PROGRAMMER’S TOOLBOX

by Jack W. Crenshaw

Pyramids: The Last Word

ell, it seems I really started
s ’s / something with my columns
about the Great Pyramid

and the significance of its geometry. I
noted, as several Egyptologists have,
that the ratio of height to base of the
Great Pyramid is /2 to considerable
accuracy. I also mentioned the Golden
Ratio:

¢=1618 ...

which is often claimed to give the most
pleasing proportions of a rectangle.
The dimensions of the Pyramid and the
things inside it indicate that the
builders knew both 7 and ¢, and also
the Pythagorean theorem, things that
orthodox mathematics tells us weren’t
known until thousands of years later.

These ancient mysteries struck sen-
sitive chords in people of all stripes,
and about half of them sent me e-mail.
The responses varied from readers of
Skeptical Enquirer to National
Enquirer and from mildly interested
readers to folks who offered me rides
in their pals’ flying saucers to see the
face on Mars. The more credulous
writers see the suggestion that the
Egyptians knew things they weren’t
supposed to know as proof that they
built the pyramids using antigravity
sky-cranes imported from Atlantis. The
more skeptical not only see the propor-
tions of the Pyramid as mere coinci-
dence, they interpret discussion of the
subject as a superstitious evil that
needs to be stamped out in the name of
Science.

Among the more skeptical is Eric
Krieg, an avid Skeptical Enquirer read-
er and an amateur debunker of occult
claims. Krieg writes, “Please consider
a conventional explanation to an extra-
ordinary myth.” Krieg’s concern is that,
“The Great Pyramid and related myths
have been the focal point of a large
number of cults and occultic thinking.”

At this point, the
worth of the
Golden Ratio is
moot. Artists and
architects think
it’s pleasing, so
they design things
using it.

That’s true, but I don’t think you can
blame the Pyramid for that, though you
might blame the builders. Rightly or
wrongly, people have not always pub-
lished their knowledge freely, for the
good of humankind, but have some-
times kept it to themselves. Renais-
sance mathematicians often coded
their discoveries in anagrams or used
similar devices to enshrine their
knowledge without revealing it. People
have even constructed religions and
cults around esoteric knowledge; wit-
ness the Pythagoreans of ancient
Greece, the Masons of the last 300
years, and the present-day Rosi-
crucians. If you doubt that the Pyramid
and its hints of secret knowledge get
into strange places, take another look
at the back side of any dollar bill.

As a matter of fact, it seems to me
that the cultic aspects strengthen rather
than weaken the case for the Great
Pyramid as a monument to this knowl-
edge. As Krieg rightly points out,
“There are much more reasonable ways
to represent a number than to build a
stone pyramid.” No reasonable culture
would expend the kind of energy the

Egyptians did, encoding their knowl-
edge into a monument 400 feet high,
but a cult based on esoteric knowledge
with the power to direct a great labor
force just might.

NO AESTHETIC PREFERENCE

Krieg doesn’t believe the Egyptians
knew the Golden Ratio and claims
there is no proof that the ratio is more
aesthetically pleasing than any other.
He references a test by computer scien-
tist George Markowsky published in
the January 1992 College Mathematics
Journal. In double-blind tests, accord-
ing to Krieg, “People have no particu-
lar aesthetic preference for the Golden
Rectangle.”

I frankly admit to being surprised. I
thought that, while the source of the
Golden Ratio might be in doubt, its
existence and value was surely not. To
my knowledge, this ratio is taught in
every architectural school and art
school in the world and has been for
centuries. It’s in the dictionary and the
encyclopedia. Durer, da Vinci, Pal-
ladio, Signac, and Seurat all used it
widely. Seurat’s “La Parade” shows not
one but five such proportions.

To find out for sure, I went where I
always go when seeking knowledge: to
CompuServe’s Software Development
forum. Several members confirmed
my belief that the Golden Ratio is used
in art and architecture. They also
pointed out items in everyday life that
more or less conform to this ratio,
including playing cards, 3-by-5-inch
index cards, 5-by-8-inch photos, busi-
ness cards, credit cards, Post-It notes,
and so on.

At this point, the worth of the
Golden Ratio is moot. Artists and
architects think it’s pleasing, so they
design things using it. Whether people
find its proportions pleasing, as da
Vinci thought, or not, as Markowsky’s
test hints, doesn’t matter anymore.

JULY 1995 EMBEDDED SYSTEMS PROGRAMMING 21

PROGRAMMER’S TOOLBOX

To appease Krieg and other skeptics,
it’s only fair to acknowledge the great
controversy over the meaning of the
proportions of the Great Pyramid.
Orthodox archeologists and orthodox
mathematicians do not, repeat not,
accept that the Pyramid builders knew
7, ¢, or the Pythagorean theorem. On
the other hand, it’s hard to argue with a
million-ton counter-example. You
don’t have to believe in UFOs or the
occult to accept the fact that people of
ancient times could be at least as smart
as those of today, that mathematical
discoveries, like geographical ones,
might have been made more than once
and lost again, or that people might use
their knowledge for less than rational
purposes.

We’ve spent enough time and space
on this subject. We will speak of it no
more.

BACK TO FIXED POINT

Instead, let’s get back to the point,
which is fixed-point arithmetic. Last
month, I showed you how to add, sub-
tract, and multiply fixed-point num-
bers. As you may recall, we adopted a
notation Bn, where n stands for the
number of bits after the binary point.
The default format, B0, implies a pure
fraction in which all bits except the
sign bit follow the decimal point. In
other words, the number:

0x4000, BO
is equivalent to 0.5. The number:
0x7fff, BO

is just under one—0.999969482, to be
precise. Decreasing n decreases the
size of the number, and increasing n
increases it. If we’re using 16-bit inte-
ger numbers, a number with format
B15 has the decimal point all the way
to the right, so it’s a pure integer.
Fixed-point format is a bit like float-
ing point in that every number carries
with it an exponent. When we perform
arithmetic on such numbers, we must
deal with the exponents. The difference
is that in floating-point arithmetic, the
exponents are adjusted as part of the

We’ve learned that
when we multiply
two fixed-point
numbers, we can
always plan on
shifting the resulit.

process. In fixed-point arithmetic, the
exponent is, well, fixed. You can’t alter
it, but you still must deal with it.

Last month, you learned how to add,
subtract, and multiply fixed-point
numbers. This month, we’ll look at the
remaining operation: division.

DIVISION

We learned that when we multiply two
fixed-point numbers, we can always
plan on shifting the result. The reason
bears repeating, because it influences
the division operation as well.

When we perform fixed-point arith-
metic using integers on a modern
microprocessor, we really must deal
with two factors. First, the CPU is a
pure integer machine. It doesn’t know
anything about fixed point. To the
CPU, 0x4000 is 16384, not 0.5 or any
other decimal fraction. When we mul-
tiply two 15-bit integers, the CPU rea-
sonably assumes that we’re going to
get a 32-bit result, and all modern
microprocessors are designed to sup-
port “int-to-long” multiplication.
That’s all well and good if we’re truly
multiplying integers, but when we’re
using fixed-point arithmetic, the
answer we want, that is, the most sig-
nificant 16 bits, is always in the upper
half of the product. Because of that, we
learned that we must shift the product
right 15 bits (not 16) to get back to a
BO result.

The second factor is the program-
ming language we’re using. Those pro-
grammers who use assembly language
take a sharp right turn from those of us

22 EMBEDDED SYSTEMS PROGRAMMING JULY 1995

who use C or C++. The reason is that,
while the CPU understands that multi-
plying gives a 32-bit result, the lan-
guage does not. In C, any arithmetic
operation on two ints, including multi-
plication and division, yields a result
that’s also an int. Since this isn’t what
we want, we must cast one or both
operands to a long before the multipli-
cation. (Afterwards is too late!) The
standard fixed-point multiplication in
C looks like:

z = ((long)x * y) » 15;

It’s a bother to have to write this code
for every single product, which is why
I claim that C is poorly suited to real-
time programming. We’ll get back to
that point in a moment.

We must deal with similar issues in
the case of division, and again, C and
assembly language programmers must
take different forks in the road.
Assembly language is complicated by
the fact that, just as the designers of
CPUs have assumed that multiplying
any two 16-bit integers gives a 32-bit
result, they have also assumed that
dividing a 32-bit number by a 16-bit
one gives a 16-bit result.

This is a false assumption. To prove
it, you need only divide any long num-
ber by unity. The result is the same
long number, which will not fit into 16
bits. Why the CPU designers have his-
torically done things this way is beyond
me, because it takes very little extra
logic to leave a 32-bit quotient, but it is
a fact we must live with.

Going to fixed-point arithmetic
helps a little, but not much. Just as we
shifted the product right 15 bits after
multiplying, we must shift left 15 bits
before dividing. However, even that
step doesn’t necessarily keep us out of
trouble. Take a look at the following
quotient:

0x7ftf, BO (0.999969)
0x4000, BO (0.500000)

The quotient is 1.999938965, which is
too large to get back into a B0 scaling.
We must shift the result back one more
bit to the right, and scale it to B1. To

PROGRAMMER’S TOOLBOX

avoid the post-division shift, we can
shift the original divisor only 14 bits
instead of 16:

divisor: Ox7ftf
shift left 14: 0x1{ffc000
divide: 0x7fft, Bl

The reason we had to adjust the scale
was because the divisor 0.5 was small-
er than the dividend 0.999969.
Recognize, though, that the resulting

scale of B-1 is only valid for the par-
ticular combination of operands we

used. Suppose the divisor were
0x0001:

0x7fff, BO (0.999969)

divided by:

0x0001, BO (0.000031)

equals:

24 EMBEDDED SYSTEMS PROGRAMMING JULY 1995

0x7ftf, BI5 (32767.00)

All the input operands were scaled B0,
but results in the two cases are radical-
ly different. It may seem to make no
sense that the scale of the result should
be determined by the scale of the input
operands. If you feel this way, you're
thinking in terms of floating point,
where the exponent has a true relation-
ship with the number. The scales we’re
using here really have nothing whatev-
er to do with the values that may be in
them at any given time; they’re static
scalings rather than the dynamic ones
of floating point (which is why they’re
called “fixed”). And they’re scalings
you’ve chosen, however arbitrarily, to
use. You can represent any number in
any scaling, though the results may be
nonsensical if you choose badly.

This result simply serves to empha-
size the key point: In using fixed-point
arithmetic, you must consider the pos-
sible range of the results of every com-
putation and scale according to the
worst case. Say that over to yourself
100 times or until you get the message.

Fortunately, when we program in C
and C++, the operand promotion rules
work in our favor for a change. That is,
while the CPU designers may think
that the quotient of a 32-bit number by
a 16-bit number should yield a 16-bit
result, C knows better and assumes that
the result of a long divided by an int is
another long. This saves us one minor
bother but still doesn’t relieve us of the
more serious one, shifting before the
division. The code to perform the two
division examples is:

z = ((Long)x <«< 14) / y;
// result scaled Bl

z = (ong)x / y;
// result scaled B15

Note carefully the sequence of things.
You must promote the dividend before
the shift, not after, and perform the
division after the shift, not before.
From the two examples, you should
be able to see the general rule: Shift
left 15 bits minus the number that the
scaling must change. In the case where
both the operands have nonzero scales,

PROGRAMMER’S TOOLBOX

subtract the scale factors. So if we’re
dividing a number scaled Bn by a num-
ber scaled Bm and want the result to be
scaled Br, the shift factor is:

s=15+n-m-r

A BETTER WAY

Writing fixed-point software is no fun;
it’s very tricky stuff. You must compute
the best scaling for every variable in
the program, including all temporaries
computed as part of a formula. It is not
an easy job. And C and C++ don’t give
us much help. The plain facts are, we
are computing with both a CPU and a
programming language that don’t
understand fixed-point, so we are mak-
ing do, performing fixed-point arith-
metic with integer tools that include a
brain-damaged division algorithm.

It doesn’t have to be that way. We
should be able to ask for help in both
areas. Twenty years ago, most aero-
space manufacturers had their own
proprietary flight computer. Many of
them had fixed-point arithmetic built
in. The Honeywell computer, for exam-
ple, performed both multiplication and
division directly using BO format and
gave the result without shifting. We
programmers only had to deal with
shifting to get scales other than B0. All
those proprietary processors were
done in by the Department of
Defense’s Military Computer Family
(MCEF) initiative, an effort to standard-
ize on an instruction set architecture.
This effort led to the MIL-STD-1750A
processor, which most folks now con-
cede is obsolete.

Two programming languages, Jovial
and Ada, were developed specifically
for writing real-time programs, again
mostly for the military. Both languages
include fixed-point arithmetic as part
of their specification. Jovial is also
obsolete; it has been ruled unsuitable
for new defense projects. Its imple-
mentation of fixed point was never
very efficient, anyhow.

Additionally, the designers of Ada
tried to be just a little too cute. You and
I know that we’ll probably never see
another computer that doesn’t have a
word length a power of two bits long:

Floating point
eliminates the
dangers of
overflow or poor
accuracy.

8, 16, 32, or 64 bits. The Ada design-
ers, however, having seen too many
languages designed with a given com-
puter in mind (C and PDP-11, for
example) didn’t want to tie the lan-
guage to any specific word size. In
Ada, instead of specifying a fixed-
point word length, you specify its
range and precision and let the compil-
er decide upon a scaling. Theoretically,
the compiler could choose any word
length, though presumably, the algo-
rithm making that decision would favor
words that the target CPU could actual-
ly use.

What happened next is a bit obscure.
It could be that the compiler vendors,
under pressure to get the compiler
delivered, took shortcuts in the area of
fixed point. After all, the language
specification says that Ada should sup-
port fixed point, but it doesn’t say that
it has to generate efficient object code.
The explanation could simply be that
language designers weren’t mathemati-
cians. Whatever the reason, the early
Ada compilers generated terrible code
when fixed point was used—on the
order of 10 times slower than other
languages. The situation was so bad
that most Ada shops had a standing
rule: Thou shalt not use fixed point.

I’'m sure the code generation was
improved in the later Ada compilers,
but fixed-point arithmetic still seems to
rank way down the priority list when it
comes to compiler improvements.

So here we are in 1995, 20 years
after the MCF effort began, with com-
puters that don’t understand fixed-
point arithmetic and languages that
either don’t understand it, are rarely
used, or generate poor code. The

26 EMBEDDED SYSTEMS PROGRAMMING JULY 1995

chances that this situation will change
in the near future are slim, because
we’re likely to get fast floating-point
processors that make the whole prob-
lem go away. Floating point is a much
better solution anyway, since it elimi-
nates the dangers of overflow or poor
accuracy inherent in the use of fixed-
point arithmetic. Pray for floating
point. In the meantime, we make do,
writing strange-looking code and care-
fully scaling every arithmetic value.
Careful design and exhaustive testing
over the whole range of expected
inputs is essential.

A side note to employers: Whatever
you’re paying your programmers who
are doing this stuff, it’s not enough.
Programming fixed-point arithmetic
requires the most exacting and careful
design and testing, which is the kind of
thing they don’t teach in college. If you
decide to cut corners on your staffing
and hire a programmer whose last job
was writing an Accounts Receivable
program in Basic, you deserve whatev-
er you get.

OPPORTUNITY KNOCKS

When I was developing navigation and
guidance software, I spent most of my
time making sure I got the scaling
right. Testing was not easy, mainly
because we didn’t have very good
tools—usually only a hex debugger.
Like all of my ilk, I got pretty good at
converting hex numbers into fixed-
point numbers. On a good day, I could
keep the calculator just under the boil-
ing point. But when you stop and think
about it, paying someone big bucks to
run a pocket calculator is a pretty inef-
ficient way to do business. And aside
from the conversions themselves,
there’s also the fact that almost every
number is scaled to a different format.
So you not only need a calculator close
at hand but also a list of all your pro-
gram variables and their scales. There
ought to be a better way.

I always wished I could take the time
to sit down and write a program to help
me remember what the scalings were
for each variable and help me perform
the conversions. The idea goes some-
thing like this: When I was in the

design phase, I'd input the variables
that the program needed and the
expected range and precision values,
similar to the Ada representation. The
program would suggest a scale factor
and word length for me, which I could
accept or modify. (Sometimes, remem-
ber, we can avoid a shift by relaxing the
precision requirement a bit.) When a
new variable depended on an operation
on two existing variables, I'd want to be
able to tell the program the dependence
and let it compute the resulting range
and scale.

After the design process was com-
plete, I'd want to be able to save the
information in a file. During the testing
phase, I could enter the observed hex
value for any variable. The program,
drawing on its database, would know
how to convert the data to decimal and
display it for me. I could also enter data
in decimal and have the program con-
vert it to hex, with the right scaling.

What I just described is a symbolic
debugger, but one that understands
fixed point. Most symbolic debuggers
can display data in virtually any for-
mat, including complicated structures.
This debugger would add just one
more layer, which would be the conver-
sion of fixed-point numbers.

Looking back on it, I realize that my
original goals were limited. A tool that
helps me design my scaling and deci-
pher it later would be great, and I
wouldn’t slam the door on anyone
offering me one. But if I’'m going to let
a computer program design the scaling
for me, why not take it that one last
step and have it generate the code as
well?

Now we’re talking about a code gen-
erator instead of a debugging tool.
More precisely, we're talking about a
new language, an extension to C and
C++ complete with a preprocessor
(shades of C++ and cfront) and a sym-
bolic debugger.

Wouldn’t that be great? Would you
use it? I sure would. So here’s the deal:
Write yourself such a preprocessor/-
debugger system and get rich. I’ll be
your first customer.

I intended to finish up with a practi-
cal example, the sine function imple-

mented in fixed point. As usual, my
page-count meter runneth over, so I’ll
have to defer the example until next
month. Perhaps that’s better, anyway,
because I want to take time to look at
lots of little refinements. If we’re going
to do such a function, I want it to be
one you’ll really be able to use and
never have to rewrite again. That takes
a little more effort than just a simple
example, so it’s a good thing to put off

until we can do it justice. IEXd

Jack W. Crenshaw is a staff scientist at
Invivo Research in Orlando, FL. He
did much early work in the space pro-
gram and has developed numerous
analysis and real-time programs. He
holds a PhD in physics from Auburn
University. Crenshaw enjoys contact
and can be reached via e-mail at
72325.1327@compuserve.com.

JULY 1995 EMBEDDED SYSTEMS PROGRAMMING 29

	<BACK: <BACK

