PROGRAMMER’S TOOLBOX

By Jack W. Crenshaw

Fixed-Point Arithmetic

funny thing happened on the
A way to this column. Those of

you who were here last month
will recall that I had just begun a dis-
cussion of how to implement fixed-
point arithmetic using integers. Last
week, I got my March issue of
Embedded Systems Programming, and
discovered, to my horror, a nice article
by Jean Labrosse on how to implement
fixed-point arithmetic using integers.
This is the ultimate writer’s nightmare,
somewhat akin to my all-time favorite
of remembering on the last day of
finals that I was signed up for a class I
had never attended. Or looking at the
conference program to discover that
the person speaking before me is cov-
ering the same topic.

What do we do now? I don’t want to
bore you with repetition. But this is the
second half of a two-part article, and
aborting the discussion halfway
through would leave a whole train of
thought dangling. Neither solution
really satisfies.

Fortunately, after rereading La-
brosse’s article, I see that the way he
presents the subject is different enough
that we don’t have that much overlap.
I’'m going to press on with the discus-
sion and give you my take on the sub-
ject. It might help if you think of us as
having the foresight and coordination
to provide you with saturation cover-
age of the subject from two carefully
synchronized points of view.

SNEAKING INTO IT
Last month, I sneaked up on the sub-
ject of fixed-point arithmetic through
the problem of expressing an angle
using an integer representation. I
showed you that if we measure the
angle in pirads (7 radians) scaled prop-
erly, we get a representation that natu-
rally wraps around as the angle gets
larger and passes through zero.

Next, I introduced the B-notation

In general, we
want to use the
scaling that will
give us the hest
accuracy that we
can get without
overflowing.

(similar to Labrosse’s S-notation.) This
notation describes the location of the
imaginary binary point, with BO corre-
sponding to a number with the binary
point at bit 15, just below the sign bit.
(We’re assuming 16-bit integers here,
but the notation is easily extended to
longer word lengths.) Thus, the hex
integer 0x1256, scaled BO, is equiva-
lent to the binary number:

0.001001001010110 = 0.143249511

Every increase in the scale factor n
moves the binary point to the right one
bit. A decrease moves it to the left.
Any 16-bit number scaled B15 is a
pure integer, since the binary point lies
just to the right of the least significant
bit. Last month, I showed how to con-
vert a number from its integer to deci-
mal values and back, using the factor:

m = 215n)

I also showed you how to compute the
range and resolution for any scaling,
using the relationships:

resolution = 2-(15-n) 2)
range = 215 3)

To handle fixed-point notation, it’s
very important that you feel comfort-
able with these relationships and can
toss them around with dexterity. Each
of us must decide how best to do this,
but I tend to do the conversion in two
steps. Equation 1 is fine for computer
programming, but I can remember the
conversion better if I separate out the
two parts of the exponent. 215 is equal
to 32,768. To effect the conversion
from integer to decimal, divide by
32,768, then multiply by n powers of
two. To go the other way, reverse the
process. A couple of examples will
help. To convert 0x5678, B4, to deci-
mal, do the following:

* Convert hex to decimal 22136
* Divide by 32,768 0.675537109
* Multiply by 24 10.80859375.

To convert 1,000.0 to B10:

* Divide by 210= 1,024 0.9765625
* Multiply by 32,768 32,000
« Convert to hex 0x7d00.

To get the feel of the process, practice
on the examples in Exercise 1. The
answers are on page 16.

EXERCISE 1

Conversion practice.

From Hex to Decimal:
1. 0x4000,B1=7?

2. 0x0001,B15=7?
3. 0x6667,B4 ="
4. Oxaaab, B1 =?

(hint: the number is negative)
5. Ox7fff, B4 =?

From Decimal to Hex:
3.14, B2 =7
5280.0, B13 =?
0.015625, B-6 = ?
3.00 x 108, B29 = ?
-3B4="?

@ > WY =

JUNE 1995 EMBEDDED SYSTEMS PROGRAMMING 13

PROGRAMMER’S TOOLBOX

If you didn’t do the exercises, stop
right now and do them. You will notice
that when we convert from decimal to
hex, the answer always fits nicely into
four hex digits. Was this a lucky acci-
dent? Hardly. As a matter of fact,
making the number fit is the trickiest
and most important part of the scaling
process. And, as usual, there’s a trick
that can make the process less painful.

Last month, I included a table giving
the maximum range and best resolu-
tion we can expect from a given scal-
ing. For those who like tables, I've
reproduced it in Table 1. In general, we
want to use the scaling that will give us
the best accuracy, meaning the most
bits, that we can get without overflow-
ing. Suppose we know that a given dis-
tance will never exceed one mile, or
5,280 feet. Looking at the table, we can
see that the range just large enough to
hold this value is 8,192, or rather
8,191.75, which corresponds to a scal-
ing of B13. This tells us what scaling
must be used for this number.

The only problem is, most of us
aren’t likely to carry this table around
with us all the time. How do we arrive
at a scaling without the table? The trick
is to recognize that the scaling Bn
allows us to represent a number with n
bits to the left of the binary point. If we
know how many bits we need here, we
immediately get the needed scaling.
We can get this number by taking the

ANSWERS

For Exercise 1.

From Hex to Decimal:

1. 0x4000, Bl =1.000
2. 0x0001, B15 =1.000
3. 0x6667, B4 =12.800
4. Oxaaab, B1 =-1.3333
5. Ox7fff, B4 =15.9995

From Decimal to Hex:

1. 3.14,B2 = 0x647a
2. 5280.0,B13 = 0x5280
3. 0.015625, B-6 = 0x8000
4. 3.00 x 108, B29 = 0x4786
5. -3B4 = 0xe800

logarithm, base two, of the number.
For our example:

log,(5280) = 12.366 @)

We must take the next larger integer,
which is 13, giving us the needed scal-
ing of B13. The same process works
for small numbers:

10g,(0.001) = -9.965)

In this case, note carefully that the next
larger integer is -9, not -10. So we can
represent the number scaled B-9. (Its
scaled value is 0x4189.)

Unfortunately, most calculators
don’t offer the logarithm, base two.
But that’s no problem, because we can
get it in two steps:

To figure out how many bits to
allow to the left of the binary point,
first take the logarithm of the number
(in either base e or base 10), then
divide the result by the log of two
(using the same base, of course). The
result, rounded up, is your B-number.

It goes without saying that to do
these computations, you need a calcu-
lator that can handle both decimal and
hex numbers, as well as scientific func-
tions like In x. You can spend a lot of
money for such a calculator and still
not get the ability to flip between deci-
mal and hex representations. My
expensive Hewlett-Packard can’t do it.
Or you can buy something like the
Sharp EL-506D, a neat little pocket
calculator priced under $30. I can’t get
along without my Sharp. And no, I
don’t own any Sharp stock, nor have

g o x = % 6
TABLE 1
Range and resolution.

Scaling Range, +/-
B-5 0.031249046
B-4 0.062498092
B-3 0.124996185
B-2 0.24999237
B-1 0.499984741
BO 0.999969482
Bl 1.999938965
B2 3.99987793
B3 7.999755859
B4 15.99951172
B5 31.99902344
B6 63.99804687
B7 127.9960937
B8 255.9921875
B9 511.984375
B10 1023.96875
Bl11 2047.9375
B12 4095.875
B13 8191.75
B14 16383.5
B15 32768
B16 65536
B17 131072
B18 262144
B19 524288
B20 1048576

16 EMBEDDED SYSTEMS PROGRAMMING JUNE 1995

they paid me to endorse their product.
I just know a good thing when I see it.

Resolution

0.000000953
0.000001907
0.000003814
0.000007629
0.000015258
0.000030517
0.000061035
0.000122070
0.000244140
0.000488281
0.000976562
0.001953125
0.00390625
0.0078125
0.015625
0.03125
0.0625
0.12
0.25
05
1

2
4
8

6
2

(S JRSY

PROGRAMMER’S TOOLBOX

WHAT’S YOUR SINE?

Now that we know how to represent
numbers, including angles in pirads,
it’s only natural that we try to use them
for something. An obvious and very,
very practical use is to represent the
trig functions, sine and cosine. Right
away, we run into a brick wall, because
these functions can vary from -1.0000
to +1.0000. Of all possible ranges, this
is the most awkward, because for every
angle except four, these functions are
safely less than unity. We’re tempted
to wuse the BO representation.
Unfortunately, we can express 0.99997
in this notation, but not the limiting
value of 1.0000. In BO notation, 1.0000
is 0x8000, which looks like a negative
number, not a positive one. Our repre-
sentation can’t hold the value.

We really have only two choices:
We can scale the number to B1, recog-
nizing that we lose a bit of precision in
the process, or we can limit the trig
functions so they never overflow. The
first choice is the safe and simple one,
and one I use when I am in a hurry.
Most people, however, prefer to keep
the resolution and limit the value of the
function. Thus, we represent the
1.0000 value by 0x7fff, scale BO and
accept that three part in 100,000 error,
which is all we can expect of the bit
resolution we have, anyway.
Table 2 gives a short table of the sine
function of an angle in pirads. Later,
we’ll see how to compute this function.

In case you haven’t noticed, the
process of choosing a scaling for a
given variable is tricky and time-con-
suming. It’s also dangerous, since any
overflow of the number is likely to be
catastrophic. You must perform a bal-
ancing act between getting the most
precision you can and having enough
headroom to handle unexpectedly
large values. When you’re designing a
new program, this process must be
repeated for each parameter in the pro-
gram, including the results of all inter-
mediate computations.

In practice, a certain amount of
artistry is required to balance safety
against accuracy. For certain rare cases
like the angle and its sine function of
Table 2, the range is naturally limited,

and you’re safe. Or perhaps you’re
dealing with an input from, say, an
analog-to-digital converter. Again, the
range is predictable. But for most of
the program parameters, particularly
the internal ones, we can’t be so certain
what the range is going to be, so we
must estimate it and provide a reason-
able safety factor. This need is among
the main reasons why embedded sys-
tems programming can be so tricky
and why we get the big bucks.

ADDING AND SUBTRACTING

Two fixed-point numbers can be added
only if their scales are the same. When
you add two decimal numbers by hand,
you’ve learned that you must write
them down so their decimal points line

up:

1,234.0
+ 12.345

1,246.345)

We must do the same thing when we
add fixed-point numbers in a comput-
er. But since the computer doesn’t
know anything about scaling, we must
line them up ourselves by shifting. We
can’t shift the larger number to the left
(it would overflow), we can only shift

TABLE 2
Fixed-point sine function.
Angle Angle, BO Sine
degrees pirads BO
0 0x0000 0x0000
22.5 0x1000 0x30fc
45 0x2000 0x5a82
67.5 0x3000 0x7642
90 0x4000 Ox7fff
112.5 0x5000 0x764
135 0x6000 0x5a82
157.5 0x7000 0x30fc
180 0x8000 0x0000
-157.5 0x9000 0xcf04
-135 0xa000 Oxa57e
-112.5 0xb000 0x89be
-90 0xc000 0x8001
-67.5 0xd000 0x89be
-45 0xe000 Oxa57e
-22.5 0xf000 0xcf04
0 0x0000 0x0000

18 EMBEDDED SYSTEMS PROGRAMMING JUNE 1995

the smaller number to the right.
Suppose, as in the previous example,
we have:

1,234.000 B11
+12.345 B4 (8)

In hex, the numbers are:

0x4d20 B11
+ 0x62c2 B4

Shifting the smaller number right
gives:

0x4d20 B11
_+0x00c5 BI1
Ox4de5 B11

This is equivalent to 1,246.3125,
which is close enough.

When adding, you must also watch
out for overflows. Consider the simple
sum:

1+1:
0x4000 B1 + 0x4000 B1 = 0x8000 B1
)

Oops! In this case, the summation
overflows. This possibility is some-
thing we must always expect and pro-
vide for when adding two numbers.
Sometimes, you can predict in advance
that a summation won’t overflow. For
example, if you’re adding a small
increment to a larger number that has
already been properly scaled for the
worst-case condition, you’re safe. The
biggest danger comes when the two
numbers are approximately equal in
size.

If this is the case and the numbers
have been scaled close to their limits,
you must provide one guard bit to
catch the overflow. This is one area
where assembly language is useful,
because you can play with the carry bit
to sense the overflow—that’s what the
bit is there for. C and C++ don’t know
about carry bits, so in these languages,
you must make arrangements to be
sure the overflow doesn’t happen.

Let’s consider some coding exam-
ples. To code the summation of
Equation 8, we can write:

PROGRAMMER’S TOOLBOX

int x = 0x4d20;
int y = 0x62c2;
intz=x+(y»7);

// scale Bi1
// scale B4
// scale Bi1

Always attach the scaling as a com-
ment to every computation. It’s the
only way you’ll be able to make sense
of things later.

Where an overflow is possible, we
have two choices: either shift both
numbers right before adding or accu-
mulate them in a long result. The first

choice gives us the following code:

int x = 0x4000; // scale B1
int y = 0x4000; /1 scale Bl
intz=(x» 1)+ (y»1); // scale B2

This choice avoids the use of a long,
but we pay a price in precision. If the
low-order bits of x and y are both ones,
they would normally ripple into the
next higher bit. By shifting them out
before adding, we lose this bit. Using a

20 EMBEDDED SYSTEMS PROGRAMMING JUNE 1995

long gives us more accuracy:

long temp = x +y;
int z = temp » 1; // scale B2
Again, if you’re programming in
assembly language, you can shift the
carry bit back into the number and
avoid the need for a long temporary.

Are you beginning to get the idea
that even a simple addition is a lot of
bother? Now you’ve got it! It also
requires CPU clock cycles. This is the
price we pay for wanting to do fast
arithmetic in fixed point with as much
accuracy as possible. Though the shifts
and data movements take time, they
still take a lot less time than floating
point. As a matter of fact, the same
shifts and data movements are done in
floating point but are hidden from us.

You may think that subtraction
doesn’t suffer from the overflow prob-
lem, which is true if you can be assured
that both numbers have the same sign.
If they don’t, however, you can get
overflow in a subtraction by subtract-
ing a negative number. So the same
techniques must be used to handle the
overflow.

The adjustment of the numbers
before and after an operation is where
the artistry in program design comes
in. Although for best accuracy, we
want to maintain the greatest number
of bits in a number, a slavish devotion
to this goal can cause the CPU to do
more work. Sometimes it’s better to
relax the design requirements a hair,
sacrificing a bit of accuracy in an inter-
mediate result to cut down the number
of shifts. Alternatively, you can some-
times prove via analysis that the over-
flow can’t occur and skip the otherwise
necessary shifting. All of this requires
careful planning and attention to detail
in every step of an algorithm. It also
requires someone with the experience
to know when the speed/accuracy trade
is a good one and when it’s not. That’s
why we get the big bucks.

MULTIPLYING

When multiplying two fixed-point
numbers, we don’t have to adjust them
beforehand. You can multiply two

PROGRAMMER’S TOOLBOX

numbers of any scaling. You need only
record what the scale of the result is.
Even so, you’ll find that shifting is
almost always required. To see why,
let’s look at the simplest case I can
think of, multiplying two numbers
scaled BO. The largest number we can
represent in this format is one, minus a
bit:

0.9999695 = 0x7{ff BO

Let’s multiply two of these hex num-
bers together:

Ox71ff * Ox71ff = 0x3fff0001

The first thing you’ll notice is that we
get a 32-bit result. That may not be a
surprise to you or the CPU (the 80x86,
like virtually every other computer
ever built, is designed to accommodate
that fact), but it is surprising to C and
C++. If you need some more convinc-
ing, write yourself the following short
C++ program:

void main(){
int x = Ox7ff; // scale BO
int y = Ox7fff; // scale BO
cout << hex << x * y << endl;

}

What result did you get? Correct—the
0001 is the low-order half of the actual
result. The high-order half, which is
the part that contains most of the infor-
mation, is quietly discarded with no
error message. That’s because the C
and C++ rules of type conversion and
promotion don’t extend to understand-
ing how multiplication (or addition, for
that matter) can add bits to a result.
According to their rules, any operation
involving two ints gives an int result.
Period. End of discussion.

Since that’s not the kind of result we
need, we must somehow coerce the
compiler to promote the result to a
long, at least temporarily. Unfortun-
ately, in C, that’s not possible without
promoting the two operands as well.
To fix our little test program, we must
promote at least one of the operands to
a long (if one is long, the other will be
promoted automatically):

Anyhody who says
that C is an ideal
language for
programming real-
time applications
has obviously
never had to do it.

void main(){

int x = Ox7fff;

int y = Ox7fff;

cout << hex << (Long)x * y << endl;
}

That change gives us the answer. But is
it really correct? Actually, no, because
we need the result back in a BO integer.
More importantly, even the value of
the high word is wrong. Multiplying
two values that are almost one, we
should surely get a result that’s also
almost one. In other words, our final
result should still be about 0x7fff. But
as you can see, it’s actually half that.
The act of multiplication has shifted
our result to the right one too many
bits. Or, more accurately, it shifted it to
the left 15 bits.

GETTING RESULTS

This is a very important result, particu-
larly if you’re writing your software in
assembly language. As I mentioned
earlier, virtually all CPUs are designed
to multiply two 16-bit numbers and
give a 32-bit result. In assembly lan-
guage, it’s a very simple matter to store
the high half as the desired 16-bit
result. Unfortunately, as you can see,
this doesn’t give us the result we need.
We must either shift the result one bit
to the left before storing the high half
or shift the whole result 15 bits (not 16,
which would be easier and quicker) to
the right. Which solution you choose
depends on the kind of hardware

22 EMBEDDED SYSTEMS PROGRAMMING JUNE 1995

you’re working with. In older or small-
er computers, the time required to per-
form a shift depends on how many bit
positions you’re shifting, so a one-bit
shift is much preferred. You can
accomplish this if you create structures
to hold the result:

struct doubleword{
unsigned int lo;
unsigned int hi;

}

union longword{

long 1;

struct doubleword d;
k

With these structures in hand, the mul-
tiplication can be written:

longword temp = (long)x * y;
int z = temp.d.hi << 1; // scale B0
The notation is certainly busy, though.
We also have that nagging problem
that the structure doubleword depends
on the CPU rules for byte- and word-
order (big endian or little endian). This
makes our code nonportable.

Fortunately, most modern CPUs use
barrel shifters, so the time required to
perform a shift is independent of the
number of bits. In the latter case, shift-
ing right 15 bits is as good a solution as
any. The corresponding code is:

int z = (int)(((Long)x * y) > 15);

Does it strike you that this is a tortur-
ous bit of code, just to multiply two
numbers? It does me, too. Things get
exponentially worse when we must
cascade such operations through sever-
al steps.

This is my biggest beef with C and
C++. Anybody who says that C is an
ideal language for programming real-
time applications has obviously never
had to do it. Having to write obscure,
write-only code like the line just
shown for every multiplication opera-
tion in a program is a heck of a way to
run a railroad or a software project.

The plain fact is this: We’re trying to
write fixed-point arithmetic in a lan-

PROGRAMMER’S TOOLBOX

guage (and on a CPU) that was
designed to deal with numbers as pure
integers.

We’ll talk more about this and about
languages that support true fixed-point
arithmetic, next month. For now, rec-
ognize that when we’re programming
real-time systems using C and C++,
we’re really using the wrong tool for
the job.

We can make the multiplications a
bit more palatable by using the follow-

ing macro:

#define mult(x, y, 1, m, n) ((int)((long)x
¥y > (15¢1+n-n)))

Here, x and y are the two operands, 1
and m the integers representing their
scaling, and n the desired scaling for
the result. The product of x and y can
then be written:

int z = malt(x, y, 0, 0, 0);

24 EMBEDDED SYSTEMS PROGRAMMING JUNE 1995

Using this technique, you won’t be
likely to write complex expressions,
but then you’re not likely to do that
anyway, given the complexity of a sin-
gle multiplication.

Once we’ve dealt with the horrors of
multiplying even the simplest num-
bers, extending the process to less sim-
ple ones is a piece of cake. To multiply
two numbers, add their scalings for the
product. Thus, for example, the prod-
uct of a number scaled B4 and one
scaled B3 has a scale of B7. This
assumes the one-bit adjustment that we
must always do to retain precision. The
following example will give you the
picture:

12.00 B4
* 6.00 B3
72.00 B7

In hex, this is:

0x6000 * 0x6000 = 0x24000000
Shifting right 15 bits gives:
0x4800 = 72.00 B7

(To shift a number 15 bits on your cal-
culator, divide by 0x8000, equalling
32,768.)

MORE TO COME

If you thought multiplication was fun,
wait until you see division!
Unfortunately, we’re out of space for
this month, so we’ll have to postpone
that pleasure until next time. We’ll dis-
cuss division and the story of program-
ming languages next month. We’ll also
wrap up the discussion with a practical
example of programming in fixed
point. See you then.

Jack W. Crenshaw is a staff scientist at
Invivo Research in Orlando, FL.
Crenshaw did much early work in the
space program and has developed
numerous analysis and real-time pro-
grams. Crenshaw holds a PhD in
physics from Auburn University.
Crenshaw enjoys contact and can
always be reached electronically at
72325.1327@compuserve.com.

	<BACK: <BACK

