
Introducing the Cortex-M0+ processor:
The Ultimate in Low Power
The ARM Cortex-M0+ processor has just been announced. In this article we will introduce this new
processor and explain how it can bring additional advantages to your embedded products.

The Cortex-M0+ processor builds on the successful Cortex-M0 processor, which was released three
years ago. The Cortex-M0 processor provided excellent code density and best in class energy
efficiency in about the same silicon area as 8-bit and 16-bit processors. Since the release, the
Cortex-M0 processor is the fastest ever licensed ARM processor core, passing 50 licensees by the
end of 2011. Since then our design teams have continued to work hard and work with our Partners
closely to see what can be improved. From that work the concept of the “Flycatcher” (project code
name for Cortex-M0+) was formed.

Our Partners had highlighted several criteria in demanding applications that cannot be addressed by
existing processor solutions. One of the top requirements was to achieve even lower power and
much greater energy efficiency. In order to satisfy these requirements the Cortex-M0+ processor
was completely redesigned from the ground up while keeping complete instruction set and debug
compatibility. For the first time, ARM has produced a processor design with a two stage pipeline,
and used the opportunity to improve the performance while maintaining a very similar maximum
frequency. The overall result is very encouraging. When compared to the existing Cortex-M0
processor, the Cortex-M0+ processor consumes only two thirds of the dynamic power in our power
analysis test, when running Dhrystone loops.

 Cortex-M0+ Cortex-M0

Static power 0.95uW 0.96 uW

Dynamic power 11.21uW/MHz 16.36uW/MHz

Table 1: Power characteristics based on TSMC 90LP processor at 50MHz operation in minimum
configurations

The lower power consumption of the processor is certainly important, but how about system level
power consumption? By moving to a two stage pipeline design, the branch shadow of the processor
is reduced. As a result, the number of accesses to Flash memory is cut. Flash memory power often
contributes the majority of the power consumed in a microcontroller so any reduction in Flash
accesses has then a very direct effect on the overall power.

Figure 1: Branch shadow

System level features
The Cortex-M0+ processor supports a new I/O interface which allows single cycle accesses and so
enables faster I/O port operations. The processor’s I/O interface is a generic 32-bit interface to
which microcontroller vendors then add their own I/O port peripherals. With this I/O interface the
Cortex-M0+ processor can perform peripheral accesses faster than any of the popular
microcontrollers.

Cortex-M0+

Data

Strobe

Start

Set Data
Output

Enable
Output

incrptr

Assert
strobe

De-assert
strobe

Read
character
from ROM

via ptr

End

Data==NULL?Disable
Output

Y N

Instruction Cycle Size
Loop

STR r4,[r1,#0] ;1 2
ADDS r0,r0,#1 ;1 2
STR r5,[r2,#4] ;1 2
STR r6,[r2,#4] ;1 2

; Loop entry point
LDRB r4,[r0,#0] ;2 2
CMP r4,#0 ;1 2
BNE Loop ;2 2

MCU Loop
cycles

Loop size
(bytes)

MSP430 12 20
78K 10 14
8051 asm 15 12
Cortex-M0+ 9 14

Figure 2: I/O interface feature allows faster I/O operations

Since the I/O interface is part of the system’s memory map, the I/O register on this interface can be
accessed with normal pointers in C and does not require specific C language extension features such
as special data types.

Because accesses to the AMBA® AHB-Lite™ and the single cycle I/O interface can be made
concurrently, the Cortex-M0+ processor can fetch the next instructions while accessing the I/Os. This
enables single cycle I/O accesses to be sustained for as long as needed.

Power-sensitive applications will also benefit from this improvement, by either running at lower
speed for the same I/O toggling frequency, or by completing the I/O control more quickly, then
going faster into a sleep mode.

The Cortex-M0+ processor also includes many useful features from the Cortex-M3 and Cortex-M4
processors previously not available in the Cortex-M0 processor. For example, it supports privileged
and unprivileged execution levels, and a Memory Protection Unit (MPU) which is similar to that in
the Cortex-M3 and Cortex-M4 processors. The MPU is a programmable component with 8
programmable regions, and can be used by an OS to create access permission rules for various
application tasks dynamically during run time. By using this mechanism, the design can prevent an
application task from corrupting memory space used by other tasks and the OS kernel.

Memory

Data for
Task C

Data for
Task A

Data for
OS kernel

Data for
Task B

I/O #2
I/O #1
I/O #0

Cortex-M0+

MPU

Task B

OS kernel
Config

Figure 3: Memory Protection Unit (MPU)

In addition, the Cortex-M0+ processor supports vector table relocation, just like the Cortex-M3 and
Cortex-M4 processors. This allows easy reassignment of exception vectors at run time. All these
features are configurable options for silicon designers. In its minimum configuration the silicon area
of the Cortex-M0+ processor is the same as the Cortex-M0 processor.

For some silicon designers, more good news is that they can very easily use the Cortex-M0+
processor with 16-bit Flash memories with minimal impact to the performance or the system design.
The Cortex-M0+ processor can be configured to generate instruction fetches as 16-bit rather than
32-bit accesses. Because most of the instructions in the ARMv6-M architecture are 16-bit, the
system can still run with very good performance.

 This focus on maintaining a very low silicon area allows our Partners to conceive size optimized
solutions that address consumer and safety markets such as small sensors/actuators in factory
automation, automotive and medical.

Debug
There are also new features in the debug support. Beside the debug features in the existing Cortex-
M0 processor, the Cortex-M0+ processor supports a Micro Trace Buffer (MTB) which provides simple
instruction trace. The programmer allocates a small part of the system SRAM as a trace buffer and
the MTB stores instruction flow information to the reserved SRAM as a circular buffer. After the
processor is halted, for example due to a breakpoint, the debugger can then retrieve the trace
information via the widely adopted Serial Wire Debug (SWD) connection – this needs only two pins –
and then reconstruct the recent execution history. The MTB can also support “one-shot” triggering.

Figure 4: Instruction Trace support via MTB, already fully supported in Keil MDK-ARM

The Serial Wire Debug interface in the Cortex-M0+ processor can optionally include a feature called
Multi-drop Serial-Wire. This allows multiple Multi-drop Serial-Wire capable devices to share a single
debug connection, of particular benefit when building many-core SoC systems.

Using Cortex-M0+ processor-based microcontrollers
For software developers, the great news is that you can reuse all your existing software for Cortex-
M0 processor-based products. You can also use the same compiler suite, the same IDE and the
same debug adaptor. The instruction set of the Cortex-M0+ processor is identical to that of Cortex-
M0 processor, and supports all features included in the Cortex-M0 processor. The Cortex-M0+
processor also supports the sleep mode features as in Cortex-M0 processor, and provides excellent
interrupt processing capability.

	System level features
	Debug
	Using Cortex-M0+ processor-based microcontrollers

