
Over the last few months, we’ve
discussed rational fractions as
ways to represent irrational

numbers such as p and the golden
ratio. This topic leads to one of repre-
senting variables that are naturally
floating-point numbers, such as posi-
tion and velocity, using integers. The
motivation is simple enough: Floating-
point arithmetic tends to be slower than
integer arithmetic, sometimes much
slower. Often, it’s far slower than we
can tolerate in an embedded system.

The problem is not as severe as it
used to be. Unless you’ve been living
on Mars, you’re well aware that the
hotter chips, such as Intel’s 80486 and
Pentium and Motorola’s 68040 and
higher, have built-in floating-point
processors. Aerospace processors such
as the MIL-STD-1750A also use them,
and in some cases, the processors are
blazingly fast. The Fairchild (now
Intergraph) Clipper can perform a
floating-point multiply and add in 10
nanoseconds! Even the old numeric
processors in the 1750As were so fast
that it was often faster to convert an
integer to floating point, operate on it,
and convert it back rather than to try to
use integer arithmetic.

Back in the real world, not all of us
are using Pentiums, 486s, or 68040s.
Some of us are still programming
68HC16s or, heaven forbid, 8051s.
Heck, some of us are still program-
ming Z80s and 6502s! Even if you’re
lucky enough to get a hot chip, when
the systems engineers begin looking at
their budgets for cost, power, and
board real estate, the floating-point
unit is always an easy target. Heck, we
don’t need that, do we? The software
folks can always compensate using
software.

Someday, we will all program real-
time systems that have lightning-fast
numeric processors so entangled with
the CPU that designers couldn’t leave

them out even if they wanted to. But
for now, we have to live with the reali-
ties all real-time programmers must
deal with. The only alternative is to
represent real numbers using integer
arithmetic.

AN EASY START
Regular readers know that I like to
sneak up on new problems, starting
from very simple and familiar exam-
ples and working my way from there.
In this case, we have an excellent start
on a problem we touched on last
month: how to represent an angle and
its trigonometric functions. An angle
begins at zero and increases smoothly
through positive values until it gets to
180˚ or 2p radians. At that value, we
can think of the angle as being either
+180˚ or -180˚. The angle is the same
either way. From there, we can either
think of the angle as increasing
through ever more positive values,
such as 270˚, or decreasing through
negative values, such as -90˚.
Eventually, the angle reaches its origin
again, wrapping around to 360˚, which
is the same as zero.

Fortunately, the same behavior is
displayed by the two’s-complement

integers that computers use. The 16-bit
value 0x8000 can be thought of as
either the unsigned integer 32,768 or
the signed integer -32,768. Similarly,
0xc000 can be thought of as either
49,152 or -16,384. Continuing, we
finally reach 0xffff, which is either -1
or 65,535, depending on your point of
view. Add one to this number and
you’re back at zero.

This behavior leads us quite natural-
ly to represent an angle as a scaled
integer, with the scale factor being
whatever it takes to make the angle
wrap to zero at the same place the inte-
ger does. In this particular case, we
have absolutely no choice in the mat-
ter; only one scale factor is possible.
For a 16-bit integer, the correspon-
dence is:

360˚ <=> 65536 units

So the scale factor is:

From radians, the conversion is:

If we must, we can work out similar
scale factors for other word lengths. It’s
almost never necessary, though. An
eight-bit integer is usually too course,
giving us worse than one degree slop in
resolution. At the other extreme, a 32-
bit integer is massive overkill. With 16
bits, we have over 180 counts per
degree, so our resolution, which is the
angle change caused by a single bit
change, is less than 20 seconds of arc.
That’s the angle subtended by a quarter
held up at a distance of three football
fields. Unless you’re doing precision
navigation or pointing a telescope, that
resolution is good enough. Even if
you’d like to have more, it’s very doubt-
ful that you’ll find a sensor that can

65536
2p = 10430.378 units/radian (2

65536
360 = 182.0444444units/degree (1

PROGRAMMER’S TOOLBOX
by Jack W. Crenshaw

Integer Arithmetic
Unless you’ve been

living on Mars,

you’re well aware

that the hotter

chips have built-in

floating-point

processors.

MAY 1995 EMBEDDED SYSTEMS PROGRAMMING 11

PROGRAMMER’S TOOLBOX

give you more bits. With 32 bits, the
resolution is equivalent to 0.0003 sec-
onds of arc, which is the angle sub-
tended by a human hair seen end-on at
a distance of 11 miles. That’s overkill.

Assuming we’ll use a 16-bit number
to represent angles, we have the equiv-
alence shown in Table 1, which some
of you have seen before. The unit of
scale is sometimes called a pirad (for pi
radians), since that’s the value corre-
sponding to the full range of a signed
integer.

SCALING PIRADS
Once we have the angle in its internal
representation, we don’t need to con-
vert it. Any arithmetic we must do,
such as adding or subtracting two
angles, computing changes or rates,
and so on, can be done just as though
the angle were an ordinary signed inte-
ger. Or unsigned, for that matter.
Unfortunately, we humans like to see
angles displayed in degrees, or some-
times degrees, minutes, and seconds.

Suppose we only need to express the
angles to the nearest degree. You’ve
already seen the conversion factor in

Equation 1, but that factor is not an
integer. How do we do the conversion
if we can’t use floating point?

If you were paying attention last
month, you already know the answer.
We originally wrote the conversion as a
rational fraction. The solution is to
leave it in that form. Reduced to its
simplest form, the ratio of Equation 1
is:

To convert a number from pirads to
degrees, multiply it by 45, then divide
by 8,192 (which you can do by shifting
13 bits). The following two lines of
code show you how. We must use a
long integer to hold the intermediate
product, but the end result fits back
into an integer.

temp = (long)angle * 45;
angle = temp >> 13;

To convert the other way, simply
reverse the process:

temp = (long)angle << 13;
angle = temp / 45;

If you want to display the angle in
degrees and hundredths, just multiply
by 4,500 instead of 45. The long inte-
ger format has plenty of room for that.

What you do with the angle from
there depends on your display capabil-
ities and your needs. Most often, you’ll
want to be able to display the angle. If
your compiler supports floating point
and you can afford the size overhead
associated with loading the floating-
point library, the most straightforward
approach is simply to convert the inte-
ger value to an equivalent floating-
point one:

float f_angle = (float)temp /100;

You needn’t worry about processor
performance for this application. Since
the number is only needed for display,
we don’t really care how long it takes
to compute it. The computation can be
done at a low rate or in the background.

The worst-case situation is one in

which you must display the angle with-
out the help of the floating-point rou-
tines. Perhaps the integer and fraction-
al parts must be sent to different dis-
play devices. We can’t get too specific
here because so much depends on the
hardware configuration, but I can at
least show you how to separate out the
two parts:

temp = ((long)angle * 4500) >> 13;
if(temp < 0)

temp += 36000;
angle = temp / 100;
fraction = temp % 100;

In this case, it’s best to convert negative
angles to positive ones to avoid trouble
with the modulo function.

Displaying the number in the range
-180˚..180˚ is much trickier, because
we must handle both positive and neg-
ative values for both parts of the inte-
ger. Listing 1 shows a function that
does the job. The function returns three
values: the whole part, the fractional
part, and a separate sign flag.

What’s that you say? You need a dis-
play in degrees, minutes, and seconds?
No problem. Just use a different con-
version factor:

The reduction by the greatest common
divisor is absolutely necessary or the
intermediate product won’t fit in 32
bits. Listing 2 gives the resulting code.

SCALED INTEGERS
Now we know how to convert angles
from degrees to pirads and back and
how to display them in the degrees,
minutes, seconds format if we need to.
It’s unlikely, but marginally possible,
that you may want to convert to radians
and back, as well. (Some mathematical
operations, such as Kepler’s equation
for orbital mechanics, require the angle
to be in radians.) That’s no problem,
either, because by definition, a pirad is

k = 45
8192() *3600

= 45*225
512

= 10125
512 (4)

k = 8192
45 (3)

12 EMBEDDED SYSTEMS PROGRAMMING MAY 1995

TABLE 1
Angles in pirads.

Angle, degrees Hex equivalent

0 0000
22.5 1000
45 2000

67.5 3000
90 4000

112.5 5000
135 6000

157.5 7000
180 = -180 8000

202.5 = -157.5 9000
225 = -135 a000

247.5 = -112.5 b000
270 = -90 c000

292.5 = -67.5 d000
315 = -45 e000

337.5 = -22.5 f000
360 = 0 0000

Resolution:
1 count = 19.77 arc-sec
1 degree = 182.04444 counts

PROGRAMMER’S TOOLBOX

14 EMBEDDED SYSTEMS PROGRAMMING MAY 1995

equal to p radians. To convert from
pirads to radians, simply multiply by p.
You know by now that p can be written
as the rational fraction:

There is the small matter of scaling.
After we’ve multiplied by p, the result
will no longer fit in 16 bits. To make it
do so, we must shift right two bits. We
can do so by making the denominator 4
* 113, or 452. Thus, our conversion for
this case shoud be:

Keep in mind that we’re talking about
scaled integers. We’ve effectively
moved the decimal, or rather binary

point, to afford the best accuracy we
can get. Consider the representation of
180˚ in its pirad form. In hexadecimal
arithmetic, this number is coded as
0x8000. But 0x8000 is equal to 32,768.
Does this mean that there are 32,768
pirads in 180˚? Hardly. There’s only
one in 180˚, and only two in the whole
circle. We’ve scaled the number to get
the maximum resolution for the range
needed. We can think of this number as
a fixed-point number, with the binary
point located between bits 14 and 15,
as shown in Figure 1. Any bits above
this binary point are integer bits (in this
case, there can be only one). All other
bits represent successively larger nega-
tive powers of two as we move to the
right. The least significant bit repre-
sents 2-15 pirads, which is equivalent to
0.0055˚ or about 20 seconds of arc, as
we saw earlier.

It’s worth noting that the one non-
zero bit in Figure 1 is in bit 15, which
is normally reserved for the sign bit.
0x8000 is the numerically largest neg-
ative integer we can represent, corre-
sponding to -32,768. Again, we can
think of the angle as either a signed or
unsigned integer. As long as the angle
is measured in pirads, the distinction
doesn’t really matter, because we delib-
erately chose the scaling to make the
integers wrap around at the same point
the angles do. In general, however, this
won’t happen. For example, consider
the same number expressed in radians,
which we get by using the conversion
factor from Equation 6. When we mul-

tiply 0x8000 by this number, we get
0x6487. Because we had to shift the
binary point two places, it now rests
between bits 12 and 13, as shown in
Figure 2. We have three integer bits,
which are now displaying 3, the inte-
gral part of p. Doubling this number
should give us an angle of 2p radians.
In hex, the number is 0xc90e. This is
again correct—the high three bits rep-
resent a six and the converted value is
indeed 6.28318. That sure isn’t zero, is
it? We didn’t automatically wrap to
zero—that convenience is reserved for
the case where the angle is expressed
in (scaled) pirads, which of course is
why we chose to use that representa-
tion in the first place. For the same rea-
son, the equivalence of signed and
unsigned representations only works
for angles in pirads. In other cases, we
must either make the numbers
unsigned or leave room for a sign bit.

FIXED POINT
It’s important that you understand how
we got here. We began, you’ll recall,
with a very special kind of number, the
angle measured in pirads. We didn’t
really discuss where the binary point
was, we just chose the scaling to give
us a wraparound at 360˚. But we see
now that this representation is equiva-
lent to a number that has both integer
and fractional parts, with the binary
point located between bits 14 and 15.
For convenience, I’ll say that the bina-
ry point is located at bit 15 and leave it
up to you to understand that I mean at

k = 355
452 (6)

p = 355
113 (5)

LISTING 2
Conversion to degrees, minutes, and
seconds.

void dms(int angle, int & deg, int &
min, int & sec){
long temp = (long)angle * 10125;
temp >>= 9;
if(temp < 0)

temp += (long)360 * 3600;
deg = temp / 3600;
temp %= 3600;
min = temp / 60;
sec = temp % 60;

}

FIGURE 1
One pirad.

FIGURE 2
One radian.

LISTING 1
Angle formatting.

void to_degrees(int angle, int & sign,
int & whole, int & fraction){
long temp = (long)angle * 4500;
temp >>= 13;
whole = temp /100;
fraction = temp % 100;
if(temp < 0)
{

sign = -1;
whole = -whole;
fraction = (100 - fraction) % 100;

}
else

sign = 1;
}

PROGRAMMER’S TOOLBOX

the right-hand side of that bit.
We then talked about the conversion

to radians and realized that the con-
verted number would no longer fit into
a 16-bit integer. We got around that by
shifting the binary point two more bits
to the right.

These two cases are examples of
numbers using what is called fixed-
point notation. Internally, the comput-
er’s arithmetic unit sees them as inte-
gers, but we agree to interpret them as
fractional numbers with the binary
point wherever it must be. Usually, we
try to place this point as far to the left
as we can, to get the maximum resolu-
tion by maximizing the number of bits
to the right of the binary point.

This concept is the keystone to any
real-time processing that involves mea-
suring and dealing with parameters
that, in the real world, are not integers.
In an ideal situation, we’d use floating-
point notation and let the computer
take care of the details. When we can’t
afford to because of performance con-
straints, we do the next best thing,
which is to use fixed-point notation.

The notation is both the boon and
the bane of every real-time program-
mer’s existence. We could hardly get
anything done without the notation,
but its use adds immeasurably to the
difficulty of programming. It’s one of
the major reasons real-time program-
ming costs so much. We can’t just
stuff a value into a variable and go
compute with it. As you’ll see, the
outcome of arithmetic operations
depends very much on how we inter-
pret the numbers.

Fixed-point notation is almost cer-
tainly the most common source of
errors in real-time programs. Some of
these errors can be quite subtle and dif-
ficult to track down. When we choose
the representation for a given variable,
we must set bounds to the values we
expect to see. If, in operation, the value
exceeds those bounds, you won’t get a
nice pop-up dialog box telling you that
you just went out of range—dialog
boxes rarely show up in missile launch-
ers or factory control systems. Instead,
a large positive number will silently go
negative, and you’ll start to get goofy

results. If you’re lucky, the results will
be insanely goofy, and it will be appar-
ent to everyone that something is terri-
bly wrong. Hopefully, this revelation
will occur while the system is undergo-
ing integration testing and not while
it’s steering your family to Boise,
Idaho.

If you’re not lucky, the error will
affect the final result only slightly, and
you’ll be left wondering where the
gremlins are hiding. Or, you’ll be
ducking for cover.

Things get even worse if require-
ments change during development. The
range you expect for a given variable
may not be the same at the end of the
project as it was at the beginning. If
and when the range changes, so should
the representation used for that vari-
able change. And if it changes, so must
every other variable computed from it.
Thus, one change tends to ripple
through the whole system, sometimes
to the extent that it changes the design.
You may find yourself rewriting the
code several times during the course of
a single project, just to keep the scaling
correct. This is one area where you
can’t anticipate changes or allow for
growth. The need to get as much accu-
racy as possible dictates that you don’t
waste any bits or leave padding in the
representation. You must use the for-
mat that best fits the problem, and if
the problem changes, so be it.

THE B-NOTATION
If we’re going to use fixed-point repre-
sentations, as we almost certainly
must, we need every aid we can think
of to make the job easier. One such aid
is convenient and compact notation.
Over the years, the following notation
has emerged. We’ll begin with the for-
mat of Figure 1, where the binary point
is at bit 15. This is the natural format
when we can be sure that the number is
less than (but just less than) one. In
other words, it’s a pure fraction. Bit 15
is used strictly as a sign bit. (I know it’s
used differently, or at least can be
viewed differently, for the special case
of an angle in pirads. But this case is
not the norm.)

This particular format, where the
number is treated as a pure fraction, is
the most common. We’ll call this for-
mat B0 (B for binary point). The for-
mat of Figure 2 has the binary point
shifted right two bits. We’ll call this
format B2. In general, the number fol-
lowing the B tells us how many bits the
binary point is offset from its reference
position at bit 15. According to this
notation, a pure integer, which has its
binary point at bit 0, has a format of
B15.

Every increase in the B value shifts
the binary point to the right, and a
decrease shifts it to the left. The range
is not limited in either direction—we
can go both larger than 15 and less than
zero (and thus negative). A format of
B-5 has an imaginary binary point at
bit 19. Though this bit doesn’t physi-
cally exist, we can still treat the num-
ber as though it did. Negative offsets
are useful when the numbers are small,
and we can be sure they will never
approach one. Positive offsets beyond
15 are used for very large numbers.

In practice, you should choose the
scaling that can just contain the num-
ber, given the expected range. The res-
olution is then given by the weight
given the least significant bit. For a 16-
bit word with scaling Bn, this resolu-
tion is equal to:

resolution = 2-(15-n) (7)

For your convenience, I’ve shown

16 EMBEDDED SYSTEMS PROGRAMMING MAY 1995

If you’re not lucky,

the error will

affect the final

result only slightly,

and you’ll be left

wondering where

the gremlins are

hiding.

PROGRAMMER’S TOOLBOX

18 EMBEDDED SYSTEMS PROGRAMMING MAY 1995

the range and resolution for various
scalings in Table 2. If your number is
unsigned, you can double the range but
not the resolution. As you can see from
the table, the maximum positive value
is never quite equal to a power of two.
Because the positive and negative lim-
its for integers are not quite symmetri-
cal, neither are those of the scaled
numbers. In most cases, it’s so close
that you can fix the range at equal val-
ues. In this particular case, the range is
approximately:

range = 215-n (8)

There are a few cases where the differ-
ence between the approximate and
exact range is critical. We’ll look at one
example next month.

For a given word length, once you’ve
chosen the scaling by fixing a range,
you’ve also set the resolution. It’s up to
you to decide if this resolution is ade-

quate for your application. If it’s not,
you must go to 32-bit integers. The for-
mulas for range and resolution for
these integers are just like those for 16-
bit integers except you must substitute
31 for 15.

ALMOST FLOATING POINT
The observant reader will note that
fixed-point notation has a lot in com-
mon with floating-point. Internally, the
latter format breaks a number up into a
numeric part, the mantissa, which is
always less than one, and an exponent
to tell us where the binary point must
go. A number in fixed-point notation is
very much like the mantissa of that
floating-point number. The difference
is that the exponent is not stored with
the number. In fixed-point notation, the
binary point is, well, fixed. Since it
doesn’t change, we don’t need to
record it, except in our notebook and
program comments. By not carrying

around the exponent, we avoid the need
to compute it anew after each compu-
tation, and this is where we gain per-
formance. You can see, however, that
we gain performance at the expense of
flexibility and robustness in the pres-
ence of overflow conditions. Floating-
point arithmetic always adjusts the
result to give us maximum accuracy
while avoiding overflow. In fixed
point, this doesn’t happen. We must
choose a fixed scaling in our design
process and live with it. That’s why
we’re better off using floating point if
we have the computing power to spare.
It’s also why computer manufacturers
are working hard to make chips that
will give us that power.

We’ll continue this discussion next
month. Before I go, I’ll leave you with
a convenient rule of thumb to help you
deal with fixed-point scaling. To con-
vert a number in its Bn notation to
floating point, divide by:

215-n (9)

For example, our 180˚ angle was repre-
sented as 0x8000, format B0. Divide
by 215, which is 32,768, to get
1.0000000 pirads, which is correct.

Similarly, the same angle in radians
was 0x6487, format B2. Divide by 213,
which is 8192, to get 3.14148, or
roughly p radians. This is also correct,
within the limits of 16-bit accuracy.

In the same way, we can convert any
number from its floating-point form to
its Bn form by multiplying by the fac-
tor of Equation 9. After a little practice,
you’ll find that you can do these con-
versions very rapidly.

Next month, we’ll continue with this
topic and look at what we must do to
perform arithmetic with fixed-point
numbers. See you then.

Jack W. Crenshaw is a staff scientist at
Invivo Research in Orlando, FL. He
did much early work in the space pro-
gram and has developed numerous
analysis and real-time programs. He
holds a PhD in physics from Auburn
University. Crenshaw enjoys contact
and can be reached via e-mail at
72325.1327@compuserve.com.

TABLE 2
Range and resolution.

Scaling Range, +/- Resolution

B-5 0.031249046 0.000000953
B-4 0.062498092 0.000001907
B-3 0.124996185 0.000003814
B-2 0.24999237 0.000007629
B-1 0.499984741 0.000015258
B0 0.999969482 0.000030517
B1 1.999938965 0.000061035
B2 3.99987793 0.000122070
B3 7.999755859 0.000244140
B4 15.99951172 0.000488281
B5 31.99902344 0.000976562
B6 63.99804687 0.001953125
B7 127.9960937 0.00390625
B8 255.9921875 0.0078125
B9 511.984375 0.015625

B10 1023.96875 0.03125
B11 2047.9375 0.0625
B12 4095.875 0.125
B13 8191.75 0.25
B14 16383.5 0.5
B15 32768 1
B16 65536 2
B17 131072 4
B18 262144 8
B19 524288 16
B20 1048576 32

	<BACK: <BACK

