would be a vain
hope, because we can’t get more accu-
racy than the subtraction gives us.
Shifting the number left to fill up the
word would only shift zeros into the
lower order bits, and there’s no advan-
tage to that. We should leave the num-
ber in its original scaling.

Next, consider the denominator of
M. This is merely the step in x between
table entries. In other words, it’s our
old friend, BITE. Not only is this num-
ber a constant for all table entries, it’s a
power of two. So we can form the ratio
by shifting again. But should we? We
shouldn’t, because shifting to the right
can only cost us precision. There’s no
advantage to that, either.

A better way to look at the math is to
rewrite Equation 1 like this:

Here, instead of computing the slope,
I’ve lumped the step size into a ratio

with x. This ratio can vary only
between zero and one, since if x were
larger than x1, we’d move to a different
index. Obviously, B0 is the right scal-
ing for such a number.

If you remember how to multiply
and divide fixed-point numbers, you’ll
recall that we should multiply them as
integers into a long result, then shift
the result right. For the product of two
B0 numbers, we should shift right 15
bits. Similarly, to divide two numbers,
we should shift left 15 bits before
dividing. Finally, to divide by BITE, we
must shift right six bits.

Now pay attention, because this is
very important: If we perform the
operations in Equation 4 in the right
sequence, we can greatly simplify the
algorithm. That sequence is neither our
first thought, to compute M, nor our
second, to compute the ratio of x steps,
but a third sequence, shown like this:

In other words, we first multiply two
numbers, then divide. In this situation,
the shifts offset each other. The last
thing we do after a multiply is to shift
right; the first thing for a divide is to
shift left. If the scales are the same, the
shifts cancel, and we can omit them.

(As an aside, the language Forth
supports this very operation, using the
operator */. To my knowledge, no other
language does this. They all should,
though I can’t imagine what the syntax
would look like in such a three-argu-
ment operation.)

Because all the numbers in our
example are scaled B0, no shifting is
necessary except for the division by
BITE, which is itself a shift. The end
result of all this discussion is that we
need only one shift, a right shift after
the multiplication. The use of a long
integer for temporary storage is not
needed, since both the differences and
the x offset will be small.

THE IMPLEMENTATION
To use this technique, we need the dif-
ference table. I’ve written a general
function to take a table of numbers and

y(x)ª y0 +
y1 - y0() x - x0()

x1 - x0
(5)

y(x)ª y0 + y1 - y0() x - x0

x1 - x0

Ê
ËÁ

ˆ
¯̃ (4)

M =
y1 - y0

x1 - x0
(3)

y(x)ª y0 +
y1 - y0

x1 - x0

Ê
ËÁ

ˆ
¯̃ x - x0() (2)

PROGRAMMER’S TOOLBOX

LISTING 2
A simple sine function.

int sine(unsigned int ang){

ang += (unsigned int)(BITE/2);

return sine_table[ang >> SHIFT];

}

14 EMBEDDED SYSTEMS PROGRAMMING AUGUST 1995

PROGRAMMER’S TOOLBOX

generate a difference table. The func-
tion is shown in Listing 3. I wrote the
function to be general-purpose because
it’s a handy thing to have in your tool-
box, and we can use it in many other
applications.

Armed with this difference table, we
can write a sine function that includes
interpolation. The result is shown in
Listing 4. Using only three lines of
executable code, it’s almost as fast as
the simpler version and much more
accurate.

How accurate? Well, I have a con-
fession to make. In “Look It Up,” I
gave you a formula for computing the
error, but it was wildly optimistic. The
correct formula is:

where Dx is measured in radians. For
our table of 1,024 points, this gives us
a maximum error of 0.000001, which
is much better than the 16-bit accuracy
we can expect from our fixed-point
representation. As a matter of fact, we
could and should reduce the table size
to 512 points, since that number still
gives us 16-bit accuracy.

We could take this approach even
further by adding second-order differ-
ences and even third-order differences,
but I see no particular need to. A high-
er order algorithm lets us reduce the
table size even further, at the expense
of slower execution time. But the
whole point of the tabular approach is
to get fast execution, and a total storage
of two kbytes seems a small price to
pay.

For the record, I’ve settled on the
algorithm in Listing 4 as the best
implementation of the sine function for
embedded systems. I hope you’ll
agree.

You may well be wondering what to
do about the cosine function. Most
applications require both functions.
The following is the cosine function, in
its entirety:

int cosine(unsigned int x){
return sine(x + 0x4000);

}

That’s it. We use an identity to con-
vert the cosine to a sine, thus avoiding
the need for a second table. If the idea
of nested function calls for a high-
speed implementation bothers you, you
can always duplicate the code of sine(),
but add the offset to x.

THE SERIES APPROACH
Having told you I’ve decided the table
lookup is a better solution than the
power series one, we’ll now look at the
power series. Because the lookup
works so well, this may seem rather
pointless, but the series approach gives
us a chance, as well as a reason, to
exercise our skills with scaling, which
is the purpose of this month’s column.
Also, the business of selecting the right
quadrant, difficult enough in floating
point, can be really tricky in fixed
point, so I wouldn’t feel I had given
you the whole story without covering
both approaches.

The sine function can be computed
from its Taylor series:

The corresponding series for the cosine
is:

As you can see, the two series have the
same form, except that the sine func-
tion contains only odd terms, and the
cosine function contains even ones.
Though we’re seeking a function for
the sine here, we’ll find that we need
both series. That’s because we must
truncate the series to a few terms each,
to get reasonable performance.

Theoretically, the terms in the series
continue out to infinity. In that theoret-
ical world, the series always converge
to exactly the correct answer for any
angle, even huge ones. In the real
world, however, we can’t afford to wait
while our computer evaluates and sums
an infinite number of terms. The
minute we agree to chop the series off
at some number of terms less than
infinity, we’re accepting the fact that

we now have an approximation. From
the form of the series, it’s clear that the
quality of this approximation depends
on the size of x. Thus, to keep the num-
ber of terms small, we must limit the
range of x.

We can calculate how many terms
we’ll need for a given range and accu-
racy. To a good (and conservative)
approximation, the error caused by
truncating the series is equal to the size
of the first omitted term. This term is
always of the form:

In the scaling we’ve chosen, we’d like
the error to be less than one in the low-
est order bit. For the B0 scaling we
used, the low-order bit has a weight of
1 x 2-15, so we can write the inequality
requirement:

Using the equality, we can solve this
equation for x. The results are shown in
Table 2. The even numbers correspond
to the sine series, and the odd numbers

xn

n! £ 2-15 (9)

xn

n!

cosx= 1- x2

2! + x4

4! - x6

6! + x8

8! -L (8)

sinx = x- x3

3! + x5

5! - x7

7! + x9

9! -L (7)

e max ª Dx2

8 (6)

LISTING 3
Building a difference table.

void make_diff(int table[], int
diff_table[], int n)
{

for(int i=0; i<n; i++){
int j=(i+1)%n;
diff_table[i] = table[j] -

table[i];
}

}

LISTING 4
First-order interpolation.

int sine(unsigned int ang){
int i = ang >> SHIFT;
int result = sine_table[i];
result += (diff_table[i] * (ang &

MASK)) >> SHIFT;
return result;

}

correspond to the cosine series. From
those error values, we can decide how
many terms are needed for a given
range. Those numbers are given in
Table 3. As you can see, we have quite
a bit of incentive for limiting the range;
three terms are a lot easier to handle
than eight.

LIMITING THE RANGE
The question remains, how do we limit
that range? After all, we can’t control
what angle someone gives us. We must
somehow reduce a potentially large
input angle to one that’s small enough
so the series converges well. We do it
by breaking the angle up into two
parts:

x = nq + d (10)

where q is some nice, simple angle like
45˚ or 90˚, and d is whatever’s left. This
process perfectly parallels what we did
for the table lookup case; we let the
high bits of x define the index i (now
we’re using n), and the low bits repre-
sent the “vernier correction.” In the
lookup case, that fractional angle went
into the interpolation formula. This
time, it will go into the series approxi-
mation. The double-angle formulas
give us the relationships we need:

Because q is a constant, we can tabu-
late (or otherwise represent) the func-
tions of nq, so we only need to evaluate
the series for d.

The values of the constant parts are
particularly easy if we let q = 90˚. For
this case, the functions are:

n angle sine cosine
0 0 0 1
1 90 1 0
2 180 0 -1
3 270 -1 0

The corresponding equations are:

The nice part about this choice for q is
that we only need to evaluate one
series; we only must decide which one
and what sign to attach to the result.
You can see, though, why we need both
sine and cosine series.

I’ll just mention in passing another
possibility, which is to let q = 45˚. For
n = 1, we find:

sin 45+ d() = 0.70711 cosd + sind()

cos 45+ d() = 0.70711 cosd - sind()
(14)

sin 0+ d() = sind

cos 0+ d() = cosd (13)

sin 90+ d() = cosd

cos 90+ d() = - sind

sin nq + d() = sinnq cosd +

cosnq sind (11)

cos nq + d() = cosnq cosd -

sinnq sind (12)

TABLE 2
Max range of argument.

n x, degrees No. terms

1 0.00175 1
2 0.448 2
3 3.253 2
4 9.426 3
5 18.66 3
6 30.32 4
7 43.85 4
8 58.80 5
9 74.85 5
10 91.74 6
11 109.3 6
12 127.4 7
13 146.0 7
14 164.8 8
15 184.0 8
16 203.5 9

TABLE 3
Terms needed.

angle range sine cosine
(deg)

180 8 8
90 5 6
45 4 4
22.5 3 3
11.25 2 3

22 EMBEDDED SYSTEMS PROGRAMMING AUGUST 1995

PROGRAMMER’S TOOLBOX

For this case, we must evaluate both
series, and the logic is quite a bit more
complicated, since Equation 13 still
holds when n is even. We won’t use this
option here, but you might want to file
it away for future reference. It can be
useful when very high accuracy is
needed, because it limits the range of d
to only 22.5˚.

To achieve the smallest magnitude
for q, we’d like it to vary positive and
negative around zero. This means we
should split up the angular range into
quadrants as shown in Figure 1a.
Unfortunately, simply masking the
binary word representing x doesn’t do
that; it gives us the divisions of Figure
1b. That’s easily fixed, though. We add
45˚ to the angle, split it up, and then
subtract the 45˚ again. The following
code does the job:

x += 0x2000;
int n = (x >> 14) & 0x3;
x &= 0x3fff;
x -= 0x2000;

The resulting values of n will be 0, 1, 2,
or 3, and x will be in the range
±0x2000, which is 45˚ in pirads. A
simple case statement on n gives us the
rest.

EVALUATING THE SERIES
We’ve now reduced the problem to that
of evaluating the series. We’ve already
shown the number of terms in the
series in Table 3. We’ll need three
terms for the sine and four for the

cosine. Here are the series, properly
truncated:

One caution: Never, ever evaluate
the series in this form! We don’t want
to be computing fifth powers of any-
thing, especially in fixed-point arith-
metic. The correct approach is to factor
them into Horner’s form:

For the record, the need for that fourth
term in sin x is debatable. In practice,
omitting the fourth term changes the
result at most by one in the low-order
bit. You may well decide that it’s not
worth the bother to get that extra bit.
I’m including it here, because it’s easi-
er to take things out than to put them
in.

We’re almost ready to commit to
code. However, one small bit of busi-
ness still remains. The series of
Equation 17 and Equation 18 are only
valid when x is measured in radians,
but our angle is measured in pirads. To
fix this, we must multiply the argument
by p. We have two choices. We can per-

form the conversion going in, which is
certainly the more straightforward and
easy-to-understand approach. Alter-
natively, we can combine the conver-
sion factor, which would be p2, into the
coefficients for each term. I’ve tried
this approach, hoping to save a multi-
ply or two. I see nothing to recommend
it; we end up saving no computations,
and the coefficients and scaling are
much messier.

More interesting is the issue of how
to handle the ones. Remember, we
can’t represent a “1” in B0 scale, we
can only express it as the next smaller
number, 0x7fff. We can avoid this
problem by representing the one as
0x4000 B-1, but in doing so, we lose a
bit of precision. I’ve chosen here to
represent a one by 0x7fff, the same way
we do for the limiting value of the
functions. This doesn’t seem to cause
any problems in practice; we still get
good accuracy throughout the range.

CHOOSING SCALINGS
The conversion from pirads to radians
typifies the kind of things we must deal
with in fixed-point computations, so
let’s look at it in detail. The input angle,
in pirads, is scaled B0. The value of p
is greater than two, so we must scale it
B2. In this scale:

p = 0x6488, B2 (19)

Normally, we’d expect that if we
multiply two numbers scaled B0 and
B2, the result must also be B2. But
remember, we’ve already reduced x to
a range of ±45˚ or ±0x2000. This num-
ber could be scaled B-1 and just miss-
es fitting in B-2. In fact, the product
p/4 radians is less than one and fits
nicely into a B0 scale, so that’s the way
we’ll do it. After the multiplication, we
shift right 15 bits, less the number that
the scale is being changed. Since we’re
switching from B2 to B0 scale, the
proper number of shifts is 13. The cor-
responding line of code is:

int xr = (int)(((long)x * 0x6488) >> 13);

I must apologize for the seemingly
gratuitous complexity of this line. You

sinx= x 1 - x2

6 1- x2

20 1 - x2

42()Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃
(17)

cosx = 1 - x2

2 1 - x2

12 1 - x2

30()Ê
ËÁ

ˆ
¯̃ (18)

sin x = x - x3

3! + x5

5! - x7

7! (15)

cosx = 1 - x2

2! + x4

4! - x6

6! (16)

FIGURE 1
Sectors.

can thank the C syntax for it. With a
language that supported fixed point,
we should be able to write:

xr = x * pi;

Sadly, we don’t have such a language,
and that’s that.

To complete the computation of the
series, we need the coefficients at each
step. They’re shown in Table 4. Armed
with the coefficients and the rules for
fixed-point multiplication, we can gen-
erate the code shown in Listing 5. I’ve
also included the driver functions that
reduce the angle to the proper range
and deal with the different quadrants.

You now have a complete set of
functions for generating sines and
cosines in fixed point. Tuck them into
your toolbox and enjoy them. Before
you do, however, please take the time
to read and understand them, because
that was the main reason for this exer-
cise. In particular, notice the subtrac-
tion terms. Since our ones are all
scaled B0, we must make sure that the
result of the previous multiplications
has the same scale. This is accom-
plished by shifting right more places
than would be needed just to hold the
product.

AN EASIER WAY
Before we part, I’d like to show you an
alternative implementation that’s quite
a bit simpler. In Listing 5, I deliberate-
ly showed you the classical implemen-
tation in which we multiply by coeffi-
cients representing 1/42, 1/20, and so
on. This is the way these functions have
always been done, mainly because for

most computers, division is a more
expensive operation. Many of the small
CPUs we’re likely to find in an embed-
ded system don’t even support divi-
sion. On the other hand, if we use the
division operation, we get two nice

advantages. First, since we’re dividing
by pure integers and not by fixed-point
numbers, we can use the ordinary inte-
ger division with no rescaling. This
fact alone probably makes the division
more efficient than an equivalent mul-
tiplication, followed by shift. Also, we
don’t have to typecast in two direc-
tions. Secondly, and this is important,
all scaling turns out to be B0, so we
don’t need to do strange shifts to get
things right. I think you’ll agree that
the alternative code of Listing 6 is
quite a bit cleaner and clearer than the
earlier version that uses multiplication.

This approach has the disadvantage
that we can’t tweak the coefficients
using Chebyshev polynomials (to be
covered in an upcoming column). Until
we’re ready to do that, I’m sticking
with the division approach.

Jack W. Crenshaw is a staff scientist at
Invivo Research in Orlando, FL. He
did much early work in the space pro-
gram and has developed numerous
analysis and real-time programs. He
holds a PhD in physics from Auburn
University. Crenshaw can be reached
at 72325.1327@compuserve.com.

24 EMBEDDED SYSTEMS PROGRAMMING AUGUST 1995

TABLE 4
Coefficients.

Sine
term value scale

1/42 0x6186 B-5
1/20 0x6666 B-4
1/6 0x5555 B-2

Cosine

term value scale
1/30 0x4444 B-4
1/12 0x5555 B-3

PROGRAMMER’S TOOLBOX

LISTING 6
Using division.

int _sin(int x){
int fcn;
int xr=(int)(((long)x*0x6488) >> 13);
int x2=(int)(((long)xr * xr) >> 15);
fcn = 0x7fff - x2/42;
fcn = (int)(((long)x2 * fcn) >> 15);
fcn = 0x7fff - fcn/20;
fcn = (int)(((long)x2 * fcn) >> 15);
fcn = 0x7fff - fcn/6;
return (int)(((long)xr*fcn) >> 15);

}

int _cos(int x){
int fcn;
int xr=(int)(((long)x*0x6488) >> 13);
int x2=(int)(((long)xr * xr) >> 15);
fcn = 0x7fff - x2/30;
fcn = (int)(((long)x2 * fcn) >> 15);
fcn = 0x7fff - fcn/12;
fcn = (int)(((long)x2 * fcn) >> 15);
return 0x7fff - fcn/2;

}

LISTING 5
Sine/cosine series.

int sin(int x)
{

x += 0x2000;
int n = (x >> 14) & 0x3;
x &= 0x3fff;
x -= 0x2000;
switch(n){
case 0: return _sin(x);
case 1: return _cos(x);
case 2: return - _sin(x);
case 3: return - _cos(x);
}
return 0;

}

int cos(int x){
return sin(x + 0x4000);

}

int _sin(int x){
int fcn;
int xr=(int)(((long)x*0x6488) >> 13);
int x2=(int)(((long)xr * xr) >> 15);
fcn=(int)(((long)x2 * 0x6186) >> 20);
fcn=0x7fff - fcn;
fcn=(int)(((long)x2 * fcn) >> 15);
fcn=(int)(((long)fcn*0x6666) >> 19);
fcn = 0x7fff - fcn;
fcn = (int)(((long)x2 * fcn) >> 15);
fcn=(int)(((long)fcn*0x5555) >> 17);
fcn = 0x7fff - fcn;
return (int)(((long)xr*fcn) >> 15);

}

int _cos(int x){
int fcn, xr, x2;
xr=(int)(((long)x * 0x6488) >> 13);
x2 = (int)(((long)xr * xr) >> 15);
fcn=(int)(((long)x2 * 0x4444) >> 19);
fcn = 0x7fff - fcn;
fcn = (int)(((long)x2 * fcn) >> 15);
fcn=(int)(((long)fcn*0x5555) >> 18);
fcn = 0x7fff - fcn;
fcn = (int)(((long)x2 * fcn) >> 16);
return 0x7fff - fcn;

}

	<BACK: <BACK

